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ABSTRACT
The analysis of time-dependent data is an important problem in many application domains, and interactive visual-
ization of time-series data can help in understanding patterns in large time series data. Many effective approaches
already exist for visual analysis of univariate time series supporting tasks such as assessment of data quality, detec-
tion of outliers, or identification of periodically or frequently occurring patterns. However, much fewer approaches
exist which support multivariate time series. The existence of multiple values per time stamp makes the analysis
task per se harder, and existing visualization techniques often do not scale well.
We introduce an approach for visual analysis of large multivariate time-dependent data, based on the idea of
projecting multivariate measurements to a 2D display, visualizing the time dimension by trajectories. We use visual
data aggregation metaphors based on grouping of similar data elements to scale with multivariate time series.
Aggregation procedures can either be based on statistical properties of the data or on data clustering routines.
Appropriately defined user controls allow to navigate and explore the data and interactively steer the parameters
of the data aggregation to enhance data analysis. We present an implementation of our approach and apply it on a
comprehensive data set from the field of earth observation, demonstrating the applicability and usefulness of our
approach.

Keywords: Multivariate Time Series, Visual Cluster Analysis, Exploratory Data Analysis, Data Projection, Data
Aggregation

1 INTRODUCTION

Multivariate time series data are gathered in many
domains including economics, experimental physics,
computer vision, robotics, and earth observation. E.g.,
in the financial domain, large amounts of stock prices
are tracked over time; in earth observation, daily tem-
peratures and many additional parameters are observed
at specific locations over time; time-dependent mea-
surements also arise in monitoring traffic parameters
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on a communication network. Analysis of time series
data can take many forms, including assumption-free
exploration; correlation of time series with each other;
or evaluation of specific generative models. Much work
has been done focused on analyzing one-dimensional
time series, and respective solutions are often applied to
multivariate data by analyzing each dependent variable
versus an independent one. However, for multivariate
data the widely used IID assumption (independent
and identically distributed) usually does not hold.
Therefore there is a need to analyze all dimensions of
such data at once.

In the context of data mining and visual analytics, mul-
tivariate time series analysis is a difficult problem, with
solutions typically relying, in some form or the other,
on dimensionality reduction, feature selection, projec-
tion, and glyph-based visualization. The task at hand
often includes finding periodic or frequent patterns in



Figure 1: Main display: data analysis of a multivariate time series of 10 years length is always challenging due
to overview problems and visual cluttering. This is the starting point of our data exploration. The Time Series
Path System provides visual structures and interactive functionality to address the implied challenges. In this
example, we aggregate a weather scenario by its temperature values and receive 5 well-distributed data clusters
from cold (blue) on the left to warm (yellow) on the right. This is a qualified starting point for selection and
filtering approaches to detect periodicity, dense data regions and outliers. Confer our case study in Section 5 for
details about the 2D projection.

the data, relating multiple variables to each other, or
detecting outliers or anomalies. Visual-interactive ap-
proaches can help to tackle these challenging tasks by
closely involving the user in the exploration process,
addressing the typically difficult parameter selection
problem, which could be more complicated to solve re-
lying on purely automatic methods.

Several works propose to visually analyze multivariate
time-dependent data by dimensionality reduction [26,
12]. Multivariate data is visualized as two-dimensional
time series paths obtained by dimensionality reduction
(projection to 2D). While these works visually compare
sections of labeled multivariate time-dependent data,
they do not consider exploratory search in unknown
data sets. Furthermore, these works do not focus on ag-
gregation efforts to reduce over-plotting problems. To
this end, we introduce interactively steerable data ag-
gregation, supporting handling of multivariate time se-
ries data. In particular, the user is able to group data
points according to data-specific characteristics like sta-
tistical calculations based on value and time, or cluster-
ing results.

Our approach supports an effective overview of fre-
quent and infrequent states in multivariate time series
data even in cases of very large data. Furthermore, users
can interactively select meaningful path line subsets

for detailed exploration and for visual clutter reduction
purposes. Understanding of aggregated data groups is
supported by showing a comprehensive cluster glyph
metaphor, wherever data aggregation visualization is
required within the exploration process. We directly
involve the user in the exploration process, combining
data exploration with interactive steering of the auto-
matic analysis methods, such as searching for appropri-
ate clustering parameters, in particular.

We demonstrate the usefulness of our approach by an
application to earth observation data. There, long time
series of many parameters arise, and users want to un-
derstand periodicities, trends, and anomalies. We show
how our set of interactive views allows for interactively
exploring weather patterns of different lengths and pa-
rameters. Due to our data aggregations, domain users
can explore multivariate weather data in a single dis-
play, giving an overview of all data aspects at once.

The remainder of this paper is structured as follows.
In Section 2 we discuss related work in several areas.
In Section 3 and 4 we motivate our approach, explain
our system design and describe user interaction tech-
niques. In Section 5 we apply our implementation to a
real-world data set, demonstrating the usefulness of the
approach. Finally, we summarize this paper and discuss
future extensions in Sections and 6 and 7.



Figure 2: Visual comparison SOM, PCA and MDS projection technique. A k-means clustering result is shown.

2 RELATED WORK
Our work is related to analysis methods for time-
dependent data and multivariate data. Time series
analysis in general is conducted to understand the
behavior of systems, to distinguish regular from
extraordinary characteristics [14] and to predict future
development [13].

Visualization of Time Series Data

The visualization of time series is often helpful for ex-
ploratory analysis. Traditionally, time series can be vi-
sualized by line charts [24]. However, using line charts
is typically not effective for large time series data,
as many and long time series lead to over-plotting if
packed into a given display or would require excessive
user navigation (cf. the problem specification in Fig-
ure 1). The pixel paradigm [2] for visualization of time
series suggests to map the quantitative values of a time
series to an appropriate color scale. Ultimately, each
value can be represented by a single pixel. The Recur-
sive Pattern technique [2] employs the pixel paradigm
to arrange time series in a generic proximity-preserving
way, allowing to arrange between row-by-row up to
more complex patterns following space-filling curves.
The comparison of many time series can be supported
by rendering them next to each other in an appropriate
display.

Besides side-by-side schemes, e.g., TreeMap-like lay-
outs have been proposed [10]. An alternative to the
pixel paradigm is to map the time axis to a spiral, ef-
fectively using more length, which is particularly use-
ful for analysis of periodic data [27]. For domain-
specific visualization tasks, e.g., atomistic simulation
data, specialized techniques have been proposed [6].
An overview of time series visualization can be found
in the textbook by Aigner et al. [1]

Automatic Support

Automatic analysis techniques are often used in time
series visualization. E.g., the size of the data to be vi-
sualized may be reduced by aggregation [5] or dimen-
sionality reduction [8].

In [25] prototypical time series patterns are found by
cluster analysis, and linked to occurrence on the time
scale by color-coding. In [17] a discretization approach

is applied to support visual analysis of frequent subse-
quences in a node-link-diagram. Often, the similarity
definition between time series or subsequences thereof
is important to support exploratory search. In [28] so-
called Perception Points of Interest are identified to sort
a large number of time series for effective overview-
ing. Various other systems support the interactive re-
trieval of time series by defining appropriate similar-
ity notions and query interfaces [9, 11, 3]. A visual-
interactive approach to analyzing different families of
functions is presented in [16]. Here, the authors allow
the user to highlight data patterns of interest and pro-
vide linked views of the multidimensional data and the
user-selected highlights.

Multivariate Time Series

The above methods mainly consider univariate time se-
ries. Yet, multivariate time series analysis is of impor-
tance in many domains. A number of approaches in-
clude small multiple displays for showing all variables
over time next to each other. They may rely on line
charts, pixel displays, or any other appropriate base
technique. Also, automatic analysis methods for ex-
ploratory analysis in multivariate time series have been
considered. E.g., in [19] a frequent-pattern-based ap-
proach is used to find interesting time series patterns
along several levels of abstraction.

Recently, a number of authors have considered the visu-
alization of multivariate time series data based on pro-
jection. The basic idea is to project discrete points in
time to a 2D display, which in turn allows for analysis of
the time series for regularities and irregularities [23]. In
[22, 12] multivariate observation measures from motion
tracking are projected using the Self-Organizing Map
(SOM) method [15]. Individual observations are con-
nected by lines, and glyphs illustrating the particular
configurations of the motion are shown. In [18] mul-
tivariate time series are extracted from text, by com-
putation of certain text features for discrete intervals
along the sequence of the text. A PCA-based display
was used to assess the development of the text content,
by analysis of feature trajectories observed in the dis-
play. In [26] the authors use PCA-based projection to
explore the sequence of small fixed-size intervals (so-
called n-grams) of long univariate time series data. The
approach was applied to stock market data and shown to
provide an informative overview over long time series



Figure 3: Aggregation of multivaritate time series data based on a variety of statistical data properties. Most of the
functionality can either be performed on a single, or all dimensions.

data. In particular, the authors proposed their method
to support the following analysis cases: Detection of
cyclic behaviors; visual identification of base patterns
and outliers; and analysis for trends.

3 SYSTEM DESIGN
In this work we present TimeSeriesPaths, a system for
the analysis of multivariate time series data. The PCA
projection algorithm is applied to arrange multivariate
time-series on the (2D) display screen (the Time Series
Path Map). We connect temporally adjacent data ele-
ments and receive a sequentially ordered set of points –
a so called time series path. By default, such a visual-
ization suffers from severe over-plotting and overview
problems. In order to make such a visualization under-
standable for domain-experts and to counter the implied
challenges, our approach comprises three contributions:

1. We apply semi-automatic data aggregation function-
ality, either derived from statistical data calculation,
or from visual-interactive data clustering (cf. Sub-
section 3.2). This helps the user to get an overview
to the dataset.

2. We present a cluster visualization technique that
incorporates multiple information about the aggre-
gated data (cf. Subsection 3.2). This supports data
interpretation and cluster comparison approaches.

3. We propose a multi-view system with broad visual-
interactive analysis functionality (cf. Subsection 4).
Selection and highlighting modalities of data path
subsets counter the challenge of over-plotting and
allow for comprehensive detail on demand perspec-
tives.

3.1 Visualizing Multivariate Time Series
Data Projection

We apply a projection technique to visualize multivari-
ate time series data on 2D displays. An applicability

consideration between visualizations based on projec-
tion and the multiple linechart technique is given in
Section 6.

A general requirement concerning projection is the
preservation of data topology, by means that similar
data in the multivariate input space is also arranged
close to each other in the display space. Due to their
popularity and their diversity in arithmetical manner
we chose PCA, SOM and Multidimensional Scaling
MDS [7] as promising candidates. After an evaluation
of our requirement criteria and a visual comparison in
Figure 2, we choose the PCA algorithm as a default for
prospective projection needs in the TimeSeriesPaths
system. The non-linear MDS proves to be rather un-
suitable for our approach, solely because it has troubles
in separating k-means clusters. The SOM algorithm
suffers in respect to the calculation speed and a major
difficult (fully automatic) parametrization. Yet the key
benefit of PCA derives from the ability to project data
points in a linear manner, by means that the projection
results do not lack on local distortions and thus allow
for a more straight forwarded interpretation. Further-
more, the visual comparison of the three projection
techniques shows a good cluster separation by PCA.
We accept that PCA does not exploit the complete
display space as well as the SOM projection. However
later in this section, we will present our cluster glyph
and show how our glyph visualization mitigates this
problem.

Visualizing Time Series Paths

The visualization of time series paths is provided by
the Time Series Path Map in the center of the display.
Based on our data projection method, we connect indi-
vidual data points by their chronological order to form
paths. The projection arranges similar data points close
to each other and reflects the data point distances of the
multivariate data input space. Accordingly, if path se-
quences are similar to each other, their possibly close



Figure 4: The “Rollercoaster Animation”. By dragging the time slider, the user can explore the temporal devel-
opment of the time series path. The cursor position and time series path neighbors are animated with circular
shapes.

positions on the display space help the user with pro-
found analysis approaches.

3.2 Multivariate Time Series Aggregation
Statistics Calculation and Aggregation

We integrate automatically generated statistical data in-
formation into the visualization to counter the overview
problem and support the analysis process. So far, re-
lated approaches color-code data points for time-based
and value-based changes or class labeling [12, 26]. Our
approach generalizes this by a variety of statistical data
measurements that provide additional important infor-
mation, an overview is given in Figure 3. Altogether,
our system provides four different properties of statisti-
cal data information for color coding:

• (a) occurrence within the time line (time-based)

• (b) nearest neighbor distance (NN-based)

• (c) speed of value change to adjacent time stamps
(gradient-based)

• (d) cluster membership (clustering-based)

Except for (a), all statistical data information can either
be calculated on a single dimension or on all dimen-
sions of the data set. Thus, we are also able to perform
domain-specific exploration tasks due to the level of de-
tail in the aggregation setup. The number of data groups
k can be specified by the user for all properties, (a)-(d).

Data color codings according to group affiliations are
displayed on the Time Series Path Map, our time axis
display at the bottom (called Color Time Bar), and the
Data Aggregation List on the right, respectively. Show-
ing multiple aspects of the data enables to find an ap-
propriate aggregation level, to interpret groups of data
and derive mutual characteristics, to detect outliers and
to explore periodic behavior in the data.

In our case study (cf. Section 5), we will show that dis-
tributions of aggregated statistical data information on
the Time Series Path Map and the Color Time Bar give
valuable information about dense data regions, data
anomalies and the periodicity of time series paths.

Generic Cluster Glyph

The aggregation of data into groups requires a mean-
ingful cluster visualization method (cf. Figure 5). The
main requirement is genericity in order to suit to a
great variety of multivariate time series data. Addition-
ally, averages, minima and maxima, variances, num-
ber of elements and cluster quality indices are needed.
Each data dimension is displayed with an error bar
chart glyph metaphor and labeled with the correspond-
ing physical unit. Additionally, we include the distribu-
tion of time stamps on a time axis to monitor chrono-
logical data characteristics to detect periodic behavior
or anomalies. Finally we demand the cluster glyph to
show the cluster color coding for linking, and a headline
for user-centered data labeling purposes.

Earlier we argued that PCA does not capitalize the en-
tire border areas of the display space. We benefit from
this instance due to the fact that we have free space re-
maining to position cluster glyphs for data aggregation
operations. Four black concentrical lines connect the
cluster glyph with the appropriate display coordinate
without producing too much occlusion (see Figures 1,
6, 7 and 8).

Figure 5: Generic Cluster Glyph. A boxplot-like visu-
alization shows the distribution of data elements in each
dimension of the dataset, transparency is used to show
data frequency. Cluster centroid values are displayed as
red bars, just like gray variance bands mapped laterally
for each dimension. Statistical information about the
data cluster is shown at the center, the data distribution
on the global time axis is shown at the bottom.

4 INTERACTION TECHNIQUES
TimeSeriesPaths includes a set of linked user interac-
tion modalities which work across the three different



Figure 6: Data aggregation on single input data dimensions: Distribution of relative humidity values (color map:
blue means wet, yellow means dry). We constitute rainy weather states to be located left on the Time Series Path
Map. By exploring the Color Time Bar, we discover rainy weathers dominating the winter periods. Composing
these two findings, we reason that (wet) winter climates are located on the left of the Time Series Path Map.

views. We give a short introduction to the major visual-
interactive capabilities of the TimeSeriesPaths system.

Tooltipping

An important user requirement is detail on demand vi-
sualization. By hovering above data elements on the
Time Series Path Map and the Color Time Bar, tooltips
show the multivariate data information and the position
of the respective data elements on the time axis (cf. Fig-
ures 9 and 10).

Selection, Interactive Grouping and Highlighting

The selection of data is supported in each of our three
views. The user can (1) select single data points, (2)
time series paths or subsequences thereof, (3) the selec-
tion of data within a distinct display region in the Time
Series Path Map is possible (cf. Figure 7). The user
sketches an arbitrarily polygonal shape on the map, and
the surrounded data points will be selected.

Data selections can subsequently be added to the Data
Aggregation List for additional information about the
selection and for future re-selection. The respective se-
lection is highlighted in all three views to allow the user
the detection of interesting patterns. For example, when
the user selects a data cluster from the Data Aggrega-
tion List (cf. Figures 9 and 8), respective data points are
highlighted in the Time Series Path Map and the Color

Time Bar. Thus, the user has three different scopes for
the exploration of the selected data: (a) the distribu-
tion of the data on the Time Series Path Map, (b) occur-
rences of data elements along the time line in the Color
Time Bar and (c) cluster value distributions in the Data
Aggregation List (cf. Figure 8).
By means of transparency and plotting size, the user
can counter over-plotting on his own by reducing the
visibility of elements that are not selected.

Rollercoaster Animation

The Color Time Bar also contains a Time Slider for ani-
mated time series analysis. We can drag the Time Slider
to a specific point or interval in time, and correspond-
ing subsequences are highlighted with circular shapes
in real-time on the Time Series Path Map. A schemat-
ical demonstration of our so called “Rollercoaster Ani-
mation” is given in Figure 4, an application is shown in
Figure 10. This interactive animation allows a detailed
exploration of the distribution of projected values over
time, and also to detect periodic patterns on the Time
Series Path Map. The latter is especially helpful in case
of over-plotted displays, where a large amount of data
elements is visualized on the display.

5 CASE STUDY
We apply our system to a data set from earth obser-
vation research. Based on consultation with domain re-
searchers, we explore weather phenomena hidden in the



Figure 7: Data aggregation on single input data dimensions: Air pressure development. Selection of the left half of
the paths (winter weathers). We discover a color gradient from high (top, yellow) to low (bottom, blue) air pressure
values.

data like periodic patterns, frequent ’weather states’ and
abnormal behavior that can be found with our system.

5.1 Data Set and Application Domain

Our considered data set is acquired from the open data
repository PANGAEA [21], operated by the Alfred
Wegener Insitute (AWI) for Polar and Marine Research
in Bremerhaven. PANGAEA archives and publishes
geo-referenced scientific earth observation data in
the research areas of water, ice, sediment and atmo-
sphere. Our data set focuses on atmospheric weather
measurements, gathered in the scope of the Baseline
Surface Radiation Network (BSRN) [20] PANGAEA
compartment. These measurements are multivariate
atmospheric observations of radiation-related physical
parameters) which were recorded every minute. We
focus on a dataset of ten years duration, originated
from the BSRN station in Payerne (Switzerland) in
the time period of January 1st, 1994 to December
31th, 2003 [4]. Payerne is located in the center of
the triangle Lyon, Milan and Fribourg at 491 meters
above sea level. The climate of Payerne is temperate,
semi-continental with average minimum temperatures
at about -2◦C in January and about 18◦C in July. The
average daily sunshine duration varies between 2 hours
in January and 8 hours in July. Hence, the researchers
affirm a yearly climate periodicity to the data that
serves as ground truth and primary analysis goal.
Beyond that, the so called “summer of the century”
in 2003 produced temperature values up to 40◦C and

motivates us finding this and yet other anomalies in the
data set.
We consulted researchers from BSRN to select a suit-
able parameter subset for detecting interesting weather
scenarios. Besides temperature, relative humidity and
air pressure, we incorporate the short-wave downward
radiation (SWD) and the long-wave downward radia-
tion (LWD). The SWD is well suited to give statements
about cloud occurrences. Most radiation is measured at
the so called clear-sky condition, even when there are
no clouds in the sky. It is used for climate research in
general and in applied sciences, e.g., in land surface as-
similation models, surface energy budget models, and
ocean assimilation models. In agriculture, the short-
wave downward radiation is used as an input for crop
modeling and the solar industry applies it for estima-
tions where to build solar power plants. The LWD is
another important factor in the energetic exchange be-
tween atmosphere and the earth surface. While the so-
lar dependent short-wave downward radiation is near
zero at night, the long-wave downward radiation can
be measured all night long. The long-wave downward
radiation is higher when the sky is clear. By applying
these five measurements as our data set, we are able
to make statements about different weather states that
possibly change within a seasonal cycle.
Due to the long time period of ten years, we determine
each single day as one data point, periodic behaviors
within single days are also discovered in the data set
and possible to analyze with our system, but not in the
focus in this case study. In order to remain on a uni-



Figure 8: Advanced exploration of Figure 1. We have
no problems in identifying the periodic appearance of
hot temperatures in the summers in the Color Time Bar.
Furthermore, the “summer of the century” anomaly in
2003 stands out with a lot of hot days.

versally accepted approach, we use a generic moving
average routine to produce meaningful daily represen-
tatives, climate specific daily data aggregation proce-
dures are not applied. Missing value periods of less
than 6 hours are linearly interpolated, longer data gaps
are ignored. We want to point out that other preprocess-
ing approaches are possible and merely implicate for us
the effort of reconfiguring parameters or, if necessary,
add a domain-specific preprocessing routine.

5.2 Obtaining a Global Overview

We primarily obtain a global overview to the Time Se-
ries Path Map and the data, respectively (cf. Figures 1
and 6). This is crucial due to the described problems
in dealing with large multivariate data and projection-
based approaches (cf. Section 3). The Color Time Bar
indicates a meaningful periodicity with in the seasonal
cycle. We constitute Payernes climate to be warm in
the summer and cold in the winter period (cf. Figure
1). The overview is completed with Figure 6, where the
relative humidity appears to be high (rainy) on the left
and low (dry) on the right. At least since the Time Color
Bar shows summers to be dry and winters to be wet, we
can constitute that the left half of the Time Series Path
Map depicts the winter period whereas the summer time
is allocated at the right of the display. We prove this hy-
pothesis in Figure 7 by selecting the left half of the time
series paths and obtain a meaningful segmentation on
the Color Time Bar between summer and winter. Tak-
ing the cluster glyphs of the three discussed images into
account, we assess correlations between dimension 1
(temperature), 4 (SWD) and 5 (LWD) and thus register
another finding in the data set.

After we have received a global overview to the data
and our views (some findings may appear evident to the
reader so far), we now proceed our case study and focus
on the exploration of more particular findings.

5.3 Findings in the Data Set
We now focus on abnormal behavior and anomalies in
the data set. We try to discover the “summer of the
century” of 2003 as a first finding. We use the view
shown in Figure 1 and select the hottest data cluster
(yellow); the result is shown in Figure 8. Besides, we
discover the coldest summer of the data set in the year
1996 as a new finding. Together with the researchers
from AWI, we find our final data exploration goal in
the detection of thunderstorms and intense low-pressure
systems. Besides the researchers expertise, we consult
Internet forums, weather history literature, and insur-
ance damage reports to verify our findings. Figure 9
displays our course of exploration. We focus on the
air pressure dimension and apply our gradient-based
statistical property that measures value changes over
time. An aggregation to six clusters produces one group
of about 200 highlighted data points that manifest ex-
tremely decreasing air pressure gradients. We tooltip a
collection of five proven hurricanes and chose the most
prominent and devastating hurricane Lothar for a de-
tail on demand exploration. Figure 10 details about
the air pressure development over 10 days in december
1999. The Rollercoaster Animation helps us navigating
through a clearly arranged display, released from visual
clutter and overview problems.

6 DISCUSSION
One of the most traditional visualization types for time
series data are line charts. In case of multivariate time
series, multiple parallel line charts can be used for data
visualization. Eventually, projection-techniques such
as studied in this paper need to be compared against
alternative time series visualization options. While we
have not yet done a formal comparison, we provide a
conceptual discussion to point at possible advantages
and disadvantages of the projection-based approaches
vs. line chart approaches.

First, we expect the traditional line chart approach to
have scalability problems with respect to very long
time series, and to a high number of dimensions. The
projection-based approach for the visualization of time
series data aims at improving scalability with respect
to (1) the time axis (long time series) and (2) the po-
tentially high number of dimensions. Considering (1),
information loss occurs for line charts as soon as the
number of time stamps becomes larger than the num-
ber of available pixels on the x-axsis of the line chart
display. Basically, three observations can be made:

1. Drawing multiple data points per pixel coordinate
leads to visual artifacts and information loss.

2. Downsampling the number of time stamps reduces
the amount of information of the visualization.



Figure 9: Detection of historic thunderstorms by highlighting most crucial air pressure decreases (blue).

3. Scrolling facilities allow to navigate large time se-
ries, yet can be cumbersome for very large time se-
ries and may lead to loss of user overview.

Using a 2D projection has the potential to show longer
time series in a given display space, if an appropriate
projection can be found. On the other hand, interpre-
tation of the projected time series paths may become
harder, as directions and distances cannot be read as
straightforward as in a line chart.
Considering (2), a high number of dimensions may con-
stitute a problem for multiple line charts. At some
point, the available display space is exhausted when
too many dimensions are combined in a multiple line
chart visualization. In projection, dense data point re-
gions are not only visual clutter. These regions rep-
resent dense regions in the input data space and offer
potential starting points for further user search and fil-
tering.
The second distinction between multiple line charts and
projection concerns the number of data attributes to
show. The projection condenses the information of all
dimensions in one time series path, providing dimen-
sionality reduction. In general, projection of multi-
variate data brings up questions about the application-
dependent choice of the projection variant (cf. Sub-
section 3.1) and the preservation of information hid-
den in the input data. As future work, we need to
compare the information preservation of multiple line
charts (considering problems for large data or many di-
mensions) and projection-based time series visualiza-
tion approaches. One first idea is to define a bench-
mark data set with periodic behavior that is compared

in multiple line charts and in projection-based visual-
ization. At present, we depict that the first two main
components of the PCA-based 2D projection approach
preserve 78% of the chosen 5D input data information
in our weather data case study. Thus, we may assume
that the amount of used information is rather high. Yet,
more precise evaluation and comparison of the infor-
mation contents and usage in parallel line charts and in
projection-based approaches is needed.

7 CONCLUSION
We presented a system for the analysis of multivariate
time-series data. The identification of relations between
multiple attributes is an intrinsically difficult problem,
even with a viable projection to 2D-space. In order to
make such a visualization understandable for domain-
experts, our system provides methods for statistical ag-
gregation and clusterings, which can be steered by the
user in a very flexible way. Beyond just showing cluster
IDs we propose a new glyph-based visualization. This
glyph shows the multivariate profiles of the clusters and
allows for an effective comparison and interpretation of
their properties. The system provides linked views to
relate different perspectives of the data to each other.
In cooperation with earth observation researchers, we
tested the usefulness of the approach with a dataset
for atmospheric weather measurements over a ten-years
time frame.
We believe that the approach presented in this paper is
easily applicable to time-series of different domains. In
future projects we will apply and test this system with
consumption data of the electric power grid. We used



Figure 10: Rollercoaster Animation on hurricane
Lothar. Air pressure coloring (blue means low).

projection techniques as an overview because of their
popularity as a method for multivariate analysis. How-
ever, the methods to calculate, steer and explore the
clusters are not restricted to a specific type of overview.
In future, we will extend the linked views by other vi-
sualizations for multivariate time-series to test for the
most effective combination of domain, overview and
aggregation methods.
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