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Abstract

Pattern mining plays an essential role in unsupervised machine learning as it allows the

clustering of structured data without requiring distance measures and purely relying on

the definition of containment. Because it is unsupervised, it is predestined for exploratory

analysis, and visual analytics offers a holistic perspective thoroughly involving the data, task,

and especially the user in the decision-making process of designing tools for exploratory

analysis. Pattern mining can easily generate millions of patterns since the search spaces

are exponential. Additionally, the structures are often large and complex, which thwarts

sense-making efforts by the user.

This dissertation explains how visual analytics can be leveraged to allow the effective

exploration of sequentially structured data using pattern mining algorithms. The first

focus is on interesting measures, a concept known from data mining that should quantify

interestingness. Because interestingness is subjective and heavily depends on the task and

the user, this work argues for understanding interestingness measures as features that

quantify different properties of the patterns and the clusters they represent. It further

presents an alternative taxonomy of available features that can be used in pattern mining

and discusses their importance and limitations.

Secondly, this work surveys visualization techniques for structured data patterns, including

their features, and highlights the differences between structured data as the input for

the mining and the patterns themselves. Furthermore, it discusses the limitations of the

visualization techniques, especially concerning scalability and the number of features.

Finally, well-known visual analytics concepts such as interactive visualizations, progressive

visual analytics, or concepts from visual text analytics are being transferred for pattern

mining and the exploration of patterns. It is explained and discussed how these concepts can

be exploited and implemented to mitigate the effects of the exponential search spaces and

the complexity of the patterns to ease the user’s burden during the exploration process.

Even though this work focuses on event sequences and sequential patterns, all aspects can

be transferred onto different data structures and pattern mining algorithms. Therefore, this

dissertation provides a foundation for the exploratory analysis of structured data using

pattern mining with countless possible extensions to inspire future research.





Abstract in simple language

In search of the most beautiful rainbow: If you let your imagination run wild, what would

be the most beautiful rainbow you could imagine? If I give you seven colors to choose from,

could you create the most beautiful rainbow from them? With up to seven colors there

are already 127 different rainbows, with eight colors there are already 255, and with ten

colors we can create more than 1000 different rainbows. Maybe you know the game Taboo,

where you describe a term without being allowed to name this term or very similar terms

directly. Your teammates then have to guess the term. We can set up similar game rules

to describe our most beautiful rainbow. What if we had to describe the perfect rainbow

without naming the colors? Could you create such a description? I would describe that my

rainbow must consist of at least six colors and the colors should be arranged from light to

dark. Now, as you can probably guess, this description applies to more than one rainbow.

But this already helps, because instead of 1000 rainbows I only have to choose from the

remaining 10. This choice is much easier. Of course, this means that the description has to

be correct at first.

But why do we even bother and make the game so complicated? What increases the fun

of playing Taboo does not necessarily make sense in real life? The more generally valid

the description, the more powerful it is - as long as it is accurate. If we assume that my

description always gives us the most beautiful rainbows, then I never have to adjust it

at all, no matter what colors are given. But what happens if I give you only shades of

gray as colors? You are probably disappointed by my lack of imagination or even think I

am manic-depressive. But would your or my description still filter out the most beautiful

rainbows? And what if we now no longer want to find the most beautiful rainbow, but

instead the most delicious smoothie? You probably quickly realize that you won’t get very

far here with colors or descriptions of rainbows. Everything has its limits.

In my work, I delve into how such descriptions of a pattern (e.g., rainbows) are best

created and also best understood. In the example, you probably already noticed that such

descriptions often consist of several parts. But of course, we do not want to write a novel for

our description of a beautiful rainbow. The shorter the better and the more general the more

powerful. You probably also realized that your description and my description of the most

beautiful rainbow are not necessarily the same. This makes things more complicated.

Another part of my work is how we can best represent patterns. For rainbows, this may be

very simple, since we all have an idea of what a rainbow looks like. But if I presented you

with 1000 rainbows on the screen, would you quickly find your most beautiful rainbow? It

will probably take you quite a while and you will also quickly lose interest. But there are

ways I can help you. For example, I can arrange the rainbows so that similar rainbows are



close to each other on the screen. I could also display different descriptions of a group of

rainbows first and you pick the best group from that. The goal here is to be able to display

as many patterns or descriptions of patterns as necessary without overwhelming you.

The last part of my work is about how you can interact with a computer program. For

rainbows, for example, I might parts of a rainbowwith fewer colors, fromwhich you choose

one that should definitely not be missing from your rainbow. After that, you get to choose

some rainbows with more colors that you can choose from. From your answers, I can then

create a selection that is much smaller than the original 1000 rainbows. And hopefully, you

will quickly find the most beautiful one.

At the end of my work, unfortunately, no pot of gold awaits you. But at least a collection

of different techniques and strategies, of how you can find it: the most beautiful of all

rainbows.



Zusammenfassung

Das PatternMining spielt einewesentliche Rolle beim unüberwachtenmaschinellen Lernen,

da es das Clustern strukturierter Daten ermöglicht, ohne Abstandsmaße zu benötigen

und sich lediglich auf die Definition der Eingrenzung zu verlassen. Da es unbeaufsichtigt

ist, ist es prädestiniert für die explorative Analyse, und die visuelle Analyse bietet eine

ganzheitliche Perspektive, die die Daten, die Aufgabe und vor allem den Benutzer in

den Entscheidungsprozess bei der Entwicklung von Tools für die explorative Analyse

einbezieht. Pattern Mining kann leicht Millionen von Mustern erzeugen, da die Suchräume

exponentiell sind. Darüber hinaus sind die Strukturen oft groß und komplex, was die

Bemühungen des Benutzers, einen Sinn zu finden, vereitelt.

In dieser Dissertationwird erläutert, wie die visuelle Analyse genutzt werden kann, um eine

effektive Erkundung von sequentiell strukturierten Daten mit Hilfe von Pattern-Mining-

Algorithmen zu ermöglichen. Der erste Schwerpunkt liegt auf interessanten Maßen, einem

aus dem Data Mining bekannten Konzept, das die Interessantheit quantifizieren soll. Da

Interessantheit subjektiv ist und stark von der Aufgabe und dem Benutzer abhängt, plädiert

diese Arbeit dafür, Interessantheitsmaße als Merkmale zu verstehen, die verschiedene

Eigenschaften der Muster und des Clusters, das sie repräsentieren, quantifizieren. Darüber

hinaus wird eine alternative Taxonomie verfügbarer Merkmale vorgestellt, die beim Pattern

Mining verwendet werden können, und ihre Bedeutung und Grenzen werden diskutiert.

Zweitens gibt diese Arbeit einen Überblick über Visualisierungstechniken für strukturierte

Datenmuster, einschließlich ihrer Merkmale, und hebt die Unterschiede zwischen struk-

turierten Daten als Input für das Mining und den Mustern selbst hervor. Darüber hinaus

werden die Grenzen der Visualisierungstechniken erörtert, insbesondere hinsichtlich der

Skalierbarkeit und der Anzahl der Merkmale.

Schließlich werden bekannte Visual-Analytics-Konzepte wie interaktive Visualisierungen,

progressive Visual Analytics oder Konzepte aus der visuellen Textanalytik für das Pattern

Mining und die Exploration von Mustern übertragen. Es wird erläutert und diskutiert,

wie diese Konzepte genutzt und implementiert werden können, um die Auswirkungen

der exponentiellen Suchräume und die Komplexität der Muster abzumildern und den

Benutzer während des Explorationsprozesses zu entlasten.

Obwohl sich diese Arbeit auf Ereignisabläufe und sequentielle Muster konzentriert, können

alle Aspekte auf andere Datenstrukturen und Pattern Mining Algorithmen übertragen

werden. Daher bietet diese Dissertation eine Grundlage für die explorative Analyse

strukturierterDatenmitHilfe von PatternMiningmit unzähligenmöglichen Erweiterungen,

um zukünftige Forschung zu inspirieren.





Zusammenfassung in einfacher Sprache

Auf der Suche nach dem schönsten Regenbogen: Wenn sie ihrer Fantasie freien Lauf

lassen, was wäre der schönste Regenbogen, den sie sich vorstellen können? Wenn ich ihnen

sieben Farben vorgebe, aus denen sie auswählen dürfen, könnten sie dann den schönsten

Regenbogen daraus erzeugen? Mit bis zu sieben Farben gibt es bereits 127 verschiedene

Regenbögen, bei acht Farben sind es schon 255, und bei zehn Farben können wir mehr als

1000 verschiedene Regenbögen erzeugen. Vielleicht kennen sie das Spiel Tabu, bei dem

sie einen Begriff beschreiben, ohne diesen oder sehr ähnliche Begriffe direkt nennen zu

dürfen. Ihre Mitspieler müssen dann den Begriff erraten. Wir können ähnliche Spielregeln

aufstellen, um unseren schönsten Regenbogen zu beschreiben. Wie wäre es, wenn wir den

perfekten Regenbogen beschreiben müssen, ohne die Farben zu benennen? Könnten sie

eine solche Beschreibung erstellen? Meine Beschreibung wäre, dass mein Regenbogen aus

mindestens sechs Farben bestehen muss und die Farben von hell nach dunkel angeordnet

sein sollen. Wie sie sich nun vermutlich denken können, trifft diese Beschreibung auf mehr

als nur einen Regenbogen zu. Aber auch das hilft, denn, wenn ich statt 1000 Regenbögen

nur aus den verbleibenden 10 auswählen muss, so fällt mir meine Entscheidung deutlich

leichter. Dies bedeutet aber natürlich, dass meine Beschreibung erst einmal stimmen

muss.

Aber warum machen wir uns überhaupt die Mühe und das Spiel so kompliziert? Was

bei Tabu den Spielspaß erhöht, muss im echten Leben ja nicht immer sinnvoll sein? Je

allgemeingültiger die Beschreibung ist, destomächtiger ist sie - solange sie zutrifft.Wennwir

annehmen, dass wir mit meiner Beschreibung immer die schönsten Regenbögen erhalten,

dann muss ich sie gar nie anpassen, egal welche Farben vorgegeben sind. Aber was passiert,

wenn ich ihnen z.B. nur Grautöne als Farben vorgebe? Sie sind wohl erst einmal von

meiner Fantasielosigkeit maßlos enttäuscht oder halten mich sogar für manisch-depressiv.

Aber würde meine oder ihre eigene Beschreibung immer noch die schönsten Regenbögen

herausfiltern? Und wenn wir nun nicht mehr den schönsten Regenbogen finden möchten,

sondern stattdessen den leckersten Smoothie? Sie merken schnell, dass sie hier mit Farben

nicht mehr sehr weit kommen. Alles hat eben seine Grenzen.

In meiner Arbeit gehe ich darauf ein, wie man solche Beschreibungen eines Musters (z.B.

Regenbögen) am besten erstellt und auch am besten versteht. In dem Beispiel haben sie

vermutlich schon bemerkt, dass solche Beschreibungen öfters aus mehreren Teilen bestehen.

Aber wir möchten natürlich auch nicht erst einen Roman schreiben für unsere Beschreibung

eines schönsten Regenbogens. Je kürzer, desto besser und je allgemeiner, desto mächtiger.

Sie haben sicherlich auch schon bemerkt, dass ihre undmeine Beschreibung nicht unbedingt

gleich sein müssen. Das macht die Sache natürlich noch komplizierter.



Ein weiterer Teil meiner Arbeit ist, wie wir am besten Muster darstellen können. Für

Regenbögen mag das sehr einfach sein, da wir alle eine Vorstellung davon haben, wie

ein Regenbogen aussieht. Aber wenn ich ihnen 1000 Regenbögen auf dem Bildschirm

präsentiere, würden sie ihren schönsten Regenbogen schnell finden? Vermutlich brauchen

sie eine ganze Weile und verlieren auch schnell die Lust. Aber es gibt Möglichkeiten, mit

denen ich ihnen helfen kann. Zum Beispiel kann ich die Regenbögen so anordnen, dass

ähnliche Regenbögen nahe bei einander sind. Ich könnte auch erst einmal verschiedene

Beschreibungen einer Gruppe von Regenbögen darstellen und sie suchen sich daraus

die Beste heraus. Das Ziel ist hier so viele Muster oder Beschreibungen der Muster wie

notwendig darstellen zu können, ohne sie dabei zu überfordern.

Der letzte Teil meiner Arbeit beschäftigt sich damit, wie sie mit einemComputer-Programm

interagieren können. Für Regenbögen könnte ich ihnen z.B. erst einmal vier Farben anzeigen,

aus denen sie eine auswählen, die auf keinen Fall in ihrem Regenbogen fehlen darf. Danach

dürfen sie noch zwei weitere Farben auswählen und dann frage ich sie noch, wie viele

weitere Farben mindestens in ihrem Regenbogen sein müssen. Aus ihren Antworten kann

ich dann eine Auswahl erzeugen, die sehr viel kleiner ist als die ursprünglichen 1000

Regenbögen. Und hoffentlich finden sie dann schnell den schönsten.

Am Ende meiner Arbeit erwartet sie nun leider kein Topf voll Gold. Aber immerhin eine

Sammlung aus verschiedenen Techniken und Strategien, wie sie ihn denn nun finden

können: den schönsten aller Regenbogen.
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We are surrounded by patterns and our mind constantly

tries to recognize patterns from the input of our senses. A

pattern is typically referred to as a regularity, thus helping us

to make predictions and formulate theories and ideas. Our

strive to observe and find patterns, trends, and correlations

in nature was quickly picked up in computer science forming

the fields of data mining, knowledge discovery in databases,

and machine learning which are also summarized as the

term artificial intelligence [1].

A vast amount of data is semi-structured and can bemodeled

as structured data. Data mining for structured data is known

as structure mining or structured data mining [2, 3]. As

with all data, we strive to identify patterns in such datasets

based on their structural information. The task is named

pattern mining and is classified as unsupervised machine

learning and,more accurately, clustering. Standard clustering

techniques cannot be easily adapted for structured data as

these techniques require a distance measure which is not

readily available for structured data. Instead, pattern mining

focuses on structural containment. Therefore, a pattern in

structure mining is nothing else than a cluster representative

which is contained at least once in the structured entities it

represents. Hence, a pattern is an abstraction or simplification

of the data it represents.

Because of its peculiarities, specifically the unsupervised

machine learning aspect, this field has a high correlation

with exploratory data analysis (EDA). A termwhich has been

heavily promoted by John Tukey [4]. Hoaglin et al. define it

as:

“Exploratory data analysis isolates patterns and

features of the data and reveals these forcefully

to the analyst.“ [4]

The research field of pattern mining has invented many

measures that can serve as constraints for the algorithm to

find patterns of relevance or interest. EDA also sparks some

criticism because exploration or exploratory is vague and does

not describe a specific task auser has to solvewith a system [5].



2 1 Introduction

Figure 1.1: A conversation be-

tween a criminal investigator

and me during the VALCRI

project highlighting the motiva-

tion of my work.

1: livescience.com/how-
many-atoms-in-universe.
html, accessed March 25, 2022

The same article describes that an EDA system consists of two

main parts: perceptual classification (i.e., pattern-finding)

and perceptual clustering (i.e., pattern-making). The former

is dedicated to identifying novel patterns in an unknown

dataset whereas the latter refers to identifying whether a

previously found pattern is repeating. Moreover, Eytan Adar

states:

“[...] a successful exploratory tool is one that

lets the analyst find the patterns they are look-

ing for in the data (quickly, accurately, reliably,

scalably).” [5]

I strongly argue that any EDA system must additionally

convey the semantics of the data such that a user can make

an informed decision about whether a specific pattern is

relevant.

In EDA, a user has typically little knowledge of the exact

threshold and specific constraints which persuades the user

to relax the constraints quickly causing a so-called pattern
explosion. Because pattern mining relies on containment,

search spaces are exponential, which in an unconstrained

algorithm, can cause the mining of billions and trillions of

patterns - even for small datasets. The number of possible

pattern combinations can easily exceed the number of atoms

in our observable universe which is currently estimated to be

around 1082 1
. Such a large amount of information can neither

be displayed on a single screen nor cognitively processed by

the user.

Figure 1.1 depicts a conversation I have had with a criminal

investigator during an evaluation session in the VALCRI

https://www.livescience.com/how-many-atoms-in-universe.html
livescience.com/how-many-atoms-in-universe.html
https://www.livescience.com/how-many-atoms-in-universe.html
livescience.com/how-many-atoms-in-universe.html
https://www.livescience.com/how-many-atoms-in-universe.html
livescience.com/how-many-atoms-in-universe.html
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2: valcri.org, accessed March

25, 2022

[6]: Wĳk (2006), Views on Visu-

alization

project
2
. The conversation nicely pinpoints the problem of

pattern mining in EDA where a user is not able to tightly

constrain the patternmining algorithm but on the other hand,

is overwhelmed by the sheer number of resulting patterns.

However, the user is confident to identify an interesting

pattern by seeing it which implies that it needs to be found

first.

This challenging problem can be conquered using interaction.

Jark van Wĳk states that interaction is deemed necessary to

explore data that does not fit onto a single screen [6]. The field

of visual analytics expands on this process to fully integrate

the user into the analysis process. Therefore, it can be stated

that visual analytics combines human domain knowledge

with artificial intelligence and machine learning methods

through interactive visual interfaces.

This formulates my overall research question stated as:

How to use visual analytics to foster exploration

and sense-making of sequential patterns?

I have selected event sequences as a primary data structure

throughout my research as they offer a variety of application

areas and yet have extremely large search spaces. However,

in much of my research, I have looked beyond and most of

the conclusions can be transferred to any type of structured

data.

1.1 Contributions and Outline

In order to answer the stated research question it needs to be

broken down into more specific aspects which each form a

chapter in this dissertation. The conversation with the crimi-

nal investigator sheds light on the fact that a large part of EDA

in structure mining is to find and assess interesting patterns

in the data. The data mining field endeavors to measure such

interestingness of patterns to support the user in ranking or

filtering for specific patterns. A plethora of measures have

been proposed, often in conjunction with dedicated algo-

rithms to solve a specific task. Chapter 3 critically assesses

interestingness measures from a visual analytics perspective

assuming that any system and its success depends on the

data, task, and user. It provides an alternative interpretation

and complementary dimension to the existing taxonomies of

http://valcri.org
valcri.org
http://valcri.org
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interestingness measures. Furthermore, it describes several

use cases based on my publications [7–10] to show how inter-

estingness measures can be applied to certain domains and

tasks.

Chapter 4 surveys visualization and visual analytics tech-

niques for patterns. To the best of my knowledge, it is the

first survey of its kind that focuses on patterns only while

providing an overview of different types of structured data

such as itemsets, association rules, sequential patterns, and

episodes. Furthermore, this chapter contains a comparison of

each technique concerning the scalability of certain aspects

such as the size of the alphabet (number of items), as well

as, the scalability of transactions. It underlines that if the

structure is visualized in detail such that the individual items

remain visible the overall scalability suffers whereas visual-

izations focusing on interestingness measures tend to scale

better but may lack (critical) information. The chapter further

contributes to the part of the sense-making of my research

question in that it shows how structure can be effectively

visualized to be intuitive for a user.

Chapter 5, called visual pattern analytics, then takes several

techniques known from interactive visualization and visual

analytics and transfers them for the exploratory analysis

of patterns and pattern mining, effectively showing that

the individual shortcomings of interestingness measures,

structure, and their visual tradeoffs can be mitigated and

their strengths boosted. It further discusses how progressive

visual analytics can be leveraged to overcome the problem

of the exponential search spaces and discusses the role of

explainable artificial intelligence in the area of exploration

of patterns. It further discusses how such approaches and

applications can be evaluated and the limitations of user

evaluations concerning pattern exploration.

This thesis provides the foundation for exploratory data

analysis of sequential patterns. With the user’s primary in-

tent to find interesting patterns, the thesis provides insights

into how interestingness measures and algorithms can be

leveraged to mine for patterns of potential interest and how

results can be visualized effectively and communicated to

the user. Furthermore, it provides various approaches to
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how the user and the mining process can be more tightly

coupled to improve the exploration and search while show-

ing tradeoffs and limits of different aspects. Therefore, this

thesis contributes a framework of techniques, designs, and

approaches and shows how they can be combined to foster

the exploration and sense-making of sequential patterns.

1.2 Publications

My research in visual pattern analytics allowedme to publish

relevant results and techniques in competitive journals and

conferences. This thesis is the summary of several of these

publications and puts them into context. Since research is

always a joint effort, in the following, I want to clarify my con-

tributions to these publications. Throughout my dissertation,

I will use the terms “taken from” and “based on” following

the terminology of Daniel Seebacher [11]. Throughout my

dissertation, these terms will label chapters and sections

to clarify which of my publications have been used in the

relevant parts. The labels will state which publication and

section therein have been used and which co-authors have

contributed.

Taken from Sections that are taken from one of my publica-

tions contain only minor edits in comparison to the publica-

tion. They may have been shortened, and edits are only made

where deemed necessary to point to the correct references.

For these parts, I have been the main contributor to the paper

and have written these parts by myself. My co-authors and

other reviewers have provided feedback on these sections,

which I have implemented whenever possible.

Based on Sections that are based on my publications con-

tain the essential content of the relevant part but not the

written passage. These are mainly passages where I cannot

confidently certify that I am the main author of these parts. I

typically use the same references but typically add additional

details in my thesis as some details have been stripped of the

published paper.

If a section or chapter has not been labeled explicitly, it can be

assumed that these parts have not been previously published
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in the same form. These are typically the parts that provide

additional background and context to my publications.

1.2.1 Used publications and contributions

Journal Articles

I W. Jentner, D. Sacha, F. Stoffel, G. Ellis, L. Zhang, D. A.

Keim; Making Machine Intelligence Less Scary for Crim-
inal Analysts: Reflections on Designing a Visual Compar-
ative Case Analysis Tool; The Visual Computer Journal;

2018 [8]

Thispaper reports onourwork in theVALCRIproject [12].

It is building upon several publications that report ear-

lier and intermediate progress [7, 13, 14]. Florian Stoffel

contributed to the concept extraction and underlying

NLP pipelines. Dominik Sacha contributed to early

prototypes of the similarity space selector (S3
) and the

crime cluster table (CCT). I integrated updated versions

of the S3
, CCT components into the VALCRI prototype

and added the sequence modeling. I further added

the sequence similarity space selector (S4
), as well as,

the weight observer component (WOC). The ontology

vis component was contributed by Yevgen Kuzmenko

who was supervised by Dominik Sacha and me. A

co-occurrence matrix for the features, an early proto-

type of the S4
, was contributed by Raphael Buchmüller

who was supervised by Dominik Sacha and me. The

paper reports on the design process of each component

and the integrated components in the VALCRI proto-

type. I took primary responsibility for this publication.

The contributions of the publication emerged through

many group discussions and feedback including Leishi

Zhang and Geoffrey Ellis. The paper was written in a

collaborative manner where each person focused on

their contributions (i.e., components description, their

design history, and related work). Daniel Keim com-

mented on the paper draft multiple times. I revised the

entire paper multiple times and therefore use it in my

dissertation in:

• Section 1, Introduction → Section 3.4.1.1, Task

Description (based on)
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• Section 2, Related Work→ Section 3.4.1.2, Limita-

tions of existing work (taken from)

• Section 3.1, Feature Generation→ Section 3.4.1.3,

From Modus Operandi to Sequential Patterns

(based on)

• Sections 3 & 4, Design Study Methodology & The

Concept Explorer→ Section 3.4.1.4, Description

of Interestingness Measures (based on)

• Section 3 & 4, Design Study Methodology & The

Concept Explorer→ Section 5.2.1, VALCRI Con-

cept Explorer (taken from)

I R. Sevastjanova, W. Jentner, F. Sperrle, R. Kehlbeck,
J. Bernard, M. El-Assady; QuestionComb: A Gamifica-
tion Approach for the Visual Explanation of Linguistic
Phenomena through Interactive Labeling; Association for

Computing Machinery, Transactions on Interactive In-

telligent Systems (ACM TIIS); 2021 [9]

I have specifically contributed to the sequence mod-

eling, sequential pattern and sequential rule mining

components. I provided a pattern mining code library,

that I have written, to Rita Sevastjanova which she used

in the QuestionComb-tool. I suggested the design of

the rules, specifically the distance preservation using

the triangles which are based on the design of Chen

et al. [15]. Furthermore, I suggested exploiting closed

patterns formining andmaximal patterns for the detail-

on-demand functionality. The application and visual

system have been implemented mainly by Rita Sev-

astjanova with the support of Fabian Sperrle, Rebecca

Kehlbeck, and me. I have authored Sections 4.1 and 4.2

in the publication and contributed to Section 5.4. I have

revised the entire paper upon request and provided

comments throughout the entire creation phase. Jürgen

Bernard contributed to the Visual Interactive Labeling,

and Mennatallah El-Assady contributed to the XAI

aspects. Daniel Keim provided comments on the paper

draft several times. I am using parts of this publication

in my dissertation:

• Section 1, Introduction → Section 3.4.2.1, Task

Description (based on)

• Section 4.1, Data as Sequences of Words→ Sec-

tion 3.4.2.2, Data Modeling (based on)

• Section 4.2, Sequential Pattern Mining for an Ex-
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plainable Classifier→ Section 3.4.2.3, Description

of Interestingness Measures (based on)

• Section 5, QuestionComb: The Interface → Sec-

tion 5.4.3 (based on)

I W. Jentner, G. Lindholz, H. Hauptmann, M. El-Assady,

K.L. Ma, D. A. Keim; Visual Analytics of Co-Occurrences
to Discover Subspaces in Structured Data; Association

for Computing Machinery, Transactions on Interactive

Intelligent Systems (ACM TIIS); accepted 2022 [10]

I first presented the idea at my proposal talk in 2018.

Giuliana Lindholz (Dehn) helped me to create the first

prototype under my supervision. A second, web-based

prototype was created by myself. I have received com-

ments and feedback on the idea from my colleagues at

the DBVIS group as well as visiting researchers such

as George Grinstein, Jürgen Bernard, Remco Chang,

and Tobias Schreck. I received further helpful feedback

from various anonymous reviewers and Liang Gou

(Assistant to the Editor-in-Chief at ACM TIIS). I have

authored the entire publication myself and received

comments fromHannaHauptmann (Schäfer) andMen-

natallah El-Assady. Kwan-Liu Ma and Daniel Keim

commented on the paper draft as well. I am using

several parts of this publication in my dissertation,

specifically:

• Section 1, Introduction → Section 3.4.3.1, Task

Description (taken from)

• Section 3, Related Work→ Section 3.4.3.2, Limita-

tions of existing work (taken from)

• Section 4, Multi-dimensional Pattern Exploration

Approach→ Section 3.4.3.3, Description of Inter-

estingness Measures (taken from)

• Section 5.2, Normalization→ Section 3.4.3.4, Ad-

ditional variations based on the Interestingness

Measures (taken from)

• Section 5.3, Interactive Mining & Filtering→ Sec-

tion 5.5.3, Multi-selection-based Mining (taken

from)

Book Chapters

I W. Jentner, D. A. Keim; Visualization and Visual Ana-
lytic Techniques for Patterns; Book chapter High-Utility
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Pattern Mining: Theory, Algorithms, and Applications;

2019 [16]

I have gathered the relevant information and written

the book chapter by myself. Florian Stoffel and Menna-

tallah El-Assady provided feedback on an early draft.

Daniel Keim provided continuous feedback on the pa-

per draft. I received further comments from Philippe

Fournier-Viger, editor of the book “High-utility pattern

mining” [17] where this chapter appeared in. I am us-

ing the entire book chapter in Chapter 4: Visualization

Techniques for Structured Data Patterns.

Workshop Articles

I W. Jentner, G. Ellis, F. Stoffel, D. Sacha, D. A. Keim; A
Visual Analytics Approach for Crime Signature Generation
and Exploration; The Event Event: Temporal & Sequen-

tial Event Analysis, IEEE VIS 2016 Workshop; 2016 [18]

This paper reports on an early prototype developed for

the VALCRI project [12]. I have developed the proto-

type myself and received feedback frommy co-authors.

The paper has been authored by me whereas Geoffrey

Ellis, Florian Stoffe, and Dominik Sacha edited and

provided feedback. Daniel Keim provided comments

on the paper draft. I have revised the entire publication

several times. I am using content from this publication

in my dissertation:

• Sections 4, Visual Analytics Approach → Sec-

tion 3.4.1.4, Description of Interestingness Mea-

sures (based on)

I J. Buchmüller,W. Jentner, D. Streeb, D. A. Keim;ODIX:
A Rapid Hypotheses Testing System for Origin-Destination
Data; IEEE Conference on Visual Analytics Science and

Technology (VAST Challenge 2017 MC1); 2017 [19]

This publication was a group effort of Juri Buchmüller,

Dirk Streeb and myself in participation at the VAST

Challenge 2017, Mini Challenge 1 [20]. I implemented

the code of the prototype. Juri Buchmüller contributed

to the Neo4J implementation that allowed us to model

the raw data as sequences. Dirk Streeb contributed to a

second prototype. I specifically contributed Section 3
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to the paper that describes the application I developed.

I use parts of this publication in my dissertation:

• Section 3, Application→ Section 5.1.1, Selection

of Transactions (taken from)

I W. Jentner, R. Sevastjanova, F. Stoffel, D. A. Keim,

J. Bernard, M. El-Assady; Minions, Sheep, and Fruits:
Metaphorical Narratives to Explain Artificial Intelligence
and Build Trust; Workshop on Visualization for AI Ex-

plainability, IEEE VIS 2018 Workshop; 2018 [21]

This paper has been a group effort of several discus-

sions in our small group (Rita Sevastjanova, Florian

Stoffel, Mennatallah El-Assady, and Jürgen Bernard

as a visiting researcher). Florian Stoffel initiated the

discussionwith the question “What do you understand

as trust?”. I took over the responsibility of the primary

author and coordinated all writing. I specifically con-

tributed to the didactic reduction parts, as well as, the

minion metaphorical narrative, and the trust-building

model. Most of the figures were drawn and edited

by Rita Sevastjanova. All authors participated in the

writing. Daniel Keim provided comments on the draft.

I revised the entire paper several times. I am using

parts of this publication in my dissertation:

• Section 3.2 & 3.3, Trust-Building Model & Exem-

plary Metaphorical Narratives → Section 5.6.4,

Understanding Concepts & Metaphorical Narra-

tives (taken from)

1.2.2 Other peer-reviewed publications

Several publications that I co-authored are not included in

this dissertation. The following entails an extensive list of

these publications sorted by year.

1. M. El-Assady, D. Hafner,M.Hund, A. Jäger,W. Jentner,
C. Rohrdantz, F. Fischer, S. Simon, T. Schreck, D. A.

Keim; Visual Analytics for the Prediction of Movie Rating
andBoxOfficePerformance; VASTChallenge 2013 -Award

for Effective Analytics, 2013 [22]

2. F. Wanner, T. Schreck,W. Jentner, L. Sharalieva, D. A.

Keim Relating interesting quantitative time series patterns
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with text events and text features; (Best Paper Award);

IS&T/SPIE Electronic Imaging; 2014 [23]

3. M.El-Assady,W. Jentner,M. Stein, F. Fischer, T. Schreck,

D. A. Keim; Predictive Visual Analytics - Approaches for
Movie Ratings and Discussion of Open Research Challenges;
Proceedings of the IEEE VIS 2014 Workshop Visualiza-

tion for Predictive Analytics; 2014 [24]

4. F. Wanner, W. Jentner, T. Schreck, A. Stoffel, L. Shar-

alieva, D. A. Keim; Integrated visual analysis of patterns in
time series and text data - Workflow and application to finan-
cial data analysis; Information Visualization; 2015 [25]

5. W. Jentner, M. El-Assady, D. Sacha, D. Jäckle, F. Stoffel;

Dynamite: Dynamic Monitoring Interface for Task Ensem-
bles; IEEE Conference on Visual Analytics Science and

Technology (VAST Challenge 2016 MC1) (Award - No-

table Support for Streaming Analysis); 2016 [26]

6. M.El-Assady,V.Gold,W.Jentner,M.Butt,K.Holzinger,

D. A. Keim;VisArgue - A Visual Text Analytics Framework
for the Study of Deliberative Communication; Proceedings
of The International Conference on the Advances in

Computational Analysis of Political Text (PolText2016);

2016 [27]

7. F. Stoffel,W. Jentner, M. Behrisch, J. Fuchs, D. A. Keim;

Interactive Ambiguity Resolution of Named Entities in
Fictional Literature; Eurographics Conference on Visual-

ization (EuroVis 2017); 2017 [28]

8. D. Sacha,W. Jentner, L. Zhang, F. Stoffel, G. Ellis;Visual
Comparative Case Analytics EuroVisWorkshop on Visual

Analytics (EuroVA); 2017 [13]

9. W. Jentner, M. El-Assady, B. Gipp, D. A. Keim; Fea-
ture Alignment for the Analysis of Verbatim Text Tran-
scripts; EuroVis Workshop on Visual Analytics (Eu-

roVA); 2017 [29]

10. D. Streeb, J. Buchmüller, U. Schlegel, W. Jentner, M.

Behrisch, B. Schneider, D. Seebacher; Uncovering the
Mistford Toxic Conspiracy; Conference on Visual Analyt-

ics Science and Technology, VAST; 2017 [30]

11. W. Jentner, D. Jäckle,U. Engelke,D.A.Keim, T. Schreck;

A Concept for Consensus-based Ordering of Views; EuroVis
Workshop on Visual Analytics (EuroVA); 2018 [31]

12. W. Jentner, F. Stoffel, D. Jäckle, A. Gärtner, D. A. Keim;

DeepClouds: Stereoscopic 3D Wordle based on Conical Spi-
rals; Workshop on Visualization as Added Value in

the Development, Use, and Evaluation of Language
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Resources (VisLR III) @LREC; 2018 [32]

13. E. Cakmak, G. Castiglia,W. Jentner, J. Buchmüller, D.

A. Keim; Visualization For Train Management: Improving
Overviews in Safety-critical Control Room Environments;
4th International Symposium on Big Data Visual and

Immersive Analytics; 2018 [33]

14. N. Weiler, M. Kraus, T. Kilian, W. Jentner, D. A. Keim;

Visual Analytics for Semi-Automatic 4D Crime Scene Re-
construction; 4th International Symposium on Big Data

Visual and Immersive Analytics; 2018 [34]

15. I. Piljek,G.Dehn, J. Frauendorf, Z. Salem,Y.Niyazbayev,

J. Buchmüller, E. Cakmak,W. Jentner, F. Stoffel, D. A.

Keim; Identifying Patterns and Anomalies within Spa-
tiotemporal Water Sampling Data; IEEE Conference on

Visual Analytics Science and Technology (VAST Chal-

lenge 2018 MC2 // Award for Elegant Design of an

Interactive Display); 2018 [35]

16. B. Bäumle, I. Boesecke, R. Buchmüller, Y. Metz, J. Buch-

müller, E. Cakmak, W. Jentner, D. A. Keim; Interactive
Webtool for Tempospatial Data and Visual Audio Analy-
sis; IEEE Conference on Visual Analytics Science and

Technology (VAST Challenge 2018 MC2 // Honorable

Mention for Interactive Analytic Tool MC1); 2018 [36]

17. E. Cakmak, U. Schlegel, M. Miller, J. Buchmüller, W.
Jentner, D. A. Keim; Interactive Classification Using Spec-
trograms and Audio Glyphs; IEEE Conference on Visual

Analytics Science and Technology (VAST Challenge

2018 MC1); 2018 [37]

18. U. Schlegel, W. Jentner, J. Buchmüller, E. Cakmak,

G. Castiglia, R. Canepa, S. Petralli, L. Oneto, D. A.

Keim,D.Anguita;VisualAnalytics for SupportingConflict
Resolution in LargeRailwayNetworks; 2019 INNSBigData

and Deep Learning (INNSBDDL 2019); 2019 [38]

19. M. El-Assady, W. Jentner, F. Sperrle, R. Sevastjanova,
A. Hautli-Janisz, M. Butt, D. A. Keim lingvis.io - A
Linguistic Visual Analytics Framework; ACL (3); 2019 [39]

20. M. Dose, N. Wendt, M. Mühling, T. Pollok, W. Jentner,
S. Schindler, A. L. Tilling, R. King, F. Fest, T. Philipp,

M. Kastelitz; FLORIDA: Analyse von Videomassendaten
im Kontext terroristischer Anschläge; Crisis Prevention;
2019 [40]

21. W. Jentner, J. Buchmüller, F. Sperrle, R. Sevastjanova,

T. Spinner, U. Schlegel, D. Streeb, H. Schäfer; N.E.A.T.
- Novel Emergency Analysis Tool; IEEE Conference on
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Visual Analytics Science and Technology (VAST Chal-

lenge 2019 Grand Challenge); 2019 [41]

22. M. El-Assady,W. Jentner, R. Kehlbeck, U. Schlegel, R.
Sevastjanova, F. Sperrle, T. Spinner, D. A. Keim; Towards
XAI: structuring the processes of explanations; ACMWork-

shop on Human-CenteredMachine Learning; 2019 [42]

23. T. Pollok,M. Kraus, C. Qu,M.Miller, T.Moritz, T. Kilian,

D. A. Keim, W. Jentner; Computer Vision Meets Visual
Analytics: Enabling 4D Crime Scene Investigation from
Image and Video Data ICDP 2019; London; 2019 [43]

24. M. Kraus, T. Pollok, M. Miller, T. Kilian, T. Moritz, D.

Schweitzer, J. Beyerer, D. A. Keim, C. Qu, W. Jentner;
Toward Mass Video Data Analysis: Interactive and Immer-
sive 4D Scene Reconstruction; Sensors; Special Issue Se-
lected Papers from the 9th International Conference on

Imaging for Crime Detection and Prevention (ICDP-19);

2020 [44]

25. L. Martí-Bonmatí, Á. Alberich-Bayarri, R. Ladenstein, I.

Blanquer, J. D. Segrelles, L. Cerdá-Alberich, P. Gkontra,

B. Hero, JM García-Aznar, D. Keim, W. Jentner, K.
Seymour, A. Jiménez-Pastor, I. González-Valverde, B.

Martínez de las Heras, S. Essiaf, D.Walker, M. Rochette,

M. Bubak, J. Mestres, M. Viceconti, G. Martí-Besa, A.

Cañete, P. Richmond, K. Y Wertheim, T. Gubala, M.

Kasztelnik, J. Meizner, P. Nowakowski, S. Gilpérez,

A. Suárez, M. Aznar, G. Restante, E. Neri; PRIMAGE
project: predictive in silico multiscale analytics to support
childhood cancer personalized evaluation empowered by
imaging biomarkers; European radiology experimental

4-1 1-11; 2020 [45]

26. M. T. Fischer, S. D. Hirsbrunner, W. Jentner, M. Miller,

D. A. Keim, P. Helm; Promoting Ethical Awareness in Com-
munication Analysis: Investigating Potentials and Limits
of Visual Analytics for Intelligence Applications; Proceed-
ings of FAcct ’22 : 2022 ACM Conference on Fairness,

Accountability, and Transparency; 2022 [46]

27. W. Jentner, F. Sperrle, D. Seebacher, M. Kraus, R. Sev-

astjanova,M. T. Fischer, U. Schlegel, D. Streeb,M.Miller,

T. Spinner, E. Cakmak, M. Sharinghousen, P. Meschen-

moser, J. Görtler, O. Deussen, F. Stoffel, H.-J. Kabitz,

D. A. Keim, M. El-Assady, J. F. Buchmüller; Visual-
isierung der COVID-19-Inzidenzen und Behandlungskapaz-
itäten mit CoronaVis; Resilienz und Pandemie: Hand-

lungsempfehlungen anhand erster Erfahrungen mit
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Covid-19; 2022 [47]

1.2.3 Technical Reports

The main effort during my Ph.D. was to participate in and

manage projects. One of the outcomes of these projects is

technical reports, also called deliverables, that describe in-

termediate and final project results. Their main purpose

is to ensure the transparency and quality of the work per-

formed in the project. While these are not considered to be

peer-reviewed, there are actually several checks performed.

Multiple partners write the reports, then typically checked

by two partners within the project that have not co-authored.

The steering committee of the project performs the next check.

Finally, the stakeholder (funding agency) acquires anony-

mous reviewers for a project that also provides a profound

review of the deliverable. I want to include these reports as

they reflect large parts of my work and research during my

time as a Ph.D. student. A short list of all the projects that I

was part of follows:

1. VisArgue - Analysis, and Visualization of Political

Communication; BMBF; 2014 - 2016

2. VALCRI - Visual Analytics for Sense-Making in Crimi-

nal Intelligence Analysis; EU-FP7; 2016 - 2018

3. FLORIDA - Flexible, semi-automatic analysis system

for the evaluation of mass video data; BMBF; 2016 -

2019

4. IN2DREAMS - INtelligent solutions 2ward the Devel-

opment of Railway Energy and Asset Management

Systems in Europe; EU-Horizon2020; 2017-2020

5. ASGARD - Analysis System for Gathered Raw Data;

EU-Horizon2020; 2016 - 2020

6. VICTORIA - Video Analysis for Investigation of Crim-

inal and Terrorist Activities; EU-Horizon2020; 2017 -

2021

7. PRIMAGE - PRedictive In-silico Multiscale Analytics to

support cancer personalized diaGnosis and prognosis,

Empowered by imaging biomarkers; EU-Horizon2020;

2018 - present

8. PEGASUS - Police extraction and analysis of hetero-

geneous mass data for combating organized crime

structures; BMBF; 2020 - present
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9. DAYDREAMS - Development of prescriptive Ana-

lYtics baseD on aRtificial intElligence for iAMS; EU-

Horizon2020; 2020 - present

10. VIKING - Trusted Artificial Intelligence for Police Ap-

plications; BMBF; 2022 - present

11. KTBW-RPM -Remote PatientMonitoring; Baden-Würt-

temberg - State Funding; 2022 - present

Not all technical reports have the authors explicitly stated.

Some of them only mention the partners’ institutions, others

only the first author. The deliverables where I am the main

author (i.e., first author) have their titles underlined. This

list does not contain deliverables that I have reviewed in the

internal quality assurance process.

1. D. Sacha,W. Jentner, L. Zhang, F. Stoffel, G. Ellis, D. A.

Keim; Applying Visual Interactive Dimensionality Reduc-
tion to Criminal Intelligence Analysis; VALCRI; 2017 [14]

2. R. Canepa, S. Petralli, L. Oneto, W. Jentner, J. Buch-
müller, C. Ducuing, I. Emanuilov, M. Swiatek, D. An-

guita;D5.1: Data Analytics Scenarios; IN2DREAMS; 2018

3. W. Jentner, L. Oneto, R. Spigolon;D5.3: Visual Analytics
of Railway Data and Models; IN2DREAMS; 2018

4. C. Ducuing, I. Emanuilov, M. C. Janssens, R. Spigolon,

L. Oneto, R. Canepa, S. Petralli, W. Jentner; D4.5: Legal
analysis of the placing on a blockchain of a data marketplace
in the railways; IN2DREAMS; 2018

5. L. Oneto, M. Swiatek, C. Ducuing, I. Emanuilov, J.

Buchmüller,W. Jentner, D. Anguita; D5.2: Assessment
metrics and rule-based data analytics tools Proof-of-Concept;
IN2DREAMS; 2019

6. W. Jentner, M. Kraus, N. Weiler; D6.5: Visual Analytics
system for semi-automatic 4D crime scene reconstruction;
VICTORIA; 2018

7. M. Dose, R. Zhou, T. Pollock, G. Roman Jimenez, W.
Jentner, M. Kraus; D7.2: Graphical User Interface; VIC-
TORIA; 2018

8. M. Dose, N. Wendt, R. Zhou, W. Jentner, M. Kraus;

D7.6: VICTORIA Video Analysis Platform; VICTORIA;

2019

9. M. T. Fischer, D. Seebacher, M. Worring, D. Streeb,W.
Jentner;D7.5: Visual Analytics Framework and Techniques;
ASGARD; 2019

10. W. Jentner, E. Cakmak, J. Buchmüller, G. Castiglia, L.

Oneto; D5.4: Rule-based and Visual analytics knowledge
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extraction demonstrator; IN2DREAMS; 2020

11. W. Jentner, M. Kraus, N. Weiler, T. U. Kilian, M. Miller,

F. Stoffel, D. A. Keim; Teilvorhaben: Visual Analytics zur
Semi-automatischen Tatortrekonstruktion (Schlussbericht);
FLORIDA; 2020

12. M. Dose, N. Wendt, R. Zhou, W. Jentner, M. Kraus;

D7.6: VICTORIA Video Analysis Platform, prototype V2;
VICTORIA; 2021

13. L. Oneto et al.; D5.1: IAMS Prototype Integration Guide-
lines, User Requirements and Scenarios; DAYDREAMS;

2021

14. W. Jentner; D4.1: Analysis of the context and state-of-the-
art; DAYDREAMS; 2022

15. L. Oneto et al.; D2.1: Learning from Data and Human
Behaviour; DAYDREAMS; 2022

16. W. Jentner; D4.2: Context-driven Dynamic HMI Design
and Prototype; DAYDREAMS; 2022

17. W. Jentner, R. Canepa; D4.3: Context-driven Dynamic
HMI Assessment; DAYDREAMS; 2022

18. M. Anastasopoulos; W. Jentner; G. Chevaleyre D3.2:
Multi-Objective Decision Optimisation Tools Assessment;
DAYDREAMS; 2022
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This chapter introduces definitions and lays the background

for this thesis.

2.1 Definitions

Pattern mining is a special form of clustering for structured

data that does not require any distance measure and instead

relies on the definition of containment. Structured data, in

its simplest form, is defined as a set of items or an item-
set.

Definition 2.1.1 (Itemset)

I = {i1, i2, ..., in}

All the items, also called symbols, of a dataset, are called

alphabet, denoted by the symbol Σ. Therefore, all itemsets

I of a dataset must be a subset of the alphabet (I ⊆ Σ).

Without loss of generality, a total order can be defined over

the items in the set. Such a total order can be, for example, a

lexicographic order. Throughout this thesis, a total order is

assumed to improve readability.

For itemsets, containment is straightforward as it is equal to a

subset. In this dissertation,wedefine containment as:

Definition 2.1.2 (Containment)

A v B

whereas a pattern A is contained in another pattern or struc-

tured data B. If A and B are itemsets then the containment

is equal to
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Definition 2.1.3 (Containment for itemsets)

A v B ≡ A ⊆ B

A sequence is a more complex data structure that is based on

itemsets and is defined as an ordered list of itemsets denoted

as

Definition 2.1.4 (Sequence)

s = 〈I1, I2, ..., In〉

Each of the itemsets of a sequence must be a subset of the

alphabet

∀k|1 ≤ k ≤ n, Ik ⊆ Σ

In the context of event sequences, the items of the itemsets are

also often referred to as events. Let there be an alphabet Σ =

{a, b, c} and a sequence s = 〈{a, b}, {c}〉, then the sequence

s is interpreted as events a and b occur at the same time and

event c occur afterward. Frequently, each event is annotated

with a timestamp or a number to encode the distance between

the events further.

Containment of sequence sa = 〈A1, A2, ..., An〉 in another

sequence sb = 〈B1, B2, ..., Bm〉 is defined as:

Definition 2.1.5 (Containment of sequences)

sa v sb

⇐⇒

∃i|1 ≤ i1 < ... < in ≤ m,A1 ⊆ Bi1, A2 ⊆ Bi2, ..., An ⊆ Bin

For example, a sequence sa = 〈{a}, {b}〉 is contained in sb =

〈{a, c}, {d}, {b, c}〉 but not in sc = 〈{b, c}, {a, d}〉 because
itemsets {a} and {b} do not occurr in the correct order.

The length of an itemset or sequence is referred to as the

cardinality of the itemset or the summed cardinality of the

itemsets in the sequence. In several works length is also
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defined as the number of itemsets of the sequence. Because

of this ambiguity, this dissertation uses the term generation
for the former definition of length.

Definition 2.1.6 (Generation (itemset))

g = |I|

For a sequence s = 〈I1, I2, ..., In〉, the generation is defined

as:

Definition 2.1.7 (Generation (sequence))

g =
n∑

i=1
|Ii|

Therefore, a g-itemset is an itemset of generation g and a

g-sequence a sequence of generation g.

The structured data to be mined is provided as a database or

datasetD. Each row consists of an ID and the structured data

in an encoded form. For itemsets, rows are also sometimes

called transactions. However, this is more task-specific. |D|
defines the size of the database or the number of rows.

Association rule mining is an extension to itemset mining. It

allows finding the correlation of itemsets within transactions.

A rule consists of two itemsets A and B and is denoted

as:

Definition 2.1.8 (Association Rule)

A→ B|A ∩B = ∅ ∧ A ∪B ≠ ∅

The left-hand side of the rule is called antecedent side, and
the right-hand side of the rule is called the consequent side.
Although this is called a rule, it should be understood as a

correlation that can be observed with a certain probability in

the data.

The generation of an association rule is defined as:
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Definition 2.1.9 (Generation (association rule))

g = |A| |B|

Like association rules and itemsets, sequential rules are an

extension of sequential patterns.

Definition 2.1.10 (Sequential Rule)

〈Ai1 , Ai2 , ..., Ain〉 → 〈Bj1 , Bj2 , ..., Bjm〉|in < j1

Because sequential patterns maintain the order of events, a

sequential rule is defined as that all events of the antecedent

side must be before the events of the consequent side. Se-

quential rules represent temporal correlations that if one or

more events happen, they are followed by certain events by

a certain probability (called confidence).

Definition 2.1.11 (Generation (sequential rule))

g =
n∑

i=1
|Ai|

m∑
j=1
|Bj |
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2.2 Search Spaces

Understanding search spaces is fundamental to this work.

The exponentiality of a search space candrive up the numbers

so quickly that it becomes unimaginable to the human brain.

Theunderlying reason for this is the containment definition of

patterns as it allows for transitive andubiquitous containment

of patterns.

First, the search spaces do not depend on the amount of

data (number of transactions) in the database. Their size is

only determined by the alphabet, which is all items in the

database. For sequences the maximal length of the longest

sequence in the database is important.

For itemsets, calculating the search space is straightforward.

The search space of an alphabet Σ = {a, b, c} (n = |Σ| = 3)
consists of the following patterns:

I ∅
I {a}
I {b}
I {c}
I {a, b}
I {a, c}
I {b, c}
I {a, b, c}

This is the set of all subsets of {a, b, c}which is also known

as the power set. Another representation of this power set is

shown in Figure 2.1 in the form of a Hasse-diagram [48]. The

itemsets are ordered in a partial order (i.e., no total order

exists) due to the containment definition, therefore this search

space is also known as a lattice. The itemsets are visually

ordered vertically in layers according to their generation

Figure 2.1: The search space

(power set) of {a, b, c} repre-

sented as a Hasse-diagram [48].

The lines indicate the contain-

ment.
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1: This part is based on my pub-

lication “Visual Analytics of Co-

Occurrences to Discover Sub-

spaces in Structured Data” (Sec-

tion 6.4: User Study: What We

Eat In America Dataset) [10]. I

have been the main author of

this publication and section and

havewritten all the contents. The

paper was internally reviewed

by my co-authors Giuliana Lind-

holz, Hanna Hauptmann, Men-

natallah El-Assady, Kwan-Liu

Ma, and Daniel Keim.

whereas the lowest generation is on the bottom and the

highest generation (3) is on top. Note that this diamond-like

shape is characteristic of search spaces in pattern mining

and that, specifically, the generations in the vertical center

account for the highest number of patterns within the search

space (i.e., highest entropy).

An itemset can be represented as a binary vector whereas,

for example, the itemset {a, c} can be represented as 101.
Therefore, the size of the search space can be simply derived

as 2n
. Typically, the empty set is considered to be trivial and

uninteresting which is why it is often discarded reducing the

search space to:

2n − 1 (2.1)

For sequences, another limit is necessary as the alphabet

itself does not account for the maximal length of a sequence.

The length of a sequence is the number of itemsets within

that sequence. Let it bem. For an alphabet Σ = {a, b} and a

maximal length ofm = 2, the following sub-sequences can

be generated:

I 〈{a}〉
I 〈{b}〉
I 〈{a, b}〉
I 〈{a}, {a}〉
I 〈{a}, {b}〉
I 〈{b}, {a}〉
I 〈{b}, {b}〉
I 〈{a, b}, {a}〉
I 〈{a, b}, {b}〉
I 〈{a}, {a, b}〉
I 〈{b}, {a, b}〉
I 〈{a, b}, {a, b}〉

Note that the maximum generation is always n ∗m. The first

three list items refer to sequences of length one since they

only contain one itemset. The number of possible patterns

is, therefore, identical to 2n − 1. For sequences of length two,

this can be extended to 2n − 12
. Therefore, the search space

can be defined as:

m∑
i=1

2n − 1i
=

2n − 12n − 1m − 1
2n − 2 (2.2)

1
While this formula may not be impressive, it shows how
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Figure 2.2: 14 persons were asked to estimate the search space of sequential pattern mining for an alphabet

size of 40 and the longest sequence of 57. The estimates are magnitudes below the actual result. Note the

logarithmic x-axis.

[20]: Whiting et al. (2017), VAST

Challenge 2017 Mini Challenge 1

2: livescience.com/how-
many-atoms-in-universe.
html, accessed March 25, 2022

[49]: Agrawal et al. (1994), Fast

Algorithms for Mining Associa-

tion Rules in Large Databases

quickly search spaces in pattern mining can grow. Humans

tend to underestimate exponentiality as they are not very

intuitive. For an evaluation of one of my publications [10], I

have conducted interviews with 15 master-, Ph.D.-students,

and PostDocs (see subsection 5.7.1). They were asked to

estimate the search space of sequential patterns for an al-

phabet of n = 40 and the longest sequencem = 57 without

knowing the above formula. The size of the alphabet and

the longest sequence are from a real-world dataset from the

VAST Challenge 2017 Mini Challenge 1 [20]. Their answers

are depicted in Figure 2.2 and show all but one participant

greatly underestimates the size of the search spaces. Note

the logarithmic x-axis in the plot. The one participant who

estimated correctly derived a similar to the above formula

to then estimate the result. Large numbers such as 10686
cannot be intuitively understood anymore since any point of

reference to our real world is missing. As mentioned earlier,

the estimated amount of atoms in our visible universe is

estimated to be around 1082
to 1084. 2 The size of the search

space is magnitudes greater than this number.

Such search spaces can neither be computed, stored nor

ever fully analyzed or visualized. Thanks to the curse of

dimensionality (see section 2.4) and approaches such as the

apriori-algorithm [49] this is not necessary to generate all

possible patterns.

https://www.livescience.com/how-many-atoms-in-universe.html
livescience.com/how-many-atoms-in-universe.html
https://www.livescience.com/how-many-atoms-in-universe.html
livescience.com/how-many-atoms-in-universe.html
https://www.livescience.com/how-many-atoms-in-universe.html
livescience.com/how-many-atoms-in-universe.html
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2.3 Equivalence Classes

Equivalence classes are sets of patterns that represent identi-

cal clusters. Table 2.1 shows a simple database from a market

basket analysis. It displays four customers and their market

baskets, i.e., which items they have bought at the grocery

store. Pattern mining generates patterns that are contained

in the transactions. Since the data is structured as itemsets

the patterns themselves are itemsets or sub-itemsets. All

possible patterns that can be generated from this dataset

are shown in Figure 2.3. In total, 21 distinct patterns can

be generated, however, the input data only consists of four

transactions. The patterns are visualized in the form of a

Hasse-diagram [48] where the patterns of the lowest genera-

tion (see Definition 2.1.7) are placed on the bottom and the

highest-generation-patterns are placed on top. The number

in the purple circles indicates the support of a pattern, an

interestingness measure describing how many transactions

the pattern is contained in. Below each pattern, the trans-

action IDs are displayed (see Table 2.1). The patterns are

outlined in various colors (labeled A-D) that represent the

four equivalence classes. All patterns within one equivalence

class describe the same set of transactions in the input data.

Even though none of these patterns are equal, they describe

the same data which shows that they describe redundant

information.

To eliminate these redundancies closed andmaximal patterns

have been introduced.

ClosedPatterns Thiswasfirst definedbyPasquier et al. [50].

Let P be the set of patterns in the lattice. A closed pattern

pc is closed if and only if there exists no super-patterns that
contain pc that also describe the same data. Since this can

be expressed with the interestingness measure support the
formal definition is:

Table 2.1: A market basket

database showing four cus-

tomers and their market baskets

with the items they have bought.

ID Transactions

1 {bread, juice,milk, vegetables}
2 {bread, candy, soda}
3 {bread, juice, vegetables}
4 {bread, candy, soda}
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Figure 2.3: Four equivalence classes (A-D) visually represented in a Hasse-diagram.

[51]: (2014), Frequent Pattern

Mining

Definition 2.3.1 (Closed Pattern)

pc|pc, p ∈ P ∧ p : pc v p ∧ supportpc = supportp

In our example {bread}would be a closed pattern since there

are no super-patterns that contain {bread} that also have a

support of 4. The other closed patterns are:

I {bread, juice, vegetables}
I {bread, candy, soda}
I {bread, juice,milk, vegetables}

In other words, closed patterns are the patterns of the high-

est generation within one equivalence class. Unlike in this

example, there can be multiple closed patterns within one

equivalence class. A naive approach would first mine all

patterns and then filter for the closed patterns. However,

there exist several algorithms to mine for closed patterns

efficiently [51].Mining for closed itemsets is said to be lossless

regarding the information since only redundant descriptions

are being removed.

Generator Patterns Generator patterns, or also key pat-

terns, are the opposite of closed patterns in the sense that

here only the patterns of the lowest generation of one equiv-

alence class are being retained. A generator pattern pg is a

generator if and only if there exists no sub-patterns that are
being contained in pg that describe the same data.
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Definition 2.3.2 (Generator Pattern)

pg|pg, p ∈ P ∧ p : p v pg ∧ supportpg = supportp

Note that in the previous definition, it was stated as pc v p

and here it is p ⊆ pg. In the example, the following patterns

would be generator patterns:

I {bread}
I {juice}
I {vegetables}
I {candy}
I {soda}
I {milk}

Looking at the lattice (Figure 2.3), these are the patterns

on the bottom of each equivalence class (i.e., the patterns

of the lowest generation). Note that in some literature the

empty set is considered a generator pattern that describes

all transactions in the database. In our example, this would

replace {bread} with the empty set since the empty set is

contained in all patterns but its support is also 4. As with

closed patterns, generator patterns are said to be lossless

since only redundant information is being removed. Another

interesting observation exists for rule mining: taking a gen-

erator pattern for the antecedent (left-hand side) and the

closed patternminus the generator pattern on the consequent

side (right-hand side), the confidence will always be 100%

since the rule exists only in the same equivalence class. Also,

generator patterns can be mined efficiently [52].

Maximal Patterns Maximal patterns are a simplification

of closed patterns in the sense that the support constraint

is removed. Therefore, a maximal pattern pm is maximal

if and only if there exists no super-patterns p that contain

pm.

Definition 2.3.3 (Maximal Pattern)

pm|pm, p ∈ P ∧ p : pm v p
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In the example, the maximal patterns would be:

I {bread, candy, soda}
I {bread, juice,milk, vegetables}

Because of the definition, the set of maximal patterns PM

is always a subset of closed patterns PC which are a subset

of the lattice (all patterns) P : PM ⊆ PC ⊆ P . Concerning

the amount of information, maximal patterns are considered

lossy since not all information of the clusters (with the

patterns as their representants) is retained.

While the definition of a minimal pattern is equivalent to

generator patterns without the support constraint, they are

not to be found in the literature as they are not considered

useful. If the empty set is considered, the empty set itself

is always minimal as it is contained in any pattern. If it is

removed, then all first-generation patterns are minimal.

Note that the definitions of closed-, generator-, and maximal

patterns are based on the lattice (i.e., the mined patterns)

which is typically also constrained by other interestingness

measures such as the support and confidence for rules. Any

constraints on the lattice modify the lattice itself and thus

influence the sets of closed-, generator-, and maximal pat-

terns.

Equivalence classes and the definitions of closed-, generator-,

and maximal patterns are considered useful to reduce the

exponential amounts of patterns drastically.
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2.4 Curse of Dimensionality

The curse of dimensionality is a term for a set of well-studied

phenomena [53–56] in highdimensional data analysis impact-

ing all areas of machine learning and artificial intelligence.

The reason for this is that the volume grows exponentially

about the number of dimensions. A general notion in ma-

chine learning is, therefore, thatwith an increasing number of

dimensions (i.e., features) the amount of data needed to find

a general approximation (i.e., model) grows exponentially.

One of the major effects is that data points in high dimen-

sional space become equidistant. However, Houle et al. show

that ranked-based similarity measures are more robust than

distance measures [57]. Another major impact is that almost

all datasets in high-dimensional data can be considered

sparse.

Pattern mining is not only a clustering technique but more-

over a subspace clustering technique. The idea behind subspace

clustering is that only certain dimensions (instead of all di-

mensions) can be useful to form clusters. In fact, frequent

pattern mining influenced the research field of subspace

clustering which later has been generalized and grown inde-

pendently. However, many of the core concepts of subspace

clustering are born in the field of frequent patternmining [58].

In frequent itemset mining, every item can be considered as a

discrete dimension that every transaction either possesses or

not. Testing out every possible combination of n dimensions

would result in 2n − 1 tests (leaving out the empty set which

would be equal to no dimension being considered). The

a-priori algorithm states that all supersets of an infrequent

itemset must also be infrequent and thus this combination

of dimensions can be discarded early. Although subspace

clustering focuses on numerical dimensions, early algorithms

such as CLIQUE [59] and MAFIA [60] use grids to discretize

the numerical data whereas the discrete cells (and the fact

that a datapoint is within or not) then form the items and the

apriori algorithm can be reused.

The fact the points in high dimensional data become equidis-

tant can be discarded in the field of pattern mining as it does

not rely on a distance function but rather on the definition of

containment. This poses, however, its own challenge in the

sense that all search spaces are exponential (see section 2.2).
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On the other hand, also structured data must be considered

sparse the larger the alphabets (i.e., number of items or

dimensions) grow. At first sight, this might be due to the

rather low amounts of transactions in contrast to the vast

exponential search spaces which are due to the combinatorical
explosion or also often called pattern explosion. But this is not
the main reason. In general, only one transaction is enough to

create all possible patterns in the search space. If the alphabet

is Σ = {a, b, c}, then one transaction with {a, b, c} would be

enough to create all possible subsets in the search space. For

itemsets, the set of all possible patterns of the search space is

also called a power set. Luckily in real-world datasets, this

is rather uncommon or unlikely. Thinking about the market

basket analysis: would a real-world dataset have one or more

customers that bought every item in the store in a single

transaction?

Similar thinking and real-world constraints also apply to

event sequences. An event sequence able to generate the

power set must contain every item in every itemset. Since

the data is finite, also the event sequence must have a finite

length. Using the same alphabet as before and a maximal

length of a sequence of 3, the sequence to create all of the

possible subsequences would be: 〈{a, b, c}, {a, b, c}, {a, b, c}〉
If a patient history is modeled as an event sequence and the

death of the patient is one event, then there should be no

events such as surgeries or doctor visits happening after the

event of death. Such (real-world) constraints eliminate many

of the possible combinations. Frequent patternmining builds

on top of that by only retaining patterns that occur in at least

x amounts of transactions (called minimum support).

Equivalence classes are an effect of the curse of high dimen-

sionality since the combinatorial explosion allows for more

possible patterns than actual possible clusters in the data.

Hence, several patterns describe the same clusters and are

part of one equivalence class.

My work described in “Visual Analytics of Co-Occurrences

to Discover Subspaces in Structured Data” exploits the curse

of dimensionality by using a heuristic for a dramatic search

space reduction [10].
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3.1 Introduction

Interestingness measures, as the name suggests, are metrics

to quantify the interestingness of results obtained through

data mining. In structured data mining or pattern mining,

this refers to the interestingness of a pattern. Pattern mining

is essentially a subspace search technique because every

pattern is a cluster representation that matches a subset of

the input data. Because of this an exponential amount of

patterns can be generated which quickly overwhelm any

human being. The type of pattern, e.g., itemset, sequence

pattern, association rule, etc., are suitable for different types

of structured data and interestingness measures but all of

them refer to a subset of the provided data in the database.

Interestingness measures, therefore, are used to filter and

rank patterns according to the defined measures.

This chapter is not intended to provide a thorough survey of

available interestingness measures in data mining or pattern

mining. Furthermore, it does not provide an overview of

mining algorithms dedicated to various interestingness mea-

sures. There exist various surveys and taxonomies [61–66] in

the literature that cover that topic. Similarly, there are several

surveys and taxonomies available for algorithms such as fre-

quent itemsets [52, 67, 68], association rule mining [69–72],

sequential pattern mining [73–76]. This chapter is dedicated

to a position on how interestingness measures should be

perceived and handled for exploratory analysis using the

methodology of visual analytics.

3.1.1 Aspects of interestingness

There exists no formal definition of an interestingness mea-

sure since a formal definition of interestingness is quite

difficult. Interestingness is always subjective and can quickly
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change once new information is available. Geng and Hamil-

ton collect the following aspects of interestingness for pat-

terns [64]:

Conciseness There are two types of conciseness. First, the

conciseness of a pattern, meaning that fewer items (i.e., lower

generation; see Definition 2.1.6), is more optimal since it is

easier to understand. This is already debatable since I had

several occasions where users were interested in more com-

plex patterns that provided more detail to the underlying

data. This underlines that theremay be other, more dominant,

aspects of interestingness that typically take priority. The

second type of conciseness refers to the set of patterns also

called the result set. This is generally true since users do not

wish to browse through thousands of patterns but on the

other hand, a constraint that filters too many patterns may

also be undesirable since a potentially interesting pattern

could be missed by the user. Because the filtering operation

typically relies on thresholds in combination with interest-

ingness measures, the parameter estimation is quite difficult

for a user and thus the chance of “missing out” is rather

high. However, if the result set is too large and the ranking of

patterns is inefficient, the likelihood rises that a user might

overlook a potentially interesting pattern.

Generality/Coverage/Frequency This aspect of interesting-

ness refers to how much of the data a pattern describes.

Agrawal and Srikant already proposed this in a combination

of an efficient algorithm to mine for these patterns [49]. They

named the interestingness measure support which denotes

either the absolute number of data rows a pattern refers to

or a relative number (i.e., percentage) where the absolute

support is divided by the total number of data rows in the

database. With their paper, Agrawal and Srikant started the

field of frequent pattern miningwhich inspired others to find

efficient algorithms for various types of data structures such

as the SPAM [77] and SPADE [78] algorithms for sequential

pattern mining. The idea is that a more general pattern that

describes a large cluster of the subspace is more interesting

to the user as this quickly eliminates any noise.

Reliability/Accuracy Accuracy is well-known in the field

of classification and information retrieval. For classification
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rules it refers to how accurately a pattern predicts a certain

outcome. For association rules or sequential rules, the inter-

estingness measure is typically named confidence whereas

high confidence shows a high prediction accuracy and thus

reliability. There exists a large toolkit of measures derived

from statistics, probability, and information retrieval that

measure the aspect of reliability [64, 79].

Peculiarity This topic was introduced by Zhong et al. [80]

and picked up by Hilderman and Hamilton in their book

“Knowledge Discovery and Measures of Interest” [81]. A

peculiar pattern is dissimilar from the set of other discovered
patterns. Note that the distancemeasure to define a similarity

is not inherently given and can be determined based on the

use case. The intention is that a dissimilar pattern is likely to

be more interesting to the user as it prevails more unknown

components than a more similar pattern would.

Diversity Similar to conciseness, there are two types of

diversity to distinguish: first, the diversity of a pattern refers

to the diversity of its elements. The intention behind this

is that a more diverse pattern may be of higher interest

which is in direct contrast to conciseness. The second type

of diversity describes the result set of patterns. A diverse

set of patterns shows a greater variance as opposed to any

uniform distribution which is likely more interesting to a

user assuming that no prior knowledge is available before

the mining process. This aspect is theoretical and cannot be

directly measured and, thus, quantified.

Novelty A novel pattern is previously unknown to the

user and can also not be derived from similar patterns. In

general, the entire knowledge of a human being cannot be

fully formalized and thus the absence of such knowledge

qualifying anovel pattern cannot be quantified either.Novelty

can only be determined empirically when the user labels

certain patterns. This has, for example, been proposed by

Sahar [82] or Klemettinen et al. [83].

Surprisingness/Unexpectedness This aspect may sound

overlapping to novelty but it slightly differs as surprisingness

does not require a pattern to be novel. A pattern may simply
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be unexpected or contradict the user’s knowledge to be

surprising. However, surprisingness suffers from the same

challenges as a novelty in the sense that existing knowledge or

expectations cannot be completely formalized to be readily

available for the mining process. Even if it is possible, is

impracticable and provides a high burden to the user. Several

papers have been devoted to algorithms and systems that are

capable of formalizing the user’s expectations to be matched

against in the mining process [84–87]. However, the use cases

are highly task-dependent and cannot be easily generalized

to other domains.

Utility The utility aspect refers to specific use cases where

it is possible to define a utility function that correlates with

interestingness. A popular example is an extension of the

market basket analysis where, in addition to the items of the

baskets, their profit for the store manager is known. This can

then be used to mine for the most profitable combinations

of items instead of just the most frequent ones. Utility-based

mining sparked its own subfield which has recently been

surveyed in the book “High-Utility Pattern Mining” [17].

Actionability/Applicability Piatetsky-Shapiro andMatheus

were the first to introduce this aspect in an interestingness

measure in their KEFIR system without naming it explic-

itly [88]. Silberschatz and Tuzhilin then referred to this work

naming it actionability which in combination with unexpected-
ness forms the most important aspects of any subjective inter-

estingness measure (see next section) in their opinion [84].

Actionability refers to the fact that a pattern is interesting if

the user can use this information to their advantage (i.e., in-

crease the company’s profit). There exists no general measure

but several task and domain-specific approaches have been

proposed such as by Ling et al. [89] or Wang et al. [90].

Note that several of these aspects may correlate such as

novelty and surprisingness but may also contradict each

other such as conciseness and diversity. It is not possible to

form general statements of correlations or contradictions as

they are task-dependent. Furthermore, it is not likely that all

of these aspects can be measured for a given task and use

case.
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3.1.2 Classification of interestingness measures

Besides the aspects of interestingness, interestingness mea-

sures are classified into several categories.

Objective Objective interestingness measures do not in-

clude any input from the user and only depend on the raw

data. Furthermore, these measures are independent of any

user or user group and the specific domain. Objective inter-

estingness measures are typically derived from probability

theory and statistics. Popular measures in this class are sup-
port and confidence [49], J-measure [91], and strength [92].Note

that there exist many more measures in this category which

have been collected by McGarry [63] and Geng and Hamil-

ton [64]. Piatetsky-Shapiro andMatheus “[...] argue that such

objective factors are insufficient and that domain-specific,

knowledge-based factors also have to be included.” [88]

Subjective Silberschatz and Tuzhilin build upon their work

and introduce the termsubjective interestingnessmeasures [84].

These measures take into account the user’s domain knowl-

edge or derive interestingness through interactions with the

data mining system. As previously mentioned, it is quite

challenging and time-consuming to formalize extensive do-

main knowledge. Some of the proposed frameworks [64,

82, 84–86] are capable for domain-specific tasks but cannot

be generalized. McGarry provides an extensive survey of

subjective interestingness measures [63].

Semantic Yao and Hamilton distinguish further and intro-

duce the class of semantic-based interestingness measures [64,

93]. This class is a subclass of subjective interestingness

measures and is primarily dedicated to the utility and ac-

tionability aspects of interestingness measures. The semantic

significance of a pattern is reflected in a utility which is

additional data for each item in the database. An example of

utility could be the profit of an item. The utility of the pattern

could then be reflected as the sum of profits of all items and

transactions and can further be combined with an objective

interestingnessmeasure such as support to additionally reflect
the statistical significance.
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3.1.3 Technical properties

(Anti-) monotonicity property One of the most important

properties of an interestingness measure is the (anti-) mono-
tonicity also known as a-priori property or downward / upward
closure [49]. This is because if this property is given, an al-

gorithm that is based on this interestingness measure in

conjunction with a threshold can be implemented such that

patterns are pruned early. In other words, not all possible

patterns have to be generated in a first run and then later

checked against this threshold.

In some domains, such as high utility pattern mining, an

upper-bound approximation of the interestingness measure

is selected which is to be proven a-priori. Then the pattern

search space can be efficiently pruned against this approxi-

mation and the result set is then checked against the actual

interestingness measure and its threshold. Therefore, the bet-

ter the approximation, the more efficient the algorithm [17].

Null-invariance Another important property is the null-

invariance property [66]. Null-invariance means that an in-

terestingness measure does not depend on the rows in the

database where a specific item is not contained. This is im-

portant since all occurrence probabilities are likely to be

low which is an effect of the curse of dimensionality (see

section 2.4). Wu et al. show that if a correlation measure (i.e.,

interestingness measure) for rule mining is not null-invariant,

the measure is less expressive and may associate a low corre-

lation even though two items are highly correlated [66].
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3.2 A complementary approach

I find some of the terminologies, that are being used in

this field of research, rather misleading. First and foremost,

the term interestingness measure implies that interestingness

can be measured which is unlikely since interestingness is

highly subjective and imprecise and even for one person the

interestingness towards an object is constantly changing as

the person is learning new facts. In the worst-case scenario,

no interestingness is being measured at all but in any other

common scenario, they should be treated as heuristics since

they are only estimates. The various aspects of interesting-

ness measures are overall helpful since they provide a crisper

definition of what interestingness may entail. It must be duly

noted that, to the best of my knowledge, no interestingness

measure is capable of covering all aspects. We cannot even be

certain that this list of aspects is exhaustive. Interestingness is

influenced by a multitude of factors that may not be quantifi-

able at all but it is highly unlikely that these multiple factors

can be expressed in a scalar value that suffers tremendously

from distortion.

The classification of interestingness measures into objective
and subjective is generally useful but the names are a rather

poor choice. Eventually, the selection of which measures

to use is always subjective. And so is the underlying data

that is to be mined. In my opinion, non-parameterized and

parameterized interestingness measures would be more de-

scriptive. Parameterized interestingness measures allow the

user to inject their domain knowledge in a restrictive manner

whereas non-parameterized measures purely rely on the

data. However, the latter does not necessarily mean that the

user is not able to provide their domain knowledge since

this could also be realized by modifying the data such as

the utility values. Another challenge is thresholds which are

typically used for any type of measure to filter the patterns.

This parameter estimation is typically quite difficult for the

user and the complexity only increases the more measures,

thus, thresholds are being used.

The process of exploratory analysis is highly iterative. Early

work in the field of interestingness measures in data min-

ing assumes a linear process following the traditional KDD

process (see Figure 3.1). However, visual analytics assumes
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Figure 3.1: A framework for pat-

tern mining where (a) all pat-

terns are mined without any fil-

ters; (b) the patterns are filtered

in a post-processing step after

the mining, and (c) the filtering

and ranking of patterns are in-

cluded in the mining process.

This figure is taken from Mc-

Garry [63]. A similar figure was

first published by Silberschatz

and Tuzhilin in 1995 [84].

Figure 3.2: The knowledge gen-

eration model of visual analytics

depicts how knowledge is gen-

erated through iterative interac-

tion cycles with a system con-

sisting of data, models, and vi-

sualizations. This figure is taken

from Sacha et al. [94].

iterative processes such as depicted by the knowledge gen-

eration model for visual analytics (Figure 3.2). Knowledge

is generated by humans through multiple interaction cy-

cles with a system. This requires feedback loops through

interaction as well as visualization to inspect the data, the

models, and the models’ results. This means that during the

exploration the user’s knowledge is continuously expand-

ing, however, interestingness measures are quite static as

they depend on the algorithm and implemented system.

Changes in knowledge can only be input into the system

by varying parameters of interestingness measures, their

thresholds used for filtering, or modifying the underlying

data that generate the patterns. Therefore, it is likely that

an interestingness measure correlates quite well with what

the user actually finds interesting but may decrease in im-

portance to the user in later exploration stages. It is typically

not feasible for a user to design and implement their own

interestingness measures and, to the best of my knowledge,

there exists no system or framework that supports an abun-

dance of interestingness measures as these measures depend

much on the data, the type of pattern mining, and at last the

implemented algorithms. Themore interestingnessmeasures

are being implemented the more the efficiency of the mining
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decreases and, at the same time, the complexity for the user

increases as the parameter estimation becomesmore difficult.

At last, we must acknowledge that it is not always possible to

quantify interestingness and that aspects of interestingness

are embedded into the semantics of patterns and the under-

lying data in combination with unknown and unformalized

(user) knowledge. Researchers led by Edward Feigenbaum

argue that a machine must have knowledge in order to act

intelligent. He is known as the father of knowledge engineer-

ing, a discipline that tries to formalize knowledge such that

it is actionable for a system [1]. Researchers realized that it is

difficult if not impossible to formalize general knowledge to

enable a system to act as a human. This became known as

“Feigenbaum’s knowledge acquisition bottleneck” [95]. The

focus of this area shifted onto machine learning, neural net-

works, and deep learning which does not require formalized

knowledge to be readily available but instead learns such

knowledge on its own. This, on the other hand, requires that

training data is available which, in the task of clustering, is

not the case. However, we still strive to build an intelligent

system that is capable of human intelligence but today call it

artificial general intelligence (AGI) [96].

But ifwe cannot guarantee tomeasure interestingness, should

we abolish this idea altogether? In other words: if we do not

necessarilymeasure interestingness,what dowemeasure?

Definition 3.2.1 (Interestingness Measure)

f : ℙ→ ℝn

At their core, all interestingness measures are simply a func-

tion that maps from patterns to real numbers. The definition

states n-dimensional vectors to generalize, however, in many

cases, the mapping is to scalar values (n = 1). This definition
follows Kontonasios et al. [97]. But what does that mean?

An interestingness measure is essentially a quantified property
of a pattern. This is also known as a feature. Therefore, an
interestingness measure is a function generating a feature

of a pattern. This is a well-known task in machine learning

known as feature engineering. The purpose is to find or create
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features that are relevant to the task. This already sheds light

that the effectiveness of features depends on the task.

Miksch and Aigner show with their data-users-tasks design

triangle [98] (Figure 3.3) how any visual analytics system is

mainly influenced by these three factors. This is naturally

also true for interestingness measures since these describe

properties of a pattern and the clusters they represent which

is information that the user can eventually turn into knowl-

edge.

Data The data determines what features can possibly be

calculated. For instance, calculating the utility of a pattern

is only possible if the utility can be derived from the data.

Otherwise, it must be provided by the user. The type of

structure also influences what measurements can be used.

For example, graphs are a rather complex data structure

compared to itemsets and provide an extensive amount of

properties that can be measured such as the order (number

of vertices), size (number of edges), and girth (length of the

shortest cycle) [99].

Users The users should influence the design of interesting-

ness measures as their (domain) knowledge and expectations

ultimately decide what patterns are considered interesting.

It is also critical that the user understands how to interpret a

certain measure. If they are only told that a number should

reflect their interestingness of a pattern they will respond

poorly in using the system because it is inevitable that at

some point, therewill be inconsistencies leading to a decrease

of trust in the system by its users [21].
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Tasks Tasks ultimately provide purpose to data analysis

and the exploration of data. They constrain and guide what

of the user’s knowledge is necessary to be formalized and cap-

tured to design an effective interestingness measure. More-

over, they determine what aspects of the data are necessary

to be analyzed.
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3.3 Taxonomy

This section is dedicated to an alternative, complementary

taxonomy as provided in the literature. Instead of classifying

interestingness measures into what aspects they possibly

measure, I simply separate them by what properties they are

measuring. To recapitulate, patterns are cluster representa-

tions of structured data. A dataset contains rows where each

row consists of an ID and the structured data itself. A row

may contain additional data such as utility values etc. which

we consider as metadata. A pattern, therefore, is structured

data of the same type that maps to one or multiple rows in

the dataset.

3.3.1 Describing what?

Now we must only ask ourselves what property an interest-

ingness measure is describing. The following distinguishes

mainly between the properties of the pattern itself and the

properties of the cluster the pattern represents. However, the

cluster properties are further divided into properties of the

structured data, statistical cluster measures, and measures

for the cluster metadata.

Pattern

First and foremost, we can express certain properties of the

pattern itself. A simple example of this is the generation of

a pattern (see Definition 2.1.6 & Definition 2.1.7). There are

multiple variations of this property imaginable such as the

generation of the antecedent (left) or consequent (right) side

of the rule which is possible to calculate for association rules,

sequential rules etc. Furthermore, it is possible to calculate

the number of occurrences for a specific item or itemset. For

itemsets and association rules, this number can only be zero

or one but for more complex types of structured data such

as sequences, trees, and graphs the number of occurrences

can be greater than one.

Similarly, for more complex data structures more proper-

ties exist as convincingly shown in the field of graph the-

ory [99].
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We must acknowledge the general limitation of interesting-

ness measure in conjunction with complex data structures

such that it is not possible to express all of the structural

properties in a single measure but rather certain aspects of

it that are possible to calculate given the available data and

deemed interesting for the user and their task.

Cluster

Since patterns are cluster representants and the mapping

of one pattern to the specific rows in the dataset is main-

tained, various information can be calculated describing the

properties of the cluster. An important distinction to pattern

properties is that this information is aggregated. We can dis-

tinguish what type of property an interestingness measure

for cluster information describes.

Structured Data Similar to the patterns, the structured

data can be featured in various properties and aggregated in

several ways. For example, the generation can be calculated

for each data structure in each row in the dataset. Then, the

maximum generation of the cluster would indicate the most

complex data structure within the cluster.

There are also noteworthy differences between the structure

of patterns and the data. For example, sequential patterns

such as 〈{a}, {b}〉 state that a occurs before b. It does not indi-
cate any distance between a and b which could be measured

by how many tokens there are in between. Therefore, the

pattern itself only prevails the order but loses some of the

information that might be entailed in the original structured

data (see Definition 2.1.4). However, a measure can be de-

fined that calculates the distance between a and b for each

structured data that the pattern matches. Because a and

b can occur multiple times the minimum distance within

one event sequence is typically chosen. Then, as usual, the

measurements need to be aggregated over the whole cluster

whereas typically the maximum is selected. When defined in

conjunction with a threshold, the clusters are constrained to

this threshold such that there exist no events that are further

apart than what the threshold defines. This is known as the

window constraint.
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Statistics (frequency) This class is by far the most com-

mon for interestingness measures covering the frequentist

approach known as frequent pattern mining. This is typically

based on the cluster size that a pattern represents whereas

the pattern is said to be frequent for large clusters. The in-

tention behind this is that frequent patterns are statistically

more meaningful and important than any infrequent pat-

terns. The most common interestingness measure is called

support which is defined as:

Definition 3.3.1 (Support)

supportPA = |{P |P ∈ D ∧ PA v P}|

These are the number of rows in a databaseD that contain

pattern PA at least once in their structured data. In many

cases, the support measure is defined relative to the size

of the database estimating the probability of occurrence of

pattern PA.

Definition 3.3.2 (Relative Support)

support_relPA =
supportPA

|D|

Note, that the relative support is not null-invariant whereas

the absolute support measure is. For rule mining, such as

association rule mining, correlations between patterns can

be mined for. One of the first measures, confidence, for a rule

A→ B is defined as the conditional probability [49].

Definition 3.3.3 (Confidence)

confidenceA,B =
supportA ∪B
supportA

= PB|A

Geng and Hamilton list 36 other statistical interestingness

measures for association rules that are an extension or varia-

tions of the support and confidence measure [64]. Carvalho

et al. correlate eleven of the interestingness measures with

“real” human interest for eight different datasets and find
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that in more than 35% of the cases, the correlation was strong

(> 60%) meaning that they are in general a good estima-

tor [100]. However, no interestingness measure was a clear

winner across all datasets showing that these measures are

highly task, user, and data-dependent.

Statistics of Cluster-Metadata

The last sub-class for clusters is cluster metadata. Here, ad-

ditional data other than the structured data are being used.

For example, the domain of high-utility pattern mining is

part of this class. Unlike frequent pattern mining, high-utility

pattern mining does not assume that each item in a database

is equal (i.e., equally interesting) but uses a utility function

to mine for patterns of the highest utility. Furthermore, this

allows for quantitative databases meaning that an item can

occurmultiple times within one transaction. The toy example

is an extension of the market basket analysis where trans-

actions are mined of what customers bought at the grocery

store. Because of the quantitative nature, this database can

also reflect when a customer bought two pieces of bread

and one milk instead of just encoding bread and milk in

one itemset. Additional metadata is available that assigns

a utility value to each of the items such as the profit (e.g.,

bread=$3 and milk=$2). Then a utility function is defined by

multiplying the profit of each item by the quantity of how

often it has been bought and summed across all transactions

where the pattern is contained.

Naturally, these types of measures are very flexible as they

allow the definition of any utility function and even combine

multiple utility values and input domain knowledge by

specifying weights for these utilities.

3.3.2 Using How?

An interestingness measure needs to be interpretable by the

user to be useful. This will be more elaborated in section 5.6.

This section sheds some light on how interestingness mea-

sures can be used and also what their limits are.

Typically, interestingness measures are used in conjunction

with filters (thresholds) or as a means to rank patterns. The
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latter can also be combined with a threshold which is then

referred to as top-k mining [101–103]. This frees the user

from specifying a specific threshold and instead lets the user

choose howmany patterns should be returned according to a

combined interestingness measure. Therefore, the user may

choose to receive the top 20 patterns of the highest support

instead of specifying that the support should be greater than

50% which may return more or fewer patterns.

In visualization, interestingness measures are often used to

provide an overview of the data and to make interesting

patterns visibly stand out. This releases some restrictions as,

for example, instead of showing a list of ranked patterns to

present them based on their similarity while the saturation

of the pattern represents the support [8]. The next chapter

surveys visualization approaches for patterns and shows

different designs and tradeoffs that have to be considered.

3.4 Use cases

This section shows three use cases of how interestingness

measures can be applied in certain domains. This shall pro-

vide the reader with some intuition behind the theory of the

previous sections.

3.4.1 Comparative Case Analysis

Task Description

1
Comparative Cases Analysis (CCA) or Similar Fact Analy-

sis (SFA) [104] is an important task of Criminal Intelligence

Analysis [105]. In the VACLRI-project (Visual Analytics for

Sense-making in CRiminal Intelligence analysis),
2
the avail-

able data of crime reports focuses on burglaries. A crime

report is a form that police officers fill out and try to capture

as many details about the incident as possible. For burglaries,

form elements try to capture the incident’s location and the

possible time in a time range (earliest possible time and last

possible time). Such information can be used to find similar

cases using geospatial and temporal information, but this

typically does not capture any details, such as if the burglar

https://cordis.europa.eu/project/id/608142
https://cordis.europa.eu/project/id/608142
https://cordis.europa.eu/project/id/608142
https://cordis.europa.eu/project/id/608142
https://cordis.europa.eu/project/id/608142
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offender/s unknown approached school changing rooms,
from side of building, opened insecure fire exit door,
gained entry, stole items belonging to football teams,
mainly money and jewellery, made good their escape.

Figure 3.4:TheModusOperandi

(MO), a free-text-field of a crime

report. The police officer de-

scribes in bullet points how the

burglar entered the building,

how the search was performed,

what was stolen, and how the

burglar exited the building. The

figure is taken from the original

publication [8].

[106]: Cope (2004), Intelligence

Led Policing or Policing Led In-

telligence?: Integrating Volume

Crime Analysis into Policing

used specific tools to break into a property.

There are two types of CCA. Firstly, a criminal investigator

uses CCA to find information about an unsolved crime. Other

similar crimes may have already been solved, or a known

suspect who could make this suspect also interesting for

the case at hand [106]. Secondly, a tactical analyst periodi-

cally analyzes crime reports to find new trends and patterns.

This can help the police to act preventative such as send-

ing patrols to the location deemed the highest risk for a crime.

The crime reports entail a free text formwhich is calledModus
Operandi (MO) (see Figure 3.4). In the MO field, the police

officer describes in a short text how the burglar entered the

building, how the search was conducted, what was stolen,

and how the burglar exited the building. If there were any

tools used, the MO also states this. From a natural language

process (NLP) perspective, the text quality of these short

texts is rather poor. The reasons for this are manifold, the

texts are often written at the scene, and the field in the form

is pretty small. Therefore, the texts contain spelling errors,

abbreviations, incorrect grammar, etc. Sometimes, the hand-

written text had to be digitized, introducing additional errors.

In other cases, the police officers did not write down the text

themselves but called the police station and dictated what to

write to a person over the phone.

The task is to compare crimes using the MO text, which

provides the highest level of detail regarding the incident.

To do that, concepts from the text reflect a similar meaning.

For example, screwdrivers, hammers, etc., are being added

to the concept of “tools”. Criminal investigators perform a

similar technique. However, it is conducted manually using

a spreadsheet. The table of crime reports is then sorted and
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Leishi Zhang, and Daniel Keim.

[107]: Collier (1993), The Com-

parative Method

[108]: Bennell et al. (2002), Link-

ing commercial burglaries by

modus operandi: tests using re-

gression and ROC analysis

[104]: Prowse et al. (2000), Work-

ing Manual of Criminal Law

[109]: Canter et al. (2004), The

Organized/Disorganized Typol-

ogy of Serial Murder: Myth or

Model?

[110]: Manning et al. (2014), The

Stanford CoreNLP Natural Lan-

guage Processing Toolkit

[111]: (), Apache OpenNLP

filtered according to the extracted concepts that are deemed

useful. Our contribution to VALCRI intends to automate that

process as much as possible and provide various interactive

visualization techniques in addition to the crime table.

Limitations of existing work

3
Our analysis approach combines many different analytical

techniques, such as textual feature extraction, sequential

pattern mining, high-dimensional data analysis, and visual

interactive clustering applied to criminal intelligence analysis.

We illustrate these with examples within each area.

Comparative Case Analysis CCA is based on the notion

of comparison, which is a fundamental technique used by

many social sciences and scientific domains [107]. CCA starts

with processing the text to extract key features, followed by

reasoning and sense-making based on similarity comparison.

One challenge of CCA is feature extraction - most of the

feature extraction reported in the literature is manual. For

example, Bennell et al. [108] manually extracted features

from MO of 86 solved commercial burglaries committed

by 43 serial offenders to compare the similarity between

burglary cases. The findings were used to examine if a high

degree of similarity between them enables different cases

to be validly linked to a common offender. This requires a

significant amount of work even with this relatively small

amount of data. Another challenge is the comparison. Given

a set of crimes, what to compare and how to compare has

to be decided by the analyst [104]. Work carried out by

Canter et al. [109] used the Jaccard coefficient to measure the

proportion of co-occurring features in crimes. The work also

applied multidimensional scaling on the data to investigate the

consistency of features across organized and disorganized

cases. The research revealed that disorganized features were

either easy to identify ormore common, probably due to their

vast number compared to organized features. To the best of

our knowledge, no work has been reported on automatic

feature extraction, feature selection andweighting for CCA.

Automated Feature Extraction for CCA For the feature

generation,weuse a custom framework based on components
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[115]: Jurafsky et al. (2009),
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language processing, computa-
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[116]: Agrawal et al. (1995), Min-

ing Sequential Patterns

[117]: Gomariz et al. (2013),

ClaSP: An Efficient Algorithm

for Mining Frequent Closed Se-

quences

[118]: Yan et al. (2003), CloSpan:

Mining Closed Sequential Pat-

terns in Large Datasets

[119]: Saneifar et al. (2008), S2MP:

Similarity Measure for Sequen-

tial Patterns

[120]: IBM (), IBM i2 Intelligence

Analysis Platform

[121]: Stasko et al. (2008), Jigsaw:

supporting investigative analy-

sis through interactive visualiza-

tion

[122]: Jäckle et al. (2017), Interpre-

tation of Dimensionally-reduced

Crime Data: A Study with Un-

trained Domain Experts

[123]: Zhang et al. (2016), Spheri-

cal Similarity Explorer for Com-

parative Case Analysis

[124]: Sacha et al. (2017), What

you see is what you can change:

Human-centered machine learn-

ing by interactive visualization

[125]: Sacha et al. (2017), Visual

Interaction with Dimensionality

Reduction: A Structured Litera-
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from Stanford CoreNLP [110] and Apache OpenNLP [111].

For the characterization of concepts and automated class

assignments, two different resources, Wordnet [112] and

Framenet [113] are used. Besides customized retrieval and

classificationmethods, the analytic parts are basedupon state-

of-the-art as described by Manning et al. [114] or Jurafsky

and Martin [115].

For our system,we use a sequential patternmining algorithm

to mine for frequent sequences of terms occurring in the MO

of the crime reports. The problem was formally defined by

Agrawal et al. [116]. To avoid redundant patterns, we mine

for a set of closed sequential patterns [117, 118]. We use a

DR on the mined frequent patterns and visualize them in a

feature similarity space. Similarity measures for sequential

patterns exist [119], however, to be consistent with the data

similarity space, we use a binary feature vector containing

the crime reports where a bit is set to one if the sequence

occurs in that crime report.

Visual Analytics for CCA Automatic analysis methods

such as feature extraction, pattern mining, clustering and

dimensionality reduction provide effective means of analyz-

ing a large amount of crime data and extracting patterns

from it. However, visual analytics tools for supporting CCA

are scarce. Software systems such as IBM I2 [120] and Jig-

saw [121] were developed for the general purpose of Criminal

Intelligence Analysis but little work has been carried out to

improve on the manual CCA process. Jäckle et al. proposed

a projection-based approach [122] for analyzing similarity

between textual data items but the approach does not allow

police officers to form the customary structured tables. The

Spherical Similarity Explorer system developed by Zhang

et al. [123] allows the analyst to project crime data onto a

spherical surface for similarity analysis - the tool focuses on

one DR algorithm with limited interaction possibilities.

InteractiveVisualMachineLearning AsSacha et al. stated:

for a VA system to be effective, it is essential to allow the user

to interact with the data and the models at different stages

of the analysis to iteratively improve, adapt, and combine

analysis methods to solve the analysis task [124]. Recent work

by Sacha et al. [125] surveyed existing visual Dimensionality

Reduction (DR) tools and highlighted interaction possibilities
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model semantic interaction for
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[132]: Turkay et al. (2011), Brush-

ing Dimensions - A Dual Vi-

sual Analysis Model for High-

Dimensional Data

[133]: Yuan et al. (2013), Dimen-

sion Projection Matrix/Tree: In-
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4: This section is based on my

publication “Making Machine

Intelligence Less Scary for Crim-

inal Analysts: Reflections on De-

signing a Visual Comparative

Case Analysis Tool” [8] (Section

3.1). I have been the main author

of this publication and havewrit-

ten major parts of the content.

The paper was co-authored by

my co-authors Dominik Sacha

and Florian Stoffel and edited by

Geoffrey Ellis, Leishi Zhang, and

Daniel Keim.

to improve the effectiveness of the tools. The interpretability

of results and the usability of interactive DR systems, espe-

cially for domain expert users (without technical and data

analysis background) is a major area for improvement.

Existingvisual text analytics approaches suchas IN-SPIRE [126]

(and its predecessors [127, 128]), or recent works described by

Ruppert et al. [129], shed light on the possibility of automat-

ically processing textual documents to obtain and explore

document clusters. These systems adopt different Dimen-

sionality Reduction (DR) and/or clustering techniques to

generate visual embeddings of the high-dimensional data to

enable the analyst to compare the similarity between data

items and examine interesting patterns in the data. Given

that DR and clustering are complex processes that involve a

series of selection, computation and validation, input from

the human analyst is often beneficial and largely unavoidable.

Wenskovitch et al. [130] provide a good overview of how

to combine DR and clustering and also recommend design

decisions that need to be considered.

Hybrid Views Hybrid views, also often referred to as dual

views aim to provide simultaneous access to the data and

feature space. VanderCorput andVanWĳk [131] are using IF
-

F I
tables to support access to both spaces. Turkay et al. [132]

and Yuan et al. [133] use two tightly coupled scatter plots. We

follow this strategy by creating these scatter plots through

DR. However, additionally, we use one table where both,

data and features, are combined and the clusters generated

in the data space can be interpreted. Demiralp [134] uses

a heatmap-matrix diagram in combination with a scatter

plot to interpret clustering results. We follow this approach,

however, we utilize bar charts in a table to enable the user to

perform a cluster comparison.

FromModus Operandi to Sequential Patterns

4
Figure 3.5 shows how the MOs are being transferred to se-

quential patterns and, eventually, how the sequential patterns

are being used as feature vectors to measure the similarity

of the crime reports. Florian Stoffel contributed concept ex-

traction and entails an extensive NLP pipeline performing

spelling correction, various heuristics for abbreviations and
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Figure 3.5: The processing pipeline for modus operandi texts. The concept extraction normalizes and extracts

concepts from the MOs. Sequential pattern mining then generates frequent patterns that maintain the order

of the events. The patterns are then used as feature vectors for dimensionality reduction of crime reports and

clustering. The figure is taken from internal project presentations and has been slightly adapted.

[135]: Luhn (1957), A Statistical

Approach toMechanized Encod-

ing and Searching of Literary In-

formation

[136]: Jones (2004), A statistical

interpretation of term specificity

and its application in retrieval

data cleaning, tokenization, part-of-speech- (POS-) tagging,

lemmatization, stemming, and ontologies to extract the con-

cepts. The exported concepts and their token position (and

character position additionally) are used for pattern mining.

Initially, we used a bag of word model in combination to

use the tokens as a feature vector similar to the term fre-

quency [135] of the popular TF-IDFmeasure [136] to measure

the distance used by dimensionality projection algorithms

and clustering. This idea stems from Dominik Sacha, Geof-

frey Ellis & Florian Stoffel. Throughout the project and user

feedback, it became clear that this is too inaccurate as the or-

der of events is meant to measure similarity. The assumption

here is that, despite the poor quality of the MOs, the MOs

are written in a way that maintains the order of events such

that the beginning always states how the suspect entered the

building andwhat tools were being used. Sequential patterns

are capable of modeling this. However, the feature vectors

for each crime report grow much larger since all permuta-

tions (honoring the order) are enclosed. In the beginning,

we considered whether a sequential pattern is contained in

an MO and how often. This is, however, a rare occurrence

due to the sparseness of the data (see section 2.4). Also, the
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Table 3.1: Each crime report is annotated with a vector of sequential patterns. A 1 denotes if the pattern

occurs in the crime report and a 0 if the pattern does not occur. This is similar to term frequencies [135].

Crime Report ID 〈{smash}〉 〈{open}, {smash}〉 〈{entry}〉 〈{entry}, {office}〉
1 1 1 0 0

2 1 0 0 0

3 0 0 1 0

4 0 0 1 1

5: This section is based on two

of my publications “A Visual

Analytics Approach for Crime

Signature Generation and Explo-

ration” [18] (Section 4: Visual An-

alytics Approach) and “Making

Machine Intelligence Less Scary

for Criminal Analysts: Reflec-

tions onDesigning aVisual Com-

parative Case Analysis Tool” [8]

(Section 3 & 4). The former publi-

cation was the first prototype of

the VALCRI project, which was

further developed and eventu-

ally ended with the project pro-

totype described in the second

publication.

[18]: Jentner et al. (2016), A vi-

sual analytics approach for crime

signature generation and explo-

ration

domain experts consisting of police officers, criminal inves-

tigators, and tactical analysts expressed their opinions that

the occurrence amount is irrelevant to the distance. Table 3.1

shows the vectors exemplary.

Description of Interestingness Measures

5
Initially, we used a sequential pattern mining approach

that used theminimum support threshold (see Definition 3.3.1)

and window constraint parameter (see section 3.3.1) [18]. The

window constraint was a max-threshold that defined how

many tokens may occur between two tokens of a pattern. For

example, a max-gap of 2 would allow two tokens in between

two concepts that have been extracted. Considering Fig-

ure 3.4, this would mean that a pattern 〈{school}, {rooms}〉
is valid because there is only one token in between but

〈{school}, {side}〉 would be discarded since the token dis-

tance is three. The minimum support was fixed to 10%. Ini-

tially, the users were happy with the tool as the automation

aspect of the concept extraction and modeling as sequential

patterns were meaningful and important to them. However,

upon using the tool more intensely, they stated that esti-

mating the window constraint parameter proved difficult as

the MO texts varied a lot. It was easy to miss an important

crime report because the window constraint was set too tight.

Furthermore, the users were overwhelmed by the number of

patterns leading to the popular exchange between a criminal

investigator and me (see Chapter 1, Figure 1.1).

In a trial reported in neither publication, we experimented

with utility mining. Since the extracted tokens have no inher-

ent utility, we let the users assign values (ranging from 1-10)

to each token. Then, patterns were mined using a high-utility

mining approach. The parameter estimation for the thresh-

old and the utility assignment proved difficult for the users.
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[8]: Jentner et al. (2018), Making

machine intelligence less scary

for criminal analysts: reflections

on designing a visual compara-

tive case analysis tool

Concepts such as screwdriver are, by themselves, not very

important but only in combination with a window or door
indicating that the burglar used said tool to break into the

property. On the other hand, if a screwdriver has been stolen

from a property, this is not of particular interest. Because of

this, we quickly discarded going forwardwith utility mining.

In the later development [8], we, therefore, switched our

approach and discarded the window constraint entirely

(threshold is unlimited). We also reduced the minimum sup-

port from 10% to 5% since even a low amount of similar

crime reports may prove to be a useful resource. These two

steps increased the number of patterns, so we introduced

a generation threshold (see Definition 2.1.7). Because each

itemset in the sequence only consists of one item (the token

itself), the generation is identical to the sequence length (i.e.,

the number of itemsets in the sequence). Furthermore, we

allowed the user to mine selected patterns of a higher genera-

tion (see section 5.5). We also introduced a distance measure

based on the same strategy as measuring the similarity of

crime reports (see Table 3.1). To calculate the distance of two

patterns, we transpose the table and use the vectors of what

crime reports support the pattern. Even though theminimum

support for mining is set to 5%, the user can further filter the

patterns by increasing the minimum support and lowering

the maximum support. Note that for these interactions, the

mining does not have to be repeated, and the operations are

only conducted on the pattern result set, improving the load

times of the application. Maximum support patterns cannot

be calculated efficiently during the mining as the support

property is anti-monotone (i.e., decreases when pattern gen-

erations increase). In VALCRI, typically, the patterns door
and window have the highest supports close to 50%, which

matches the expectations of the criminal investigators since

windows and doors are the most common entry point used

by burglars. Therefore, these patterns, by themselves, are not

meaningful as they are not specific enough to identify a com-

mon behavior of a suspect. A combination, e.g., screwdriver
and window, can be more interesting for the users.

Finally, the users can directly weigh the crime-pattern vectors

(see Table 3.1). This influences the distance measure and,

eventually, the dimensionality reduction algorithms. If, for

example, the user increases the weight of the pattern door.
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The projection algorithmwill place all crime reports that have

the pattern door from the ones that do not have the pattern

door. If additionally, the weight of window is increased as

well, four groups will become visible: (i) crime reports with

window and door; (ii) crime reports only with window; (iii)
crime reports only with door; (iv) crime reports that neither

contain door or window.
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Figure 3.6: Questions are modeled as event sequences (a) allowing to carry the token in each itemset as well

as various token-based annotations (i.e., labels). The event sequences can then be mined as sequential patterns

(b) which allow for containing only partial itemsets or items. The constrained sequential rules (c) then serve

as a classifier to distinguish the question type for each pattern. A similar figure can be found in the original

publication (Figure 2) [9]. Image credit: Rita Sevastjanova

6: This section is based on the

publication “QuestionComb: A

Gamification Approach for the

Visual Explanation of Linguis-

tic Phenomena through Interac-

tive Labeling” (Section 1: Intro-

duction) [9]. I have co-authored

this publication and contributed

to the data modeling as well as

the pattern mining components.

The paper is a joint effort of Rita

Sevastjanova, Fabian Sperrle, Re-

becca Kehlbeck, Jürgen Bernard,

and Mennatallah El-Assady.

[137]: Kalouli et al. (2018), AMul-

tilingual Approach to Question

Classification

[138]: Ranganath et al. (2016),

Identifying Rhetorical Questions

in Social Media

[139]: Ranganath et al. (2018),

Understanding and Identifying

Rhetorical Questions in Social

Media

7: This section is based on the

publication “QuestionComb: A

Gamification Approach for the

Visual Explanation of Linguis-

tic Phenomena through Interac-

tive Labeling” (Section 4.1: Data

as Sequences of Words) [9]. I

have co-authored this publica-

tion and contributed to the data

modeling as well as the pattern

mining components. The paper

is a joint effort of Rita Sevast-

janova, Fabian Sperrle, Rebecca

Kehlbeck, Jürgen Bernard, Men-

natallah El-Assady, and myself.

3.4.2 QuestionComb

Task Description

6
Linguistic researchers are interested in generating and find-

ing rules to discover relationships between syntax, semantics,

and pragmatics. Specifically, the relationship between syntax

and semantics is interesting as it allows generating models

where machines can derive semantics based on syntax. The

rules, on the other hand, are a tool that helps humans to

better understand these relationships as the nowadays large

language models are quite powerful but understanding their

inner workings is rather difficult. One of these tasks of gen-

erating rules is to distinguish information-seeking questions
(ISQ) from non-information-seeking questions (NISQ) or also
rethorical questions [137]. This task is challenging since the

syntax itself typically does not necessarily reflect the type of

question but rather the context of how the question has been

posed [138, 139].

QuestionComb is an approach that uses a visual explanation

of linguistic phenomena through interactive labeling. The

interactive labeling is done because available labeled data

resources are often scarce. Creating such datasets is a time-

consuming process that requires sufficient domain expertise.

QuestionComb, with its gamification approach, can help

users generate such data while learning more about how

question types can be distinguished using rules.

Data Modeling

7
As with the comparative case analysis use case (see subsec-
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[39]: El-Assady et al. (2019),

lingvis.io - A Linguistic Visual

Analytics Framework

8: This section is based on the

publication “QuestionComb: A

Gamification Approach for the

Visual Explanation of Linguis-

tic Phenomena through Inter-

active Labeling” (Section 4.2:

Sequential Pattern Mining for

an Explainable Classifier) [9]. I

have co-authored this publica-

tion and contributed to the data

modeling as well as the pattern

mining components. The paper

is a joint effort of Rita Sevast-

janova, Fabian Sperrle, Rebecca

Kehlbeck, Jürgen Bernard, Men-

natallah El-Assady, and myself.

tion 3.4.1), the questions are modeled as event sequences to

preserve the order of the words. However, in this use case,

the itemsets do not only consist of the token itself but can be

extended by any type of attribute that can be mapped to a

specific token. A popular example is Part-of-Speech (POS)

tags. Our lingvis.io framework is capable of generating amul-

titude of annotations including token-based annotations [39].

Our data modeling is flexible and allows for arbitrary an-

notations such as WH-question annotations (i.e., if a token

iswhat, when,who, etc.), discourse particles, and speech acts.

The event sequences also allow annotating context such as a

speaker label for the person that posed the question. Another

example might be a label for whether this question was a

follow-up question or not. Such annotations are added as the

first itemset of the event sequence. They allow finding rules

such as Speaker A always asks rhetorical questions.

Because this task is essentially a classification task, the ISQ

and NISQ labels are also added as itemsets at the end of the

sequence. A constraint sequential rule approach then allows

us to generate the respective rules.

Description of Interestingness Measures

8
Sequential pattern mining allows us to use the classic sup-

port measure (see Definition 3.3.1). The minimum support is

hardcoded and set to 1%which has been determined through

multiple experiments and discussions with linguistic experts.

This only prunes random extremely infrequent patterns but

still considers the majority of the search space causing a

so-called pattern explosion.

We further model the patterns as constrained sequential rules.
They are constrained such that the right-hand side of the

rule (i.e., the consequent side) only allows for the ISQ and

NISQ labels. The otherwise unconstraint rule mining would

increase the search space even more. To further prune the

result set of rules, the confidencemeasure (see Definition 3.3.3)

is being usedwith a threshold formin-confidence of 95%. The

confidence measure is an estimator for the conditional prob-

ability that the sequential pattern matches the ISQ or NISQ
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label. This threshold has been, again, determined through

various experiments and discussions with linguistic experts.

Another interestingness measure used in this use case is the

window constraint. According to linguistic experts, any rule

with more than five tokens in between the itemsets is not

descriptive enough to be useful. Therefore, the maximum

gap between two itemsets in any rule must never be greater

than five.

We also only consider closed patterns (see section 2.3) in this

use case. This reduces the result set even more and shows

fewer overlapping rules. Because the linguistic experts favor

larger rules (with more items), we favor closed patterns over

generator patterns in this approach.
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9: This section is taken from my

publication “Visual Analytics of

Co-Occurrences to Discover Sub-

spaces in Structured Data” (Sec-

tion 1: Introduction) [10]. I have

been themain author of this pub-

lication and section and have

written all the contents. The pa-

per was internally reviewed by

my co-authors Giuliana Lind-

holz, Hanna Hauptmann, Men-

natallah El-Assady, Kwan-Liu

Ma, and Daniel Keim.

[51]: (2014), Frequent Pattern

Mining

[52]: Fournier-Viger et al. (2017),

A survey of itemset mining

[140]: Zhang et al. (2010), Survey

on association rules mining algo-

rithms

[73]: Fournier-Viger et al. (2017),

A survey of sequential pattern

mining

[141]: Pinto et al. (2001), Multi-

Dimensional Sequential Pattern

Mining

3.4.3 Multidimensional Pattern Mining

Task Description

9
Amedical researcher is interested in analyzing patients and

their medical histories, where she wants to find commonali-

ties (patterns). The patients have additional attributes that

describe the person, such as gender, age, and diabetes type.

The researcher is interested in finding significant patterns

for all the patients and within specific groups of patients

(called cohorts), for example, only female patients older than

80. One approach is to filter the patients by their attributes

and re-run the same analysis for all the patients. While this

might be feasible for a few defined cohorts, this method

quickly becomes cumbersome for many cohorts or when

many attributes are involved since the possible amount of

filter settings is exponential. Furthermore, comparing the co-

horts and their medical history patterns is not trivial because

pattern mining, a clustering approach for structured data, also

faces an exponential search space and, thus, an exponential

result set. Similar use cases are when a marketing expert

analyzes customers and their market baskets in combination

with attributes describing the customers. A pharmaceutical

researcher also analyzes the molecular structure of multiple

drugs and their effects and side effects modeled as the at-

tributes.

While the overall task stays the same, the structure of the

data varies. In the first case, the patient’s medical history can

be modeled as event sequences, the market baskets are mod-

eled as itemsets, and the molecular structure of the drugs is

modeled as graphs. We further name these various types of

structures structured entities as a generic term. Pattern mining,

especially the well-studied frequent pattern mining [51], is

a clustering approach for structured data finding common-

alities in the form of sub-entities or rules of the structured

entities in a database. For example, from itemsets, frequent

sub-itemsets [52] can be mined, and association rules [140].

For sequences, sub-sequences can be mined, better known as

sequential patterns, but it is possible to mine for episodes or

sequential rules [73]. While many pattern mining algorithms

for various structured data types are available, a standard

patternmining algorithm cannot identify significant patterns

in subspaces [141].
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[142]: Kriegel et al. (2012), Sub-

space clustering

[143]: Findlater et al. (2003),

Iceberg-cube algorithms: An em-

pirical evaluation on synthetic

and real data

[144]: Gan et al. (2004), Subspace

clustering for high dimensional

categorical data

10: This section is taken frommy

publication “Visual Analytics of

Co-Occurrences to Discover Sub-

spaces in Structured Data” (Sec-

tion 3: Related Work) [10]. I have

been themain author of this pub-

lication and section and have

written all the contents. The pa-

per was internally reviewed by

my co-authors Giuliana Lind-

holz, Hanna Hauptmann, Men-

natallah El-Assady, Kwan-Liu

Ma, and Daniel Keim.

The use case of the medical research shows that this task

is not trivial because of the two exponential search spaces:

(i) the search space of the structured data and (ii) the search

space of the subspaces. A subspace is a subset of data at-

tributes [142]. In this case, the attributes are assumed to be

discrete, allowing a boolean function to evaluate whether a

data record with its associated discrete attributes meets the

condition or not. This is also known as Iceberg Cubes [143].

The exponentiality of the search spaces has a significant im-

pact on the runtime and the number of results since either is

an instance of the original search space. Therefore, a scalable

approach is sought that also allows the comparison of the

various subspaces.

Subspace clustering algorithms focus mainly on numerical

data where distances between the data points are calculated.

Some algorithms also focus on categorical data. However,

they suffer from scalability issues [144]. Itemset mining can

also be considered a form of subspace clustering where

the itemsets form the attributes and characteristics of the

subspaces. The support, the size of the cluster, is similar to the

density measured in subspace clustering algorithms. Here,

the major issue is the parameter estimation of the minimum

support threshold and other interestingness measures if the

algorithm supports them. Such a parameter estimation is

difficult, if not impossible, in an exploratory data analysis

scenario.

Limitations of existing work

10
First, we cover algorithmic approaches for pattern mining

which are also capable of handling attributes. The second

part discusses visual analytics approaches for handling struc-

tured data and attributes, as well as, interactive mining

approaches. In the third part, we discuss subspace analysis

in general which includes numerical dimensions instead of

only categorical ones.

Algorithmic Mining Approaches The MDPE-approach is

inspired and based on the work of Pinto et al., who de-

scribe the problem (i.e., task) of finding patterns in attribute-
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defined subspaces as multidimensional sequential pattern

mining [141]. The work of Grahne et al. assesses a similar

problem definition with association rules, using the term

circumstances to describe the discrete associated attribute

information [145]. Pinto et al. [141] detail three variants to-

gether with algorithms on how the two search spaces can be

searched. We generalize these variants to any structured data

and introduce two measures that effectively reduce the sizes

of the two search spaces to fractions of the original search

space. Pinto et al. focus on the algorithmic implementation

of these variants and do not assess the exploratory data

analysis and visual analytics aspect of their work. We briefly

introduce the three variants, as well as our corresponding

generalization. Note that Pinto et al. use the term dimension,

whereas we use the term attribute (i.e., gender) and attribute

characteristic (i.e., male, female).

UNISEQ Approach UNISEQ is not an acronym but merely

a name that stands for the embedding of multidimensional

discrete attributes in event sequences. This can be achieved

when the event sequences are prefixed or suffixed with an

itemset that includes the discrete attribute characteristics. Us-

ing PrefixSpan [146] as the mining algorithm, this approach

shows good scalability when the number of attribute char-

acteristics is low. This approach can be generalized to any

structure, as the attribute characteristics are represented as an

itemset and can always be encoded in the original structured

data. Although we do not use the UNISEQ approach directly,

we use it to show several properties of the co-occurrence

values, allowing us to eventually reduce the search spaces.

Dim-Seq Approach This approach combines two mining al-

gorithms for dimensions (i.e., attributes) and sequences (i.e.,

structured data). Mining the multidimensional attributes

(i.e., attribute characteristics) is possible through iceberg

cubing [143] and a sequential pattern mining algorithm. For

this approach, the attribute characteristics are mined with

the Bottom-up cube (BUC) algorithm [147] and the matching

event sequences are thenminedwith an SPM algorithm. This

approach shows poor scalability when performed automat-

ically and can be compared to what we referred to as the

“common approach" in section 3.4.3. However, the automated

BUC algorithm is exchanged with the manual labor defining

the various filter settings for the attributes.

Seq-Dim Approach The Seq-Dim approach switches the
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order in which the algorithms are applied compared to the

Dim-Seq approach. For eachmined subsequence that exceeds

the threshold, a projected attribute characteristics database

is built, and the various combinations of the attribute char-

acteristics are mined using the BUC algorithm. This is the

most efficient mining method when the event sequences

and the number of attribute characteristics are dense. Our

MDPE-approach is similar to this approach. However, the at-

tribute characteristics are not automatically mined by a BUC

algorithm. Instead, they are being encoded as co-occurrence

values presented to the user in the form of two tables, allow-

ing for exploratory data analysis. Our search-space reduction

measures further increase the effectiveness of the MDPE-

approach.

Another drawback of a fully automated process with no

search-space reduction is the algorithm’s runtime and, more

importantly, the result set presented to the user. Iceberg

cubing algorithms follow the idea of support as the pri-

mary interestingness measure. While a high threshold (i.e.,

minimum support) prunes the search space well due to the

a-priori-property, the resulting combinations of attributes

are of varying interestingness to the user. In a real use case,

the user cannot easily define a threshold for the size of a

subspace, which, for example, if the patient’s use case would

translate to the size of the cohort. Some rare diseases may

only affect one or two patients contained in the data, which

may not be a statistically significant amount. However, this

may not necessarily defy the concept of interestingness to

the user. Songram et al. use closed sequential pattern mining

and closed frequent itemset mining algorithms in a Dim-Seq

and Seq-Dim approach [148]. Closed pattern mining removes

redundant patterns that hold the same information [51]. We

do not apply this concept, as we exploit this redundancy to

highlight subspaces.

Visual Analytics Approaches A lot of research has been

devoted to the analysis of structured data using interactive

visual interfaces. We discuss related work in this section that

allows the analysis of the attribute characteristics combined

with the structured data.

Datajewel places the frequency distribution of single events

into a pixel-based calendar view [149]. This effectively shows
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the distribution of events for multiple days but is limited to

a single attribute. Tools, such as Lifelines2 [150], Outflow [151],

EventFlow [152], DecisionFlow [153], and EventPad [154] use

a design where distributions of the attributes are displayed

in a separate panel. The panel is connected through link-

ing and brushing capabilities. In the separate panel, the

users can filter the data which updates the sequence data

in the main panel. By this, the user can test hypotheses by

defining appropriate filter combinations and inspecting the

respective subspaces. Gotz and Stavropoulos use a third

panel to provide a correlation statistic to a selected outcome

measure [153]. UpSet by Lex et al. [155], is suitable for cat-

egorical and numerical dimensions, however, according to

the authors, their visualization scales to only 40 set inter-

actions which are equal to 40 patterns in our case. This is,

of course, not suitable as we deal with exponential search

spaces. According to the authors [156], higher scalability can

be achieved with matrix-like visualizations which is exactly

the approach we are following.

Pure visual representations for structured entities are bound

to smaller datasets, but it is challenging to identify subse-

quences even then. Pure algorithmic approaches are more

efficient with larger datasets. Still, the parameter estimation

for threshold and constraints is difficult, and interestingness

measures to quantify the user’s preferences are difficult to

formalize or may not even be encoded in the structured data.

As many of the pattern mining algorithms are bottom-up

approaches, it makes sense to let the user assess the interme-

diate results and prioritize the mining based on the user’s

preferences or even discontinue the mining in certain areas

of the search space.

Vrotsou et al. contribute an interactive query interface where

a subsequence is represented as a graph and all available

suffix- and prefix-events are visualized [157]. The user can

manually expand the subsequence to build more complex

sequences. A linked view displays the attribute dimensions

of the matched event sequences. Frequence by Perer and

Wang uses an interactive constraint-based mining approach,

whereas a threshold based on a Pearson Correlation can be

applied to one selected outcomemeasurewhich is identical to

one attribute dimension in our case [158]. Stolper et al. extend

this approach in their Progressive Insights system by allowing

the user to interactively prioritize and prune the search space
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of the underlyingmining algorithm [159]. The authors further

establish design guidelines for progressive visual analytics.

A similar drill-down approach into the search space of subse-

quences is described by Jentner et al. where the subsequences

are projected to reveal their similarity and cluster information

is utilized as subspace information [8]. Di Bartolomeo et al.

recently published an intuitive and elegant design allowing

the combination and exploration of event sequences with

one attribute [160]. However, the design lacks scalability with

larger alphabets as it uses the shortest common subsequence

and cannot be easily applied to other types of structured data.

We strive to provide such information for multiple, auto-

matically computed subsets of the structured entities and

for various attribute dimensions simultaneously without the

need to apply user-defined (cross-)filters.

Subspace Analysis Subspace analysis describes a broad

and highly relevant area of research with a multitude of

approaches. The goal is to identify relevant subspaces and to

interpret and compare them. Fully automated approaches

of subspace clustering [161] are capable of providing rel-

evant subspaces while removing redundancy but do not

consider the domain knowledge of the user. The dissertation

of Stephan Günnemann [162] covers subspace clustering of

complex data which includes mining vector data (numerical

dimensions), incomplete data, and heterogenous data which

combines numerical and categorical dimensions. Correla-

tions are also covered but only with numerical dimensions.

The heterogeneous data chapter deals with graph and net-

work data and respective attributes per node. Such subspace

clustering algorithms are tailored for numerical data as they

search for dense regions using static and dynamic grids

to evaluate the density of the data in various dimensions.

The SURFING algorithm [163] uses a k-nearest-neighbor ap-

proach which implies an existing distance measure as well.

For categorical data, density is equivalent to the support

measure used in frequent itemset mining, however, due to

the curse of dimensionality, data should be considered sparse

as the number of dimensions increases. Because of the curse

of dimensionality and too tight constraints in the mining

algorithms, interesting subspaces may not be discovered.

Visual approaches such as Parallel Coordinate Plots [164]
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11: https://medium.
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652e712394a0

typically do not scale well with an increasing number of

dimensions, as the search space is exponential. Jäckle et al.

contribute Pattern Trails, a 3D-based, visual analysis method

formultivariate data revealing pattern transitions [165].More-

over, the authors provide an excellent overview of available

subspace analysis approaches in their related work. Both

PatternTrails and the approach of Tatu et al. [166] rely on the

SURFING algorithm which implies the need for numerical

dimensions or an available distance measure for categorical

dimensions. PatternTrails mentions sequences of dimensions

that must not be confused with sequences in our approach as

PatternTrails refers to the order of the dimensions to receive

various visual patterns which are similar to ordering the

dimensions of a parallel coordinate plot. In our approach,

there is no automated ordering of attributes (i.e., dimensions)

and the ordering can be defined by the user. The approach

of Lehmann et al. [167] and EvoSets [168] are tools to track

subspaces and their effect onto dimensionality reductions

which also requires numerical data or available distance

matrices to compute the projections.

We visualize the subspaces as a pixel-based representation

in a tabular layout [169] but in our approach, every attribute

characteristic is displayed separately instead of visualizing

the mean or other statistics of one numerical dimension.

Therefore, the discrete distributions are immediately visible.

Many approaches, applications, and commercial tools ex-

ist that allow semi-automatic filtering and aggregation of

data [170]. Almost every available dashboard has cross-filter

capabilities to allow the user to apply filters on various di-

mensions to update the data of the dashboard. Such filter

options can be overwhelming to the user. Moritz Stefaner

coined the terms “filter-" and “dropdown orgies"
11
to de-

scribe such an abundance of filter options in dashboards.

Such cross-filter approaches follow the “common approach"

(see section 3.4.3), which implies an exponential amount of

filter settings to reveal underlying commonalities in the data.

A user likely misses an interesting subspace as the time using

such an interactive dashboard for exploration is typically

limited.

Our approach is tailored to categorical data and discrete

structures respectively. Furthermore, our approach does not

https://medium.com/visualizing-the-field/there-be-dragons-dataviz-in-the-industry-652e712394a0
https://medium.com/visualizing-the-field/there-be-dragons-dataviz-in-the-industry-652e712394a0
https://medium.com/visualizing-the-field/there-be-dragons-dataviz-in-the-industry-652e712394a0
https://medium.com/visualizing-the-field/there-be-dragons-dataviz-in-the-industry-652e712394a0
https://medium.com/visualizing-the-field/there-be-dragons-dataviz-in-the-industry-652e712394a0
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Table 3.2: The input comprised of structured data and discrete attributes. The data represents customers and

their transactions modeled as itemsets. The attributes provide additional information for each customer.

Structured Data Attributes
ID Transactions Gender AgeGroup Country
1 {bread, juice,milk, vegetables} W > 18 DE

2 {bread, candy, soda} M ≤ 18 FR
3 {bread, juice, vegetables} M > 18 FR
4 {bread, candy, soda} W ≤ 18 DE

12: This section is taken frommy

publication “Visual Analytics of

Co-Occurrences to Discover Sub-

spaces in Structured Data” (Sec-

tion 4: Multi-dimensional Pat-

tern Exploration Approach) [10].

I have been the main author

of this publication and section

and have written all the con-

tents. My co-authors Giuliana

Lindholz, Hanna Hauptmann,

Mennatallah El-Assady, Kwan-

Liu Ma, and Daniel Keim re-

viewed the paper internally.

make any assumptions about the interestingness of sub-

spaces as this should be determined by the user. Interesting

subspaces may be where the co-occurrence of one attribute

characteristic is exceptionally high but may also be a uniform

distribution of co-occurrences in one attribute. Similarly, a

deviation from the distribution of all data may be interesting

as well as similar or equal co-occurrence distributions. Our

MDPE-approach empowers the user to see all relevant sub-

spaces in a single, condensed pixel-visualizations where a

limited number of perspectives and some additional metrics

allow the user to explore all subspaces to be found in the

structured data.

Description of Interestingness Measures

12
This section describes what type of data we expect as

input and how it is transformed throughout the approach.

Our approach uses an explicit encoding of the data, which

is similar to a one-hot encoding, and then aggregates the

data with two methods: (i) aggregating rows that contain the

same structural information leaving only distinct structured

entities, and (ii), using a modified, constraint pattern mining

algorithm to calculate broader patterns. We demonstrate this

using a toy example of customer market basket analysis. We

chose this example due to its simplicity and because itemsets

have the smallest search space compared to other structured

data types. All of the following can be generalized to any

structured data. The section starts with the input data, then

continues with the explicit encoding transformation, further

processing by two independent methods, and the output of

our approach, which consists of two tabular representations.

We then show the a-priori property of co-occurrences, which

is why our approach works. The section closes by describing

the achieved search-space reduction.
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Table 3.3: The input data transformed into explicit encoding. Each characteristic is represented in a distinct

column, whereas the values represent whether this characteristic is set or not. The cells containing a 1 are

highlighted to improve the readability.

Structured Data Attribute Characteristics
ID Transactions Gender AgeGroup Country

M W ≤ 18 > 18 DE FR
1 {bread, juice,milk, vegetables} 0 1 0 1 1 0
2 {bread, candy, soda} 1 0 1 0 0 1
3 {bread, juice, vegetables} 1 0 0 1 0 1
4 {bread, candy, soda} 0 1 1 0 1 0

Input The input is shown in Table 3.2. In this example,

the structured data is encoded as itemsets, where each item

represents a product. Items in a set have no inherent order;

however, any total order can be assumed without the loss

of generality. The attributes encode customer information,

such as gender, age group, and country. Each row refers to a

transaction of a customer referred to by the ID.

The inputmust generally consist of an identifier, a known rep-

resentation of structured data, and attributes. The attributes

are assumed to be discrete. We refer to a value of an attribute

as characteristic. Without the loss of generality, we can assume

that an attribute may hold multiple discrete values contain-

ing a set of characteristics. Let A be the set of attributes and

a ∈ A be an attribute. Then |a| refers to the number of its

distinct characteristics. For example, the attribute Gender

contains two distinct characteristics (|Gender| = 2). Because
the data is finite, the characteristics of each attribute are

finite. This is also true for the structure-entities of the struc-
tured data, which are in this case the itemsets consisting

of items. We refer to the set of all items as alphabet (Σ). As

with the attribute characteristics, |Σ| denotes the size of

the alphabet. In the example, the size of the alphabet is 6

(|Σ| = |{bread, candy, juice,milk, soda, vegetables}| = 6).

Explicit Encoding The input data, precisely the attributes,

are transformed such that each row contains a binary vector

for each characteristic having 0 and 1, denoting whether the

characteristic is set or not. We name this explicit encoding.

Table 3.3 displays the transformed data. The transformation

affects only the attribute information. The structured data

remains untouched. Each attribute characteristics is repre-

sented in a separate column, whereas the values determine
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whether this characteristic is set or not. Our approach does

not assume or check for mutual exclusivity of the attribute

characteristics. It assumes that attribute characteristics are

items of a set and that one attribute can hold more than

one attribute characteristic at once. It is possible to encode

binary attributes (i.e., AgeGroup) with only one bit to denote

whether their value is ≤ 18 or > 18. This assumes that the

values are dependent and cannot be independently true si-

multaneously. We consider this a special case as the more

general case, such as the person’s hobbies, will likely have

more than one value. Another reason not to encode binary

attributes with only one bit is the problem of missing values.

With only one bit, a missing value cannot be distinguished

from a value that would result in the bit being 0.

The resulting binary vectors can also be interpreted as co-
occurrences. For example, the transaction with ID 4 has a

co-occurrence with the characteristicW of attribute Gender

of 1.

The transformation also nicely depicts the search space of

the subspaces. Letm be the sum of all characteristics (m =

Σa∈A|a|). In the example,m equals 6, which is also visible by

the number of columns for the characteristics. Because these

are binary vectors, the number of all possible combinations

is 2m
. This also denotes the size of the search space of

attributes.Note that as it is commonly used in anAttribute→
Struct approach, this equals the number of all possible filter

combinations. However, many of these filter combinations

would yield an empty result set because the combination of

attributes does not occur in the data.

A valuable property of this transformation is the possibility

of explicitly encoding null values, such as missing ones

occurring in the attributes. A missing value can be added as

its attribute characteristic, and co-occurrences to this missing

value can be traced throughout the MDPE-approach and

eventually back to the original transaction. Moreover, this

can be extended to multiple attributes of the same attribute.

For example, if the missing value is occurring, is known, and

there exist several reasons.

It is also possible to encode any arbitrary number instead of 0
and 1, such as probability values for attribute characteristics.

This is useful, for example, if ameasurement is known to have

an uncertainty (e.g., error range). Then, such uncertainties
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Table 3.4: The data is aggregated by rows where the structured data is equal, yielding a table of distinct

structured data entities. The co-occurrences are added. The IDs are propagated, allowing a back-reference to

the original data table.

Structured Data Attribute Characteristics
IDs Distinct Transactions Gender AgeGroup Country

M W ≤ 18 > 18 DE FR
1 {bread, juice,milk, vegetables} 0 1 0 1 1 0

2 + 4 {bread, candy, soda} 1 1 2 0 1 1
3 {bread, juice, vegetables} 1 0 0 1 0 1

could be modeled as probabilities across multiple attribute

characteristics.

Process The previous transformation and treatment of the

values as co-occurrences is the foundation of the MDPE-

approach allowing the data’s row- and column-wise aggre-

gations. We opt for row-based aggregations only, as detailed

later in Section 12. To this extent, the structured data has not

been considered, but the data is an essential aspect in solving

the task of finding meaningful patterns in subspaces of the

data.

The most straightforward form of aggregating structured

data is by combining equivalent structures. A uniform rep-

resentation of structured data simplifies that process. In the

case of itemsets, any total order can be defined over the items

to achieve this. Other structured data types are typically

an extension and consist of multiple itemsets. For example,

sequences are itemsets that occur in a sequence. Table 3.4

shows the resulting aggregated information. Only the item-

set {bread, candy, soda} occurs twice in the input data (see

Table 3.2) in rows 2 and 4. The respective co-occurrences

are added. The table, for example, now clearly shows that

all customers are buying {bread, candy, soda} exclusively
(without any other item) in the AgeGroup of “≤ 18". This
form of aggregation yields a table that enlists all distinct

structured data entities in the input data. All structured data

entities of the input may be equal, resulting in a table with

only one row. However, in real-world applications, it is more

likely that only a little or even none of the structured data

entities are equal, leading to a little or no reduction of rows.

We discuss this further in Section 12.

More aggregation is desirable, andpatternmining algorithms

offer a well-studied possibility to do so - imposing additional



3.4 Use cases 69

[171]: Han et al. (2000), Mining

Frequent Patterns without Can-

didate Generation

[172]: Zaki (2000), Scalable Algo-

rithms for Association Mining

[48]: authors (2021), Hasse dia-

gram

challenges. Pattern mining algorithms cluster the data in

the sense of finding common sub-entities in the structured

data. This is typically done in a depth-first-search, bottom-up

approach where sub-entities containing only one item are

combined until the combination can no longer be found in

the data or any other termination criteria are met. Figure 3.7

sheds light on the significant challenge of pattern mining in

structured data: the exponential search space. Note that the

figures in this section are not part of the visual interface but

were added to support the reader in better understanding

how we slice and reduce the search spaces. To create this

search space, an itemsetmining algorithmwhich does not use

candidate generation (e.g., FPGrowth [171], ECIaT [172]) is

being employed without any additional termination criteria.

The resulting figure is comparable to a Hasse diagram [48].

The itemsets are sorted by their cardinality, which is also

depicted by the green boxes on the left. The cardinality of

an itemset is an IM and is often referred to as length or

generation. An itemset I supports a transaction T if I v T .

The ids of the supported transactions are enlisted below each

itemset (compare with Table 3.2). The number in the purple

circles depicts the IM support, which denotes the number of

transactions the itemset supports. The itemsets with the red

font occur in the transaction database (compare to Table 3.4).

Using Figure 3.7, several observations can be made:

Observation 1: Diamond Shape The search space has a

diamond-like shape where only a few itemsets exist at the

highest and lowest generation (top-bottom). The highest

number of itemsets are in between (i.e., generation 2 & 3).

Note that this observation cannot be made when the input

Figure 3.7: The search space of an itemset mining algorithm visualized as a Hasse diagram [48]. The length

(i.e., cardinality) is encoded in the vertical position. The support is denoted in purple. The red itemsets occur

in the input data.
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data (Table 3.2) contains a transaction for every possible

combination of items. This scenario is, however, unlikely in

real-world applications. We discuss this edge case further in

Section 12.

Observation 2: Redundancy While every itemset only oc-

curs once in the search space, multiple itemsets describe

the same transactions as they support the same transactions.

For example the itemsets {candy}, {soda}, {bread, candy},
{bread, soda}, {candy, soda}, and {bread, candy, soda} all
describe the transactions with IDs 2 and 4. This is also de-

picted by their IM support, which is two for all of these

itemsets.

Observation 3: Partial Order & A priori The itemsets of the

search space are partially ordered. An itemset I is contained

in an itemset J if I @ J . Thus, J is a superset of I . An essential

property in the field of pattern mining is the a priori property

of the IMs. Let I and J be itemsets of the transaction data T

(Table 3.2) and supT I be the function for the support. The a

priori property states that:

∀I : ∀J w I : supTJ ≤ supT I (3.1)

meaning that the support of all supersets of itemset I must

be equal or lower than the support of itemset I . The same

holds true for the IM length or generation, where:

∀I : ∀J A I : |J | > |I| (3.2)

meaning that the cardinality of each superset must be larger

than the cardinality of the itemset I .

Observation 4: Low Aggregation Table The first table that
has been produced in the MDPE-approach is the low ag-

gregation table (see Table 3.4). The rows, specifically the

transactions, of this table match the itemsets depicted in red

in Figure 3.7. It is expected that these itemsets can be found

at the top of the search space, defining the upper bounds.

These observations can be translated into three actions tack-

ling the exponential search space problem in pattern mining
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of structured data.

Action 1: Search Space Reduction by support This action
is a result of observations 2, 3, and 4. Pruning the search

space using thresholds applied to IMs is the core approach

in pattern mining. If the IM is a-priori, the pruning can

be implemented efficiently [173]. Observation 4 states that

the itemsets occurring of the transaction data (depicted in

red in Figure 3.7) occur mostly at the top of this search

space and are already covered by the low aggregation table

(Table 3.4). In conclusion, with observation 3, this means

that these itemsets typically have a lower support with a

minimum of 1. Thus it is safe to apply a threshold in the

form of a minimum support of two, which means that all

itemsets with a support of one are removed. This will only

remove duplicates, as stated in observation 2, because if an

itemset is equal to a transaction that has a support of one
(e.g., {bread, juice,milk, vegetables}), then all subsets of this

itemset that have a support of one will describe the same

transaction and thus be redundant (e.g., {bread, juice,milk, },
{bread,milk, vegetables},{juice,milk, vegetables},{bread,milk},
{juice,milk}, {milk, vegetables}, {milk}). It is possible to in-

crease this number to prune the search space even more, but

this stands in contradiction to our requirement R5 because

it is possible that valuable information is being removed.

The minimum support can be implemented as a parameter.

However, we strongly suggest that a user only changes this

parameter from its default value of two if the implications

are crystal clear.

Action 2: Search Space Reduction by length This follows

the first action and results fromobservations 1, 2, and 4.While

action 1 already removed some redundant information, ob-

servation 2 states that redundancy is more common in the

search space and occurs for higher supports. Observation

1 concludes that the highest number of itemsets are typical

to be found at medium generations, resulting in a typical

diamond shape, whereas the top part of this diamond is

already covered by the low aggregation table (observation 4).

Therefore, we employ a second parameter called Initial Min-
ing Depth, which terminates the pattern mining algorithm at

a given generation. Similarly to the first parameter, a default

value of one or two generations should be set. There are only
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Figure 3.8: The search space is pruned with a minimum support of two (Action 1) depicted by the crossed out

itemsets. A second pruning step by length (cardinality) with a parameter setting of the Initial Mining Depth of

one drastically reduces the size of the search space (Action 2). The remaining sub-itemsets are highlighted in

the red box.

edge caseswhere adeviation of this default value is necessary.

Action 3: Interactive Mining Figure 3.8 depicts the search

space after the first two actions. The itemsets that are crossed

out are removed due to not meeting the minimum support of

two (Action 1). The search space is further pruned by Action

2 with a parameter setting of the Initial Mining Depth of

one, leaving only the itemsets of the first generation (high-

lighted in red). The remaining patterns cover the bottom of

the search space and provide a lower bound. It cannot be

assumed that the redundancy (Observation 2) holds for each

of the patterns. Thus, the second action may have removed a

non-redundant pattern. This is typically not a major problem

because the co-occurrences are, in fact, a priori, which will

be detailed in Section 12. To further mitigate this, an interac-

tive mining technique can be used by using a user-defined

selection of the already mined patterns and mining for the

patterns of the next, higher generation obeying the partial or-

der. For example, the user might select the patterns {candy}
and {soda} of generation one and interactively mines for

all patterns of the second generation that contains either
of the selected patterns. This would result in the patterns

{bread, candy}, {bread, soda}, and {candy, soda} (see Fig-

ure 3.7 or Figure 3.8, respectively). It is important to mention

that the minimum support for the interactive mining is fur-

ther set to the initial parameter, which is, by default, two.
This means that patterns that are already removed due to

the minimum support constraint will not be part of the inter-

active mining result. Algorithmic details will be explained

in Section 5.5.3.
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Table 3.5: The data is aggregated by rowswhere the original transaction contains a pattern. The co-occurrences

are added. The IDs are propagated, allowing a back-reference to the original data table (Table 3.2).

Structured Data Attribute Characteristics
IDs Pattern Gender AgeGroup Country

M W ≤ 18 > 18 DE FR
1 + 2 + 3 + 4 {bread} 2 2 2 2 2 2

2 + 4 {candy} 1 1 2 0 1 1
1 + 3 {juice} 1 1 0 2 1 1
2 + 4 {soda} 1 1 2 0 1 1
1 + 3 {vegetables} 1 1 0 2 1 1

The remaining patterns are used to generate a table analog

to the low aggregation table (Table 3.4). We call this table

high aggregation table (see Table 3.5). The major difference

is that the second column does not contain transactions

anymore, but patterns, which are sub-itemsets of the original

transactions. The mining algorithms do return not only the

patterns themselves but also the transactions they support

(they are contained in). This is depicted in the ID column,

where all transaction IDs are enlisted that support this pattern.

The co-occurrences are added using the explicit encoding of

the data (see Table 3.3).

Output Our MDPE-approach’s output is two tables that

are equal in their structure and contain co-occurrences of dis-

crete attribute characteristics to either distinct transactions or

patterns. Distinct transactions and patterns can be regarded

as aggregations of the original transactions (aggregations

of rows). The tables are derived from the initial transforma-

tion of the data into an explicit encoding (see Table 3.3 and

Section 12, respectively). We name the first generated table

low aggregation table (Table 3.4), which displays the distinct

transactions and aggregates their co-occurrences. This table

typically covers the top part of the search space (see red

patterns in Figure 3.7).

The second table is called high aggregation table (Table 3.5) as
typically many transactions of the input data are aggregated

within one row. This table is generated using a modified pat-

ternmining algorithm in conjunction with pruning strategies

(see Action 1 & 2 in Section 12). The high aggregation table

covers the bottom of the search space (see Figure 3.8).



74 3 Interestingness Measures

Table 3.6: This output is optional and represents a vector of co-occurrences which are aggregated using all of

the data. This vector can then be subtracted from the other vectors, which is used by some normalizations

(see Section 12).

Structured Data Attribute Characteristics
IDs Pattern Gender AgeGroup Country

M W ≤ 18 > 18 DE FR
1 + 2 + 3 + 4 − 2 2 2 2 2 2

Table 3.7: The input data of Table 3.2 modeled by the UniStruct approach. Every attribute characteristics is

treated as an item and merged with the itemset of the structured data.

UniStruct: Structured Data combined with the Attribute Characteristics
IDs Transactions

1 {bread, juice,milk, vegetables,Gender:W,AgeGroup:>18,Country:DE}
2 {bread, candy, soda,Gender:M,AgeGroup:≤18,Country:FR}
3 {bread, juice, vegetables,Gender:M,AgeGroup:>18,Country:FR}
4 {bread, candy, soda,Gender:W,AgeGroup:≤18,Country:DE}

A third optional output is generated, aggregating the co-

occurrences of all data into a single vector. This is represented

in Table 3.6. This vector can then be subtracted from other

output vectors to calculate a divergence because, unlike

this example, it cannot be assumed that co-occurrences are

uniformly distributed. We use this method in some of our

normalizations as described in Section 12.

Co-Occurrences areA-Priori Wehavepreviouslydescribed

that the IMs support and length are a-priori. The same is

true for the co-occurrences and is an integral part of why

the MDPE-approach of generating two tables covering the

boundaries of the structured data search space is working.

In this section, we show that the co-occurrences are a-priori

by showing that the co-occurrences are equivalent to sup-

port measures using the UniStruct-approach. Let A be one

attribute, and c be a characteristic of attribute A (c ∈ A). For
example, c = AgeGroup:≤18 or c = Gender:W. TheUniStruct
approach shows that it is possible to model this problem by

treating attribute characteristics as items and adding them

to the transaction data (see Table 3.7). This can be done

for all of the transactions, and a standard pattern mining

algorithm can be applied. The problem is that the algorithm

now has two combined, exponential search spaces, typically

tackled by tightening the constraints, e.g., by increasing the

minimum support. This is, however, in contradiction to our

requirement R5. Let I and J be itemsets of the search space S

(see Figure 3.7), and c be a defined attribute characteristic. Let
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further be coocSI, c be a function returning the co-occurrence

value, e.g., coocS{candy},AgeGroup:≤18 = 2 (compare to

the cell of row {candy} and column AgeGroup:≤18 in Ta-

ble 3.5). Let supSI be the function evaluating the support of

a pattern. Using theUniStruct approach, we can show that:

supSI ∪ c = coocSI, c (3.3)

This means that the support of a pattern combined with the

attribute characteristic is equal to the co-occurrence of the pat-

tern and the attribute characteristic. The above example canbe

used to generate this pattern of I∪c: {candy,AgeGroup:≤18}.
This itemset is a subset of the transactions 2 and 4, thus,
supS{candy,AgeGroup:≤18} = 2. Because of Equation 3.1

and Equation 3.3 we can conclude that:

∀I : ∀J w I : coocSJ, c ≤ coocSI, c (3.4)

This means that a co-occurrence value of a pattern in the

high aggregation table (Table 3.5) can only be higher or equal

to the co-occurrence of any transaction that is a superset of

the pattern in the low aggregation table (Table 3.4). Because

these two tables cover the boundaries of the search space (see

Figure 3.7 & Figure 3.8), it can further be concluded that the

high aggregation table will always hold the maximum of the

co-occurrence numbers whereas the low aggregation table

will always hold the minimum of the co-occurrence numbers.

Let I be a distinct transaction of the low aggregation table

(Table 3.4), K be a pattern of the high aggregation table

(Table 3.5), J be any possible pattern occurring in the search

space, and c be a fixed attribute characteristic. It follows that:

∀J : ∀I v J v ∀K : coocSI, c ≤ coocSJ, c ≤ coocSK, c

(3.5)

Search-Space Reduction We show the search-space reduc-

tion, providing the combined search space’s upper bounds in

contrast to our MDPE-approach’s upper bounds. Let n be the

number of transactions as provided by the input (Table 3.2)

and n′ be the number of distinct transactions (Table 3.4). Let

further be Σ the alphabet of items of the structured data

and m be the number of all attribute characteristics of all
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attributes A:m =
∑

a∈A |a|. We also define two functions gx

and gkx where gx calculates the size of a pattern mining

search space of structured data and gkx the maximal possible

number of patterns for one generation k. We showcase this

using the search space of itemset mining where g|Σ| = 2|Σ|
and gk|Σ| =

(
|Σ|
k

)
. This is also known as the power set of Σ.

Note that the search space of itemset mining is the small-

est, as other structured data types, such as sequences and

graphs, allow more combinations of structured entities due

to their structure. As discussed in Section 12, the number of

all possible combinations of attributes is 2m
, which defines

the search space of the possible subspaces. Therefore, the

combined search space is:

g|Σ| ∗ 2m = 2|Σ|m (3.6)

which can also be trivially shown using the UniStruct ap-
proach.

Two measures reduce the size of the search space in the

MDPE-approach. Firstly,wedonot calculate any co-occurrences

for combinations of multiple attribute characteristics but only

for combinations of patterns in the structured data and one

attribute characteristic. The main reason for this is that the

co-occurrence of any combination of attribute characteristics

can only be equal or lower than the co-occurrences of each of

the combined attribute characteristics (see Equation 3.4). The

second reason is the partial order that occurs when various

attribute characteristics are combined. The partial order is

visible in Figure 3.7, which is equivalent to the search space

of attribute characteristics when the UniStruct approach is

being used. Because we want to keep the tabular layout as

detailed in the next section, an intuitive linearization of this

partial order is not trivial. This measure reduces the search

space to:

g|Σ| ∗m = 2|Σ| ∗m (3.7)

So far, the search space has been reduced by limiting the

number of combinations of attribute characteristics. This

is equivalent to the number of columns in the respective

tables (Table 3.4 & 3.5). As described in Section 12, actions

1 and 2 reduce the search space of the structured mining,

which is equivalent to the rows of the tables. Therefore, it is

now required to determine the maximum number of rows

possible for each table. Themaximum number of rows for the
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low aggregation table is defined by the size of the alphabet

of the structured data but, more importantly, also limited by

the number of rows of the input (see Table 3.2):

On‘ = minn, g|Σ| (3.8)

It is important to understand that the case where n > g|Σ|
does not necessarily mean that n‘ = g|Σ|. A trivial edge case

underlines this where the input table consists of unlimited

rows, but each row contains the same structured data entity.

Because the low aggregation table only holds the distinct

structured entities, this means that n‘ = 1. Furthermore, it is

not possible that n‘ > g|Σ| because the function evaluates the

amount of all possible combinations of structured entities.

Thus, theworst case in terms of search space iswhenn ≥ g|Σ|
and n‘ = g|Σ|. Finally, it can be concluded that the case of

n > g|Σ| is not typical and does not occur in many real-world

datasets because the structured data search space is, in fact,

exponential. In contrast, the number of data rows increases

linearly.

The maximum possible number of rows (Oz) for the high

aggregation table only depends on the search space of struc-

tured data and, specifically, the parameter Initial Mining
Depth defined as d:

Oz = O
d∑

x=1
gx|Σ| = O

d∑
x=1

(
|Σ|
x

)
(3.9)

Assuming that the second parameter, the Initial Minimum
Support is two, we can construct another edge case to show

that the number of data rows n is independent of Oz: Let

there be 2 input data rows (n = 2) and both rows contain

itemsets that complete all possible items of the alphabet (Σ),

then all possible combinations of subsets can be constructed

where all of these subsets satisfy the minimum support of

2, and all subsets of cardinality lower or equal to the Initial
Mining Depth (d) will be contained in the high aggregation

table.

Additional variations based on the Interestingness
Measures

13
The co-occurrence values can be normalized in various

ways to highlight different aspects of the data. Hence, from
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Figure 3.9: Six distinct perspectives on the same data. The subspace view highlights attribute characteristics

(columns). The subset view highlights the visible blocks. The support view correlates with the support of

the aggregation, which is noticeable by the corresponding purple bar chart. The relative views show the

difference in comparison to the population.

[174]: Harrower et al. (2003), Col-

orBrewer. org: an online tool

for selecting colour schemes for

maps

a user’s point of view, these normalizations offer various

perspectives on the data. Our system supports six different

perspectives as shown in Figure 3.9. The figure shows the

same part of the data for each perspective. The perspec-

tives are distinguished between absolute and relative/deviation,
whereas the absolute perspectives represent the frequency

information of the attribute characteristics with varying nor-

malizations. The values are mapped onto a linear binned

color map. The relative perspectives show the difference in

the populations’ distributions compared to the subsets (rows)

which is done by subtracting the vectors of the output tables

(Table 3.4 & Table 3.5) by the global vector (Table 3.6). There-

fore, positive and negative deviations are possible, which

are mapped onto a diverging color map. As with the absolute
perspectives, the normalizations vary.

All color maps are taken from the ColorBrewer 2.0 online

tool [174]. The three different normalizations are labeled by

their visual effect on various aspects of the data. The sub-
space perspective normalizes the data per attribute such that

the share of a characteristic is reflected. This perspective is

invariant to the overall support of the respective row and

thus highlights the characteristics (columns). Attributes with

fewer characteristics are likely to be more visible by this. The

subset perspective linearly normalizes all values within each

attribute. This specifically highlights attributes with a small
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variance in their co-occurrence distribution. Furthermore,

on a more overview level, this perspective allows the iden-

tification of equal rows forming the so-called visual blocks.

Globally normalized values comprise the support perspec-
tive, which is correlated to the support. This is visible as the

support is also mapped onto the bar chart to the right of each

row, respectively. This perspective also supports the identifi-

cation of visible blocks. A seventh perspective visualizes the

normalized pointwise mutual information (nPMI). The scale

ranges from -1 (dark red) over 0 (grey, light colors) to 1 (dark

blue). If the nPMI is -1, it means there a no co-occurrences

(co-occurrence = 0). If the value is around 0, the values are

independent. And for 1, they are correlated.

3.5 Conclusions

The point of this chapter is not to argue for abolishing the

idea of interestingness measures altogether but to acknowl-

edge their limitations in that an interestingness measure

and its value highly depends on the data, user, and task. I,

therefore, offer a complementary perspective for the existing

surveys and taxonomies by arguing that an interestingness

measure is, at its core, a function to generate a feature that

represents some properties of a pattern in a quantified form.

We can then further distinguish what type of property the

measure describes such as properties of the pattern itself or

the cluster it represents. The cluster properties can be further

divided into structure-based properties, statistical properties,

and cluster-metadata-based properties. This categorization

is independent of any user assessment of interestingness.

The use cases highlight that applications typically rely on

multiple interestingness measures. This, on the other hand,

makes it more difficult for the user to choose the optimal

thresholds (parameter estimation). The fact that the user

does not have exact knowledge about the correct parameters

must be assumed in an EDA context. This chapter advocates

for understanding that interestingness measures describe

certain properties that are, ideally, correlating with the in-

terestingness of a user for a certain task. This requires that

the user has at least a conceptual understanding of what
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the interestingness measure represents. This will be further

elaborated in section 5.6.
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4.1 Introduction

Frequent pattern mining is an important concept in data

mining and exploratory data analysis [51]. Early on it became

clear that visualization is required in the KDD process as

only the human, as the ultimate decision maker, can identify

the interesting information. The terms visual data explo-

ration and visual data mining emerged describing efforts

to integrate the user into the data mining process. In 2004,

the term visual analytics gained recognition for a broader

context of a multidisciplinary research field [175]. It is of

special interest how users can integrate their knowledge

into the data analysis process and eventually generate more

knowledge [94]
1
.

As frequent pattern mining tends to produce many patterns,

a lot of research has been devoted to finding interesting-

ness measures filtering and ranking useful and interesting

patterns for the user [51, 64]. Multiple surveys cover the

algorithmic side of the mining process for itemsets [52, 68,

176], association rules [70, 177], and sequential patterns [73,

75, 178]. Implementations of these algorithms can be found in

libraries such as WEKA [179] or SPMF [180] or for example in

the FIMI repository [181, 182]. The output of the implemented

algorithms is typically presented to the user in a textual form.

This imposes, however, many limitations. In general, the

cognitive load in identifying patterns, understanding their

relations, and comparing their interestingness measures (e.g.,

support) is high. Furthermore, these represented patterns are

not visually aggregated which supports the user to browse

and explore the generated pattern space.

The SPMF library features a Pattern Viewer which outputs

patterns in a textual form inside a table with the interesting

measures in the respective columns (Figure 4.1). The viewer

supports the interactive exploration of patterns by filtering

the patterns by a given string (positive and negative templat-

ing), by their interestingness measures (e.g., greater than a
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Figure 4.1: The Pattern Viewer of
the Sequential Pattern Mining

Framework (SPMF).

[183]: Alsallakh et al. (2016), The

State-of-the-Art of Set Visualiza-

tion

[184]: Aigner et al. (2011), Visual-

ization of Time-Oriented Data

[185]: Silva et al. (2000), Visual-

ization of Linear Time-Oriented

Data: A Survey

[186]: Aigner et al. (2007), Visu-

alizing time-oriented data - A

systematic view

[187]: Hofmann et al. (2000), Vi-

sualizing association rules with

interactive mosaic plots

[188]:Hahsler et al. (2011), Visual-

izing association rules: Introduc-

tion to the R-extension package

arulesViz

given value), and by ordering the rows. While such interac-

tion capabilities are important to explore a pattern space, the

textual representation does not allow a user to easily identify

and relate patterns as well as view them in a more compact

representation. To the best of our knowledge, there exists no

survey dedicated specifically to the visualization techniques

of such patterns. There are, however, surveys in related fields

such as set visualizations [183] or works on time-oriented

data visualization [184–186] which is related to visualizing

event sequences and sequential patterns. Other papers fea-

ture an extensive relatedwork section, e.g., [187]. Hahsler and

Chelluboina provide a survey of visualization for association

rules in their paper for the R-package arulesViz [188]. In

this chapter, we contribute a survey that thoroughly surveys

visualization techniques for each of the specializations and

systematically analyzes their strengths and weaknesses.

The next Section explains our used methodology. Section 4.3

describes the visualization techniques for itemsets, associa-

tion rules, and sequential patterns. Afterward, we compare

and analyze the visualization techniques discovering their

advantages and drawbacks. We conclude our chapter in

Section 4.6 where we bridge the gap to utility mining and

identify further research challenges.



4.2 Methodology 83

Figure 4.2: Our prototype to

scan a large set of academic

work.

2: http://ieeevis.org

3: https://www.eurovis2018.
org/

4: http://www.kdd.org/

5: https://www.computer.
org/web/tvcg

6: http://journals.sagepub.
com/home/ivia

4.2 Methodology

We use our internal database which includes conference and

workshop proceedings (e.g., Vis
2
, EuroVis

3
, KDD

4
), journals

(e.g., TVCG
5
, Information Visualization

6
), and a variety of

books. Using a set of keywords that are typical for the topic

of pattern mining (e.g., sequence, pattern, mining, frequent,

itemset) we perform a full-text search in our database and

extract the full text. With this method, we can find around

14000papers. To efficiently scan this large amount of academic

work we developed a prototype (Figure 4.2). The prototype

indexes the full text and extracts user-defined keywords.

Each file is listed as a row. Keywords are represented as

columns. Each cell is color-coded based on the frequency of

thekeyword. The so-generated table canbefilteredbyany full-

text query or keywordoccurrences.Additionally, the table can

be sorted by the frequency of keywords. The user can addnew

keywords interactively. Irrelevant papers can be marked not

to be inspected twice. Relevant work is thoroughly scanned

for further relevant related work. Additionally, the ACM

digital library, IEEE Xplore digital library, EG digital library,

and DBLP computer science bibliography were used for

keyword searches.

In total, we could identify nine papers with visualization

techniques for frequent itemsets, 11 works for association

rules, and 20 relevant publications for sequential patterns

and visually closely related episodes.

http://ieeevis.org
https://www.eurovis2018.org/
https://www.eurovis2018.org/
http://www.kdd.org/
https://www.computer.org/web/tvcg
https://www.computer.org/web/tvcg
http://journals.sagepub.com/home/ivia
http://journals.sagepub.com/home/ivia
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4.3 Visualizations and Visual Analytics
Techniques

Mining for itemsets, association rules, and sequential patterns

has commonalities. This fact also holds for visualizing such

patterns. This section will explain visualization techniques

and further elaborate on how visual analytics is applied to

these visualizations. We distinguish between visualizing the

resulting patterns of a mining algorithm, the input data,

and whether intermediate patterns are visualized during the

mining process.

4.3.1 Itemsets

Frequent itemset mining, originally developed for market

basket analysis, is one of the most popular research areas

and serves as a basis for association rule mining. The task is

to find common sets of items (itemsets) that occur together in

records, also called transactions. The size of an itemset refers

to the number of items in the itemset and is also called the

k-itemset. Borgelt provides a good introduction and overview

of algorithms, data structures, and extensions [68].

Visualizing sets is a heavily researched topic. For a com-

prehensive state-of-the-art survey we refer to Alsallahk et

al. [183] and their companion website SetViz
7
. In the fol-

lowing, we focus on work that is specifically developed for

frequent itemsets.

Lattice Representations

A representation of a lattice, or also concept hierarchy [189],

of frequent itemsets, is often used to explain the concept

of frequent itemset mining and the Apriori property. A

typical representation is the Hasse diagram which shows

the power set of an alphabet of items (Figure 4.3a). Note

that in the Hasse-diagram all possible itemsets are displayed.

Frequent itemsets are highlighted. Additionally, itemsets

can be annotated for example if they are closed [78] or

maximal [190].

Klemettinen et al. already discuss the problem of clutter in

directed graphs (see Section 4.3.2) due to toomany edges [83].

http://setviz.net
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(a) A Hasse diagram representing the power set

of A,B,C,D,E. The frequent itemsets are high-

lighted [191]. (b) A radial graph layout by Bothorel et al. [192]. Each

frequent itemset is represented as a separate node.

Infrequent itemsets are not shown in the graph.

Figure 4.3: Two lattice representations showing frequent itemsets and their relations.

[193]: Collier (1987), Thoth-II:Hy-

pertext with Explicit Semantics

[192]: Bothorel et al. (2013), Vi-

sualization of Frequent Itemsets

withNested Circular Layout and

Bundling Algorithm

The authors propose the Spiders technique [193] where mul-

tiple instances of one node are allowed. Bothorel et al. follow

this idea and they display, similar to the PowerSetViewer, ev-
ery frequent itemset distinctly [192] (Figure 4.3b). The graph

does not show the power set but rather only the frequent

itemsets. They use a circular layout where itemsets of the

same cardinality are placed on a concentric circle. The cardi-

nality increases from the outside to the inside of the graph.

A heuristic optimization strategy is used to place the nodes

by reducing the length of the segment to reduce clutter. An

additional measure is taken by an edge bundling strategy.

The authors use three enhancements for their visualization.

First, is a mapping of the support onto the alpha value for

the colors (transparency) on the edges. Itemsets with high

support aremore opaque. The secondmeasure is the accumu-

lation of colors which is directly related to the edge bundling.

The more edges are bundled, the brighter the color is as-

signed to the particular part of the edge. These two measures

result in white, opaque edges for itemsets that have many

supersets and high support. The last enhancement is a selec-

tion interaction. Multiple itemsets can be selected, and only

their supersets and subsets are shown. Edges to 1-itemsets of

supersets of the selected itemsets are displayed in a different

color to reason about the origins of these supersets.
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Figure 4.4: PowerSetViewer

(PSV) by Munzner et al. [194].

Each cell represents one or more

itemsets (indicated by their satu-

ration). The itemsets are ordered

vertically by their size and lexi-

cographically in a horizontal di-

rection.

[194]: Munzner et al. (2005), Vi-

sual mining of power sets with

large alphabets

[194]: Munzner et al. (2005), Vi-

sual mining of power sets with

large alphabets

[196]: Han et al. (2004), Mining

Frequent Patterns without Can-

didate Generation: A Frequent-

Pattern Tree Approach

Pixel Based Visualizations

Munzner et al. use the accordion drawing technique that fea-

tures guaranteedvisibility and a rubber sheet navigation [194]

(Figure 4.4). The itemsets are sorted vertically according to

their size (number of items). Within one row they are lexi-

cographically sorted. If there is not enough space, multiple

itemsets are aggregatedwithin one cell which is visualized as

a darker, more saturated cell. The system provides a cell for

every possible itemset that is generatable from the alphabet

and, thus, supports the analysis for two different datasets

that contain the same alphabet or analyzing the same dataset

with different constraints. The support or frequency of an

itemset is not mapped to a visual variable. However, the

user can filter the result by this and other constraints. The

visualization supports displaying up to 7 million itemsets

and alphabet sizes of 40,000 [194].

Tree Visualizations

Most of the mined itemsets are redundant except for maxi-

mal frequent itemsets. This redundancy can be represented

in a tree where each tree hierarchy represents one or more

k-itemsets. A total order of the items can be applied without

the loss of generality. Thus, a prefix tree can be generated

which is also known as FP-tree [196].
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Figure 4.5: FP-Viz [195] by Keim

et al. showing the FP-tree in a hi-

erarchical visualization known

as sunburst. Each ring represents

a tree hierarchy and each seg-

ment displays one item. Itemsets

can be read by neighboring seg-

ments from in- to outside.

[195]: Keim et al. (2005), Fp-viz:

Visual frequent pattern mining

[197]: Stasko et al. (2000), Fo-

cus+Context Display and Navi-

gation Techniques for Enhancing

Radial, Space-Filling Hierarchy

Visualizations

[198]: Yang et al. (2003), Inter-

Ring: a visual interface for navi-

gating and manipulating hierar-

chies

[196]: Han et al. (2004), Mining

Frequent Patterns without Can-

didate Generation: A Frequent-

Pattern Tree Approach

[199]: Leung et al. (2012), Radi-

alViz: An Orientation-Free Fre-

quent Pattern Visualizer

[200]: Leung et al. (2011),

FpMapViz: A Space-Filling Visu-

alization for Frequent Patterns

[201]: Shneiderman (1992), Tree

Visualization with Tree-Maps: 2-

d Space-Filling Approach

[202]: Leung et al. (2016), Pyra-

midViz:VisualAnalytics andBig

Data Visualization for Frequent

Patterns

The FP-Viz tool by Keim et al. [195] uses a sunburst [197]

and interring [198] visualization technique to display the

FP-tree [196]. Each circle segment represents a node of the FP-

tree. The segments are ordered according to the tree hierarchy

from the in- to the outside. Therefore, each pattern can be

derived from the connected segments on each level. The

support is mapped to color. The user can click any segment

(item) to filter the tree such that only itemsets, where the

clicked item is contained, are shown. The selected item is

therefore represented as the root in the center.

Leung et al. provide a similar visualization [199]. In contrast

to FP-Viz, the color is mapped onto the cardinality.

Leung et al. use FPMapViz [200] to visualize the hierarchy

in a tree-map [201]. Itemsets of the same cardinality (size)

are represented by rectangles of the same size. Therefore,

itemsets can be read by going downwards the hierarchy as

sub-rectangles. The support is displayed using colors.

In PyramidViz [202] (Figure 4.6) the prefix information is

encoded from bottom to top in form of a pyramid. Each item

that is part of a frequent itemset is represented either as a

trapezoidal block or triangle blockdependingonwhether this

item can be extended by another item or not. This impression
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Figure 4.6: The Pyramid-

Viz [202] by Leung et al. shows

items as blocks of a pyramid.

Connecting the blocks as shown

by the thin gray lines forms the

itemsets. The color references

the support.

Figure 4.7:Frequent itemsets dis-

played as parallel coordinates

by Yang [203]. The support is

mapped to color.

[49]: Agrawal et al. (1994), Fast

Algorithms for Mining Associa-

tion Rules in Large Databases

[203]: Yang (2003), Visualizing

Frequent Itemsets, Association

Rules, and Sequential Patterns in

Parallel Coordinates

is enforced by more vertical black lines to separate the blocks.

Additionally, the items are connected by grey lines. The

color hue of the blocks is used to display the frequency

information. The visualization technique allows insights into

the decreasing support of supersets of itemsets which is

known as the Apriori property [49].

Linear Visualizations

Yangvisualizes frequent itemsets as parallel coordinates [203]

(Figure 4.7). Here, all items are placed on one axis (vertical

coordinate). Their position is determined by their group (if

a taxonomy is given) and further by the frequency of the

item in descending order which is equal to the support of

the 1-itemset that contains the respective item. There are

as many axes as the longest frequent itemset that could be

mined which is in the extreme case the size of the alphabet.

All axes contain the same vertical order of the items. An

itemset is visualized as a polyline. The strategy for drawing

the polyline is similar to the vertical ordering of the items.

Groups are arranged together, and items within a group
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Figure 4.8: FIsViz [205] by Le-

ung et al. represents itemsets in

a scatterplot-like visualization

where the y-axis conveys the sup-

port and the x-axis the cardinal-

ity of the itemsets. Polylines con-

nect the items and, thus, build

the itemsets.

[204]: Yang (2005), Pruning and

Visualizing Generalized Associ-

ation Rules in Parallel Coordi-

nates

[205]: Leung et al. (2008), FIsViz:

A Frequent Itemset Visualizer

[206]: Leung et al. (2008),

WiFIsViz: Effective Visualization

of Frequent Itemsets

are sorted according to their frequency in descending order.

This ensures positive slopes and reduces clutter. The support

can either be mapped to the color or width of the line. The

visualization effectively visualizes maximal frequent item-

sets as all subsets are implicitly drawn as sub-segments of

one polyline. This, however, means that the support of the

subsets, which can differ greatly, is hidden from the user. For

itemsets that share a common part, there is a chance that

the polyline would be overplotted. Yang proposes the use of

Bezier curves to solve this problem [204].

Leung et al. use a different mapping of the axis in their tool

FIsViz [205] (Figure 4.8). Here, the support is shown on

the y-axis and each item from the alphabet is mapped as

a discrete dimension onto the x-axis. The items are placed

in descending order in respect of their support. The items

are connected with polylines indicating the itemsets and the

according subsets or supersets respectively. The mapping

onto the axes allows querying by support (vertically) and

by cardinality in the horizontal direction. 1-itemsets are

represented as a circle whereas all itemsets with a higher

cardinality have a triangle icon. As in the parallel coordinate

plots of Yang, the polylines clutter as the size of the alphabet

and the number of itemsets increases.

As a countermeasure Leung et al. propose WiFIsViz [206]

where multiple itemsets are merged into horizontal lines

called wiring-type diagrams. Itemsets are merged when they

contain the same prefix, based on any total order of the

items, and the same support. As shown in Figure 4.9, the

tool consists of two views: an overview visualization on the

left and a detail view on the right. The overview shows the

merged patterns. As in FIsViz, the y-axis is used to display

the support. The detail view uses a modified hierarchical
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Figure 4.9: WiFIsViz collapses

multiple itemsets into horizontal

lines to reduce clutter [206].

Figure 4.10: Association Rule

Visualizer by Klemettinen et

al. [83]. The left shows a brows-

ing view where every bar chart

represents one rule. The right

shows a directed graph where

multiple association rules are

displayed.

[207]: Leung et al. (2009), FpVAT:

a visual analytic tool for support-

ing frequent pattern mining

view to display the itemsets where the vertical axis is used

to span the tree and does not reflect the support. Both views

are linked as shown in Figure 4.9. The wiring-type technique

is also used in FpVAT [207] where it is combined with a raw

data visualization module.

4.3.2 Association Rules

Association rules [208] are an extension of frequent itemset

mining and an important concept in KDD. An association

ruleX → Y , whereX and Y are disjoint itemsets, indicates

that itemsX (also called left-hand side, body, or antecedent

itemset) occurring in several records of a transaction database

verify Y (also called right-hand side, head, or consequent

item). In general, twomeasures are applied for an association

rule: (i) the support verifies that a rule does occur in at least

x records and (ii) confidence measures the reliability of a

rule (i.e., the probability that whenX also occurs Y occurs).

Association rule mining typically does not consider the order

of items within a record or across records.
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[83]: Klemettinen et al. (1994),

Finding Interesting Rules from

Large Sets of Discovered Associ-

ation Rules

[83]: Klemettinen et al. (1994),

Finding Interesting Rules from

Large Sets of Discovered Associ-

ation Rules

[210]: Rainsford et al. (2000), Vi-

sualisation of Temporal Interval

Association Rules

Individual Representations

Klemettinen et al. developedRule Visualizer a tool to visualize
and explore association rules [83]. Figure 4.10 shows two

views of the tool: a browsing view on the left and a rule

graph on the right (see Section 4.3.2). In the browsing view,

every association rule is represented as one bar chart. The

left bar represents confidence, and the right bar the support.

The central bar displays the commonness. The number of

attributes on the left-hand side of the rule is shown in the cir-

cled number. A textual representation of the association rule

is shown left of each bar chart. The items are in separate lines.

The left-hand side and right-hand side are distinguished by

an arrow in front of the line.

Directed Graph

The rule graph (Figure 4.10, right) is a directed graph and vi-

sualizes several association rules simultaneously [83]. Here,

each node represents an item. The arrows display the rule

association where the thickness of the edge can be mapped

to either the support or the confidence. Multiple items on the

left-hand side are connected via an arc. For example, the rule

CD → B can be found in the graph. The authors discuss in

the paper that both properties of an association rule could

be mapped to an edge by using color. Also using opacity is

possible. It is clear that such a graph is difficult to draw and

does not scale well to many association rules. Therefore, the

authors offer four interaction possibilities: (i) exclusion of

association rules by removing items (as shown by the nodes

E - J in Figure 4.10); (ii) inclusion of items using templates;

(iii) by letting the user set a maximal rule size for the itemset

of the left-hand side; and finally (iv) letting the user join

nodes (i.e., items) together. In general, even though such a

graph may aggregate several association rules nicely, it is

difficult to compare the properties (support or confidence) of

different association rules. Therefore, the edges are labeled

to compare the exact numbers.

Han et al. [209] (DBMiner) and Rainsford et al. [210] also

use a directed graph to visualize association rules. Both

use a radial layout for the items. Edges are thus connected

within the so-created circle. Rainsford et al. use gradient
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Figure 4.11: A matrix-based vi-

sualization for two-dimensional

numerical association rules by

Fukuda et al. [211].

[211]: Fukuda et al. (1996), Data

mining using two-dimensional

optimized association rules:

Scheme, algorithms, and visu-

alization

[212]: Han et al. (2000), AViz: A

Visualization System for Discov-

eringNumericAssociationRules

[213]: Agrawal et al. (1996), The

Quest Data Mining System

8: http://www.almaden.ibm.
com/cs/quest/demo/assoc/
general.html, accessed Feb.

2018

lines (yellow to blue or vice versa) to indicate the antecedent

and consequent items. Bidirectional items are shown with a

green line to easily spot them in the graph.

Matrix Views

Fukuda et al. are visualizing two-dimensional numerical

association rules (e.g.,XY → Z) using a matrix-based visu-

alization [211]. In this case, the left-hand side of the associa-

tion rule is not based on binary features but on numerical

attributes (e.g., age). With an equal-sized binning, the nu-

merical features are discretized and can be mapped on a

two-dimensional grid (see Figure 4.11). The authors map the

brightness onto the support of a mined rule and the confi-

dence onto the color. Bright and red pixels stand for a rule

with high support and confidence. A careful bin selection

and an overall good correlation across the bins with the

consequent item possibly results in a non-scattered view. The

method scales well to small bin sizes or large ranges of the

dimensions respectively.

AViz by Han et al. [212] extends the two-dimensional model

to a three-dimensional space.

Commercial tools like IBM QUEST [213]
8
also provide matri-

ces for association rules. InQUEST, item-to-item relationships

(i.e.,X → Y ) can be inspected in 2D views where either the

support or the confidence is mapped to color. In a 3D view,

the support ismapped to color, and the confidence ismapped

to the height of a bar in the respective cell or vice versa. For

http://www.almaden.ibm.com/cs/quest/demo/assoc/general.html
http://www.almaden.ibm.com/cs/quest/demo/assoc/general.html
http://www.almaden.ibm.com/cs/quest/demo/assoc/general.html
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Figure 4.12:A3D table visualiza-

tion by Wong et al. [215] repre-

senting each association rule as

a separate column. The alphabet

of items is shown as rows. Addi-

tionally, confidence and support

for each association rule are pro-

vided.

9: ftp://ftp.sgi.com/sgi/
mineset/overview/mineset_
overview.htm, accessed Feb.

2018

[214]: Brunk et al. (1997), Mine-

Set: An Integrated System for

Data Mining

[215]: Wong et al. (1999), Visual-

izing Association Rules for Text

Mining

3-item association rules of form, XY → Z QUEST offers a

different 3D view where the plane on the bottom is similar to

the 2D item-to-item visualization. The z-axis provides access

to the second item of the antecedent itemset. The resulting

cubes in the 3D space indicate the mined rules. The colors of

the cubes can be mapped to support or confidence. The 3D

view may show clusters. The user can click on a box to see

all other rules containing one of the items of the current rule.

Additionally, spatial navigation is supported.

MineSet
9
[214] uses a similar 3D view for item-to-item as-

sociation rules. Here, each cell contains a bar colored in a

continuous color range. The height of the bar represents

confidence. The color shows support. Additionally, each bar

is sliced by one disk at different heights of the bar indicating

the probability of the right-hand side of the rule.

Table Views

While the matrix views can be extended to show multiple

item-to-item relationships by adding additional rows and

columns for each itemset, Wong et al. point out that extend-

ing the matrix view in this way does not scale well with a

large alphabet of items and that if one row contains many

items it is difficult to compare it to another row with many

items [215]. Another general problem with 3D views is the

occlusion that may occur. The user must also adjust the per-

spective to compare, for example, the height of the bars –

if this is not impossible due to occlusion. Wong et al. pro-

pose a rule-to-item 3D table-based view where each rule is

displayed as a separate column of the matrix whereas the

ftp://ftp.sgi.com/sgi/mineset/overview/mineset_overview.htm
ftp://ftp.sgi.com/sgi/mineset/overview/mineset_overview.htm
ftp://ftp.sgi.com/sgi/mineset/overview/mineset_overview.htm
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Figure 4.13:Mosaic Plot of mul-

tiple association rules by Hof-

mann et al. [187].

[216]: Lee et al. (2013), Min-

ing Points-of-Interest Associa-

tion Rules from Geo-tagged Pho-

tos

[187]: Hofmann et al. (2000), Vi-

sualizing association rules with

interactive mosaic plots

[217]: Hartigan et al. (1981), Mo-

saics for contingency tables

[187]: Hofmann et al. (2000), Vi-

sualizing association rules with

interactive mosaic plots

rows represent one single item (Figure 4.12). In the back, two

bar charts provide the support and confidence properties for

each rule. Figure 4.12 shows, for example, the rule james &

michigan → nichols on the rightmost column (next to the

labels of the items) with the confidence of 100% and support

of 9%. It is clear that this visualization is capable of support-

ing many-to-many item association rules and scales well to

larger alphabets as well as many rules. Navigating such large

spaces might become difficult but can be supported through

interaction by highlighting the respective columns and rows.

Lee et al. use the same technique to visualize association

rules based on geo-tagged photos [216].

Mosaic Plots

Hofmann et al. build interactiveMosaic plots [187, 217], called

Double Decker plots, based on contingency tables created

from association rules enabling the user understanding the

underlying structure [187]. Figure 4.13 shows such a plot for

the rule

R1 : heineken & coke & chicken→ sardines

as well as all subsets of this association rule, for example:

R2 : heineken & coke & not chicken→ sardines

The two-colored horizontal bars on the bottom indicate

whether the items are part of the rule (black) or not (white).

Both measures for an association rule, support, and con-

fidence, are shown above. The support is mapped to the

width of one bar (grey and red parts combined). The red

highlighting in each bar shows the confidence measure. The
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[203]: Yang (2003), Visualizing

Frequent Itemsets, Association

Rules, and Sequential Patterns in

Parallel Coordinates

[218]: Liu et al. (2000), Analyzing

the Subjective Interestingness of

Association Rules

confidence measure can be directly read from the visualiza-

tion (e.g., R1:∼ 98%, R2:∼ 8%). The support is more difficult

as there is no axis. However, it is possible to compare the

support such as R1 has higher support than R2. This clever

way of visualizing both measures simultaneously allows the

user to compare multiple association rules, especially sub-

sets, where the consequent part consists of one item or does

not change. Comparing association rules with only a small

intersecting set of the antecedent side is possible, however,

increases the complexity of the visualization. In general, the

visualization is not meant to aggregate a large set of rules

nor scale well to large alphabets of items.

Linear Visualizations

Yang’s idea to visualize itemsets in a parallel coordinate

plot works as well for association rules [203]. To distinguish

the antecedent and consequent side from items belonging

to either side, Yang plots an arrow on the line where the

sides are connected. For example, with a rule, AB → CD

the arrow will be on the line between the second and third

axis. The property of positive slopes on either side still held

true (see Section 7). A positive slope for the line connecting

both sides cannot be guaranteed. Yang mentions that it is,

however, more likely that this slope is negative. Besides the

arrow, this feature also introduces a visible distinguishment.

Two further visual variables are available: line width and

color. For association rules both, confidence and support can

be mapped at the same time. Note, that the line width might

increase clutter.

Mining with Subjective Interesting Measures

The previous visualization techniques focus on visualizing

association rules including the visualization of the objective

measure’s support and confidence. Liu et al. explicitly focus

on subjective measures and here, especially on the unexpect-

edness of a rule [218]. These are rules that are a contradiction

to the user’s knowledge or completely unknown. The user

can, therefore, specify her knowledge and insert this into the

interestingness analysis system. The user interface (Figure 4.14)

separates four different types of identified rules: conforming

rules, unexpected condition rules, unexpected consequent
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Figure 4.14: The interestingness
analysis system separates four

different types of association

rules based on their potential in-

terestingness [218].

[116]: Agrawal et al. (1995), Min-

ing Sequential Patterns

[51]: (2014), Frequent Pattern

Mining

[178]: Mabroukeh et al. (2010), A

taxonomy of sequential pattern

mining algorithms

[219]: Giannotti et al. (2007), Tra-

jectory pattern mining

[220]: Andrienko et al. (2013), Vi-

sual Analytics of Movement

[184]: Aigner et al. (2011), Visual-

ization of Time-Oriented Data

rules, and both-side unexpected rules. The authors state that

it is more important to only show the interesting part of the

rule instead of the complete rule.

4.3.3 Sequential Patterns

Mining sequential patterns [116] describes an extension to

frequent itemset mining where subsequences of a given

sequence database are discovered [51]. In contrast to frequent

itemsets and association rules, the order is defined in the data

which puts limitations on the visualizations since they should

represent this order of the events in a pattern. An event is

equal to a set of items. These itemsets are extended to hold an

additional property that defines their order and occurrence in

time. In application areas such as DNA sequences, weblogs,

and click streams [178] there are most of the time only 1-

itemsets involved which simplifies visualizations. Sequential

patterns are also useful for mining trajectories [219] and find

common patterns in movement [220]. In general, a pattern

can be viewed as a prototype of multiple event sequences

and, therefore, be visualized in such amanner. In a geospatial

context, this allows, for example, to identify common travel

routes in traffic.

This section focuses on visualization techniques specifically

for sequential patterns. For a broader view of time-oriented

data, we refer to the book of Aigner et al. [184] and other



4.3 Visualizations and Visual Analytics Techniques 97

(a) A representation for interval

and point event patterns by Shin

et al. [222].

(b)Wanner et al. visualize interval-

events with the help of sparklines

generated by a SOM [25].

(c) Patterns are represented simi-

lar to a regular expression [154].

Figure 4.15: Point and interval patterns can be represented as vertically separated point and line constructs (a).

More information can be encoded using glyphs (b). Annotating events with constructs known from regular

expressions enables the creation of queries and rules (c).

[185]: Silva et al. (2000), Visual-

ization of Linear Time-Oriented

Data: A Survey

[186]: Aigner et al. (2007), Visu-

alizing time-oriented data - A

systematic view

[221]: Fournier-Viger et al. (2014),

Fast Vertical Mining of Se-

quential Patterns Using Co-

occurrence Information

[222]: Wu et al. (2009), Discov-

ering hybrid temporal patterns

from sequences consisting of

point- and interval-based events

[25]: Wanner et al. (2016), Inte-

grated visual analysis of patterns

in time series and text data -

Workflow and application to fi-

nancial data analysis

surveys [185, 186].

Individual Representations

Patterns can be represented in the form of text, for example,

〈{a}, {b, c}〉 [221] where an item a occurs before items b and

cwhich occur at the same time. In case of interval events that

do not only occur at a specific point in time but rather over a

given period with a defined start and ending point, Shin et

al. [222] use a representation where the start of an event is

marked with a and the end with a −. The following number

is used to identify the starts and ends if the same event occurs

multiple times. For example, a1 < b1 < b−1 < c < a−1 = d

where an interval event a starts before another interval event

b, b ends before a point event c which is followed by the end

of a. The point-event d occurs at the same time as a ends.

Textual representations are less fitting for interpreting and

understanding a pattern can be complex which is especially

true for patterns with many items and when items also occur

at the same time.

Shin et al. also present another representation that is more

intuitively comprehensible (Figure 4.15a). The order is main-

tained from left to right whereas events are separated verti-

cally. Colors plus the additional labels allow the identification

of the events. This representation can be modified to use

different symbols for the events or even glyphs which al-

low visualizing additional information for an event [25]

(Figure 4.15b). In the case of a larger alphabet, the visual
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Figure 4.16: Maximal sequential

patterns from clickstream data

are visualized on the left. The

right side shows an aligned se-

quence view based on a selected

event [223].

[29]: Jentner et al. (2017), Feature

Alignment for the Analysis of

Verbatim Text Transcripts

[154]: Cappers et al. (2018), Ex-

ploring Multivariate Event Se-

quences Using Rules, Aggrega-

tions, and Selections

[223]: Liu et al. (2017), Patterns

and Sequences: Interactive Ex-

ploration of Clickstreams to Un-

derstand Common Visitor Paths

representation does not scale well regarding understandabil-

ity [29]. Furthermore, as a single pattern representation, it is

not desirable to visualize many patterns at the same time. In

none of these representations, additional properties such as

the support are mapped. This can be added for example in a

separate representation such as a bar, the size of the pattern

can be modified, or the background color (hue, saturation).

The latter two have to be applied carefully as they might

distort colors and hinder the user from comparing different

patterns.

Cappers et al. use a representation that is very similar to

regular expressions [154] (Figure 4.15c). This is especially

powerful for creating rules and queries to simplify and filter

a large set of rules. It also allows for simplifying the pat-

terns themselves by reducing the number of events that are

displayed. However, a user must know and understand the

concept of regular expressions. It is, however, difficult to auto-

matically generate such a representation fromagivenpattern.

Liu et al. mine for maximal sequential patterns in clickstream

data [223]. As shown in Figure 4.16, patterns are represented

as linear, vertical constructs of different lengths where the

temporal flow is indicated from top to bottom. The length

encodes the average sequence length. The vertical position

of the event reflects the average number of clicks needed

to reach the specific event. The grey line connecting the

events resembles a funnel visualization and indicates the

decreasing support or in other words, the percentage of

people reaching the event through the click sequence. The

exact number is also shown above for each event. The view

on the right visualizes each sequence individually. Clicking
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(a) The pattern diagram by Patnaik et al. [230]

shows patterns from electronic medical records.

(b) The state transition panel in the tool Session
Viewer places all events in one line but allows

splits in the streams [225].

Figure 4.17: Two node-link visualizations that use a state transition analogy to display and aggregate multiple

sequential patterns.

[224]: Kruskal et al. (1983), Icicle

plots: Better displays for hierar-

chical clustering

[225]: Lam et al. (2007), Session

Viewer: Visual ExploratoryAnal-

ysis of Web Session Logs

[226]: Wongsuphasawat et al.

(2011), LifeFlow: visualizing an

overview of event sequences

[227]: Wongsuphasawat et al.

(2014), Using visualizations to

monitor changes and harvest in-

sights from a global-scale log-

ging infrastructure at Twitter

[228]: Bernard et al. (2015),

A Visual-Interactive System for

Prostate Cancer Cohort Analysis

[152]: Monroe et al. (2013), Tem-

poral Event Sequence Simplifica-

tion

[154]: Cappers et al. (2018), Ex-

ploring Multivariate Event Se-

quences Using Rules, Aggrega-

tions, and Selections

[223]: Liu et al. (2017), Patterns

and Sequences: Interactive Ex-

ploration of Clickstreams to Un-

derstand Common Visitor Paths

[225]: Lam et al. (2007), Session

Viewer: Visual ExploratoryAnal-

ysis of Web Session Logs

[229]: Mannila et al. (2000),

Global partial orders from se-

quential data

[230]: Patnaik et al. (2011), Ex-

periences with mining temporal

event sequences from electronic

medical records: initial successes

and some challenges

[225]: Lam et al. (2007), Session

Viewer: Visual ExploratoryAnal-

ysis of Web Session Logs

on an event of a pattern will align all sequences by that event.

The metrics of a sequence are represented by the bar chart on

top. Without any alignment and through sorting the events

by category an icicle plot [224] resembles. It is noteworthy

to mention that icicle plots are quite popular for visualizing

event sequences [225–228] and that aligning sequences leads

to a better overview for comparison [152, 154, 223, 225]

Flow Diagram Visualizations

Flow diagrams, also known as flowcharts, are frequently

used to display complex systems. They are especially useful

to represent different states or components of a system. Tran-

sitions or connections between the states are connected with

lines or arrows. Sequential pattern mining works on discrete

event data. Therefore, the analogy to represent events as

states connecting successive events to indicate the transition

is given.

Mannila et al. extract global partial orders from event se-

quence data [229]. While this is not the same as sequential

patterns, there are many similarities. Visualizing and aggre-

gating event sequences in such a way provides an intuitive

representation that moderately scales to a growing number

of events. No frequency information (support) is shown in

this visualization.

Similar to the tree visualization of Mannila et al., Patnaik et

al. provide a pattern display in their tool which is designed

for electronic medical records [230]. The pattern display is

laid out horizontally and can split up into different events

that might converge later on (Figure 4.17a).

Lam et al. also use the idea of a state transition represen-

tation [225] in their tool Session Viewer (Figure 4.17b). For

logs, such state transition representations are well known
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Figure 4.18: A parallel coordi-

nates plot to visualize sequential

patterns [203].

[231]: Guzdial et al. (1993), Char-

acterizing process change using

log file data

[232]: Hu et al. (2017), Visualiz-

ing Social Media Content with

SentenTree

[233]: Bernard et al. (2013),

MotionExplorer: Exploratory

Search in Human Motion Cap-

ture Data Based on Hierarchical

Aggregation

[203]: Yang (2003), Visualizing

Frequent Itemsets, Association

Rules, and Sequential Patterns in

Parallel Coordinates

especially when Markov models are being used [231]. The

width of the arcs represents the frequency of the respective

transition.

Huet al.mine sequential patterns basedonwords from tweets

and visualize the words in a node-link diagram [232]. In their

tool SentenTree, the nodes (words) have different sizes and

colors representing their frequencies (double-encoded).

As for individual patterns, nodes of a flow diagram can

also integrate glyphs which enables the user to intuitively

understand complex features and their temporal order [233].

Parallel coordinates are also suitable for sequential patterns

as their axes promote a natural ordering. In contrast to visu-

alizing itemsets (Section 7) and association rules (Section 9)

each element on the axis represents an itemset instead of

an item. This is necessary because in general, sequential

patterns may have items occurring at the same time. As the

order is given, no assumption can be made that the polylines

have positive slopes. The property that subsequences are

absorbed remains true. The support of the pattern is not

mapped onto the complete polyline. Instead, each 2-itemset

segment is colored according to its respective support re-

sulting in a polyline with multiple colors. Yang claims that

this approach provides more information [203]. The fact that

itemsets are mapped to distinct elements on the axes as well

as the nonuniform slopes increases the clutter.
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Figure 4.19: Sequential patterns
visualized using a Sankey dia-

gram [158].

Figure 4.20: MatrixWave [236], a
zig-zag layout of multiple matri-

ces which can be derived from

the Sankey-diagram visualiza-

tion.

[158]: Perer et al. (2014), Fre-

quence: interactive mining and

visualization of temporal fre-

quent event sequences

[234]: Chou et al. (2016), Privacy

preserving event sequence data

visualization using a Sankey

diagram-like representation

[235]: Perer et al. (2015), Min-

ing and exploring care pathways

from electronic medical records

with visual analytics

[236]: Zhao et al. (2015), Ma-

trixWave: Visual Comparison of

Event Sequence Data

Sankey diagrams extend flow diagrams by using a visual

mapping on the width of the line that shows the flow. Typi-

cally the quantity of the flow is mapped. In contrast to state

transition representations, Sankey diagrams use larger bars

(rectangles) as a vertex. Perer andWang use Sankey diagrams

to represent sequential patterns [158] (Figure 4.19). This type

of visualization can aggregate multiple patterns and implic-

itly show subpatterns. The support of each pattern is mapped

onto the width of the line. In the case of convergence, the

slightly transparent line overlaps and allows the distinction of

the originating path. An additional attribute can be mapped

onto the color which further helps to distinguish the different

flows. Chou et al. use a variant of a Sankey diagram to visual-

ize privacy-preserving event sequence data [234]. Perer et al.

combine their Sankey diagram representation with a bubble

chart which shows the most frequent 1-event patterns [235].

Zhao et al. point out that Sankey diagrams, like other node-

link diagrams, tend to produce clutter due to many overlap-

ping edges [236]. They propose to use multiple transition

matrices in a zig-zag layout to represent event sequence data.

Each transition matrix replaces two vertical stages (set of

nodes) and their links in between them. The height of the

node bars from the Sankey diagram is replaced by bars on
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Figure 4.21: The ActiviTree inter-
face [157]. The left shows a graph

where the central part is the cur-

rent pattern in focus. Preced-

ing and succeeding events are

placed below and above the cen-

tral part whereas the support is

mapped onto the opacity of the

lines. The right part visualizes

the sequences where the yellow

parts represent the selected pat-

tern.

[157]: Vrotsou et al. (2009), Ac-

tiviTree: Interactive Visual Ex-

ploration of Sequences in Event-

Based Data Using Graph Simi-

larity

[237]: Liu et al. (2017), Core-

Flow: Extracting and Visualizing

Branching Patterns from Event

Sequences

the sides of the matrix. The links connecting the nodes are

visualized in the matrix where the metric that is mapped

to the line width is now mapped to the size of a square in

the grid of the matrix. Additional design elements such as

color can be used to map additional attributes, for example,

to compare two datasets.

Vrotsou et al. use a graph layout to let a user interactively

mine for patterns also allowing the generation of infrequent

patterns [157] (Figure 4.21, left). The currently focused part

is shown in the center of the graph with events preceding

the pattern below and succeeding events above. The events

are ordered according to their significance in descending

order from left to right. The frequency information (support)

is mapped onto the opacity of the edge. The events (nodes)

are colored according to a classification of the underlying

data. The user can interactively extend the pattern by click-

ing on preceding and succeeding events. Similarly, nodes

can be removed from the current pattern to enable the user

to explore a different pattern. The right view (Figure 4.21)

displays the sequences whereas the highlighted part (yellow)

refers to the selected pattern from the left side. The time is

also represented on the y-axis from bottom to top. The x-axis

is separated by sex, and the sequences are ordered by age

within their group.

The earlier mentioned icicle plot visualization could also be

used for branching patterns [237]. Liu et al. can alternatively

display a node-link diagram or a combination of both as

shown in Figure 4.22. The width of the rectangles and the

links reflect the number of sequences. The node level is

double-mapped onto the vertical position as well as the color.

Only links leading to exit nodes are colored in a specific grey
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Figure 4.22: A combination of

an icicle plot visualization and

node-link diagram for branching

patterns [237].

Figure 4.23: Two aggregated pat-

terns represent two disjoint sets

of similar patterns [15].

[238]: Grünwald (2004), A tu-

torial introduction to the min-

imum description length princi-

ple

[15]: Chen et al. (2018), Sequence

Synopsis: Optimize Visual Sum-

mary of Temporal Event Data

color to make them distinctive.

Aggregated Patterns

The previous section introduced various pattern visualiza-

tions suitable to represent several patterns synonymously.

Anothermethod is to aggregate similar patterns andvisualize

only the prototype.

Chen et al. summarize multiple patterns according to the

minimum description length [238] and visualize the so-

gained prototype including the lost information [15]. This is

achieved using corrections that insert or delete events. The

visualization, as shown in Figure 4.23, encodes the number

of matched events which is mapped to the height of the

rectangle and the number of additional events that can occur

before, after, or in-between the pattern which is displayed by

a triangle glyph of varying size.
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(a) The colors represent the events
of a pattern. The patterns are clus-

tered using a SOM and an addi-

tional placement strategy is ap-

plied to guarantee an overlap-free

layout [239].

(b) The top n patterns are repre-

sented as a circle. The other pat-

terns are displayed as a heatmap

in the scatterplot. Different met-

rics can be mapped to the axes.

The line connecting the pat-

terns indicates sub- and superpat-

terns [159].

(c) Patterns are represented

through rectangles which are

placed on a 2D plane using pro-

jection methods. Similar patterns

are closer together [8].

Figure 4.24: Patterns can be clustered and placed on a 2D plane reflecting their similarity or different metrics

can be used to layout patterns.

[239]: Wei et al. (2012), Visual

cluster exploration of web click-

stream data

[240]: Viégas et al. (2009), Partic-

ipatory Visualization with Wor-

dle

[159]: Stolper et al. (2014), Pro-

gressive Visual Analytics: User-

Driven Visual Exploration of In-

Progress Analytics

[241]: Gotz et al. (2014), A

methodology for interactivemin-

ing and visual analysis of clinical

event patterns using electronic

health record data

Pattern Placement Strategies

This section focuses on the placement of multiple sequential

patterns in a 2D layout. This enables the users to quickly iden-

tify similar patterns or find interesting patterns by placing

them according to metrics.

Wei et al. use differently colored, horizontally placed rect-

angles to represent web click stream patterns [239]. They

use a SOM with Markov chains to define the 2D positions

for each pattern such that clusters become visible. As this

does not guarantee an overlap-free layout, Wei et al. use an

additional placement strategy which is also used to create

word clouds [240]. The significance of a pattern is mapped

onto the size.

Stolper et al. use a scatterplot to plot patterns [159]. The user

can select threemetrics. The first defines the size of the circles

whereas the top n patterns are drawn. The rest is aggregated

in a heatmap. The other two metrics are mapped to the axes

of the scatterplot. In the use case described in the paper, the

support is mapped to the y-axis, and a correlation measure

is used to align the patterns horizontally. Through a line

connector, sub- and super-patterns of an inspected pattern

can be found.

Gotz et al. use a scatterplot where the support is mapped

to the x- and the y-axis [241] of different patients’ outcomes.
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(a) The EventExplorer interface of Bodesinsky et

al. uses a technique similar to arc diagrams to

visualize serial episodes in event sequences and

thus highlighting recurring patterns and their

distributions [243].

(b) DecisionFlow shows episodes using glyphs

and highlights the respective space between the

beginning and end of the episode [153].

Figure 4.25: Two techniques to visualize serial episodes in event sequences.

[8]: Jentner et al. (2018), Making

machine intelligence less scary

for criminal analysts: reflections

on designing a visual compara-

tive case analysis tool

[242]: Mannila et al. (1997), Dis-

covery of Frequent Episodes in

Event Sequences

[244]: Wattenberg (2002), Arc Di-

agrams: Visualizing Structure in

Strings

The size of the circles (patterns) is mapped to the correlation

to the outcome.

In previous work, we used a scatterplot to depict sequential

patterns on a 2D space [8]. In contrast to Stolper et al., the

axes were not defined by some metric, but we use various

projections to reduce the high-dimensional space and map it

on a 2D plane. The view is, therefore, showing similarities in

patterns. Each pattern is represented by a rectangle whereas

the width of the rectangle defines the number of items that

are contained in the sequential pattern.

Episode Visualization

In episode mining [242], patterns are mined in a single

sequence. A pattern, therefore, is a partial order of events

that can be found multiple times in a given sequence of

events. Typical application examples are logs of alarms, user

interactions, and medical events of a patient. Episodes can,

therefore, show the semantically meaningful connection of

events as well as predict the behavior of a sequence in the

future. Although mined differently, episodes are visually

closely related to sequential patterns. This section will report

on visualization techniques that display the position of serial

and parallel episodes.

Arc diagrams [244] are a popular method for visualizing

recurring episodes in a sequence. They are especially pow-

erful to highlight regular recurring patterns which can be

useful in various domains such as text or music. Bodesinsky
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[243]: Bodesinsky et al. (2015),

Exploration and Assessment of

Event Data

[153]: Gotz et al. (2014), Decision-

Flow: Visual Analytics for High-

Dimensional Temporal Event Se-

quence Data

[29]: Jentner et al. (2017), Feature

Alignment for the Analysis of

Verbatim Text Transcripts

[245]: Bertin (1983), Semiology

of graphics: diagrams, networks,

maps

[246]: Mackinlay (1986), Au-

tomating the Design of Graph-

ical Presentations of Relational

Information

[247]: Munzner (2014), Visualiza-

tion Analysis and Design

10: A quantitative comparison

would require the implemen-

tation of each technique, stan-

dardized datasets, as well as

a methodology to measure the

scalability, for example, by mea-

suring the occlusion through

pixel overplotting [248]. We con-

sider this as future work.

et al. make use of a variation of arc diagrams to visualize

recurrent patterns of serial episodes in event sequences [243]

(Figure 4.25a).

In DecisionFlow, Gotz et al. use a glyph representation to

visualize episodes in event sequences [153] (Figure 4.25b).

The user defines a query of a precondition (green), milestones

(blue) that resemble the episode, and an outcome (red). The

glyph for the first milestone of the episode uses a rectangular

shape which differs from the circular shapes of the following

milestones. The serial episode is additionally highlighted.

In a previous work [29], we use horizontal lines above or

below an event sequence to indicate the occurrences of serial

and parallel episodes. The horizontal lines reduce clutter as

there is no overplotting as in the arc diagrams but the length

of a serial episode covers is not directly visible. Multiple

occurrences of the same episode are indicated by small

vertical shifts of one pixel within the horizontal lines.

4.4 Comparison

This section compares the different visualization techniques

within their specific domain. We hereby use visual variables

that Bertin identified [245] and their ranking [246, 247]. We

use this ranking to depict for example the task of comparing

the support for different patterns. Additionally, we provide

an analysis of how scalable the techniques are regarding

alphabet size (Σ−Scalability) and the number of patterns

(Pattern-Scalability). Furthermore, we compare the task of

identifying a pattern. This means that a user is capable of

completely identifying all itemsof a pattern in their respective

context without using any additional interaction technique

such as tooltips. Lastly, we compare whether the hierarchy

of the patterns can be examined. We use a scale from −−, −,
, and if this is not supported. Note that these ratings were

obtained by surveying visualization and visual analytics

experts.
10

4.4.1 Frequent Itemsets

Table 4.1 shows that the pixel-based visualization features

the best scalability. However, it does not provide insight into
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Table 4.1: A comparison of visualization techniques for frequent itemsets categorized as pixel-based

visualizations, tree visualizations, and linear visualizations.

Year Σ-Scalability Itemset-Scalability Support Comparison Identification

l
a
t
t
i
c
e

[191] 1999 - - / +

[192] 2013 + + - -

p
i
x

[194] 2005 ++ ++ / /

t
r
e
e

[195] 2005 - - + + -

[200] 2011 - + - -

[199] 2012 - - + + -

[202] 2016 + - + ++

l
i
n
e
a
r [203] 2003 + + ++ -

[205] 2008 + - ++ +

[206] 2008 + ++ + +

[192]: Bothorel et al. (2013), Vi-

sualization of Frequent Itemsets

withNested Circular Layout and

Bundling Algorithm

[195]: Keim et al. (2005), Fp-viz:

Visual frequent pattern mining

[200]: Leung et al. (2011),

FpMapViz: A Space-Filling Visu-

alization for Frequent Patterns

[202]: Leung et al. (2016), Pyra-

midViz:VisualAnalytics andBig

Data Visualization for Frequent

Patterns

[83]: Klemettinen et al. (1994),

Finding Interesting Rules from

Large Sets of Discovered Associ-

ation Rules

[209]: Han et al. (1996), DBMiner:

A System forMining Knowledge

in Large Relational Databases

[210]: Rainsford et al. (2000), Vi-

sualisation of Temporal Interval

Association Rules

[211]: Fukuda et al. (1996), Data

mining using two-dimensional

optimized association rules:

Scheme, algorithms, and visu-

alization

[215]: Wong et al. (1999), Visual-

izing Association Rules for Text

Mining

[187]: Hofmann et al. (2000), Vi-

sualizing association rules with

interactive mosaic plots

the support of an itemset nor can the itemsets be directly

interpreted from the visualization. Lattice visualizations are

well suited to represent the relationships of itemsets, i.e.,

pattern containment. It is possible to map the support to

another visual variable, but the graph structure is prone to be

cluttered due to many crossing lines. The tree visualizations

provide a better comparison for support by using color

or hue [192, 195, 200, 202] as the visual variable. Linear

visualizations provide the best support comparison as they

map this feature to the position.

4.4.2 Association Rules

Association rules typically contain two interestingness mea-

sures. Table 4.2 shows that visualizing both simultaneously

is difficult while preserving their structure and being scal-

able at the same time. Graph-based systems can aggregate

multiple patterns but quickly get cluttered [83]. A solution

to this is to generate a node for each itemset instead of each

item [209, 210]. Matrices feature pixel-like visualizations and

thus, scale better. Implementing both interestingness mea-

sures is difficult here, as mapping them onto the opacity and

the hue at the same time might infer perceptual biases [211].

The table view maps association rules differently, and by

using a 3D view, both, the support and the confidence can

be visualized using a 3D bar chart (position) at the same

time [215]. The double-decker plots [187] aggregate similar

rules featuring a good comparison for both interestingness

measures and enabling the user to compare different rules.
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Table 4.2: Visualization techniques for association rules that are categorized as individual representations,

graph visualizations, matrix- and table-based visualizations, mosaic plots, and linear visualizations.

Comparison

Year Σ-Scalability AR-Scalability Support Confidence Both Identification

i
n
d

[83] 1994 - - - - ++ ++ ++ ++

g
r
a
p
h

[83] 1994 - - - + + - -

[209] 1997 - - - + + / +

[210] 2000 - + / / / +

m
a
t
r
i
x

[211] 1996 + + + + + -

[213] 1996 - + + - - -

[214] 1997 - + - + - -

[212] 2000 + + + + - - -

t
a
b

[215] 1999 + ++ + + + +

m
o
s

[187] 2000 - - - + ++ + +

l
i
n

[203] 2003 + + - - / +

[188]:Hahsler et al. (2011), Visual-

izing association rules: Introduc-

tion to the R-extension package

arulesViz

Hahsler et al. provide a similar comparison of visualization

techniques for association rules [188].

4.4.3 Sequential Patterns

Compared to frequent itemsets and association rules we

could identify the most visualization techniques for sequen-

tial patterns (Table 4.3). Thismay be becausemany real-world

applications can be abstracted to event sequence data. Indi-

vidual representations of sequential patterns do not scalewell

regarding alphabet size and the number of patterns which is

expected. Flow diagrams provide slightly better scalability

while most of them also include the interestingness measure

support in the visual representations. The aggregated pattern

visualization technique visualizes the number of missing

events that are not covered by the pattern itself. The technique

is interesting for maximal, closed, or generator patterns as

it reveals how much information is lost by the compression.

The visual representations used in the pattern placement

strategies scale best overall which is due to the abstract vi-

sualizations of the pattern. Most of the techniques do not

allow direct identification of the pattern but merely provide

information about the support or the length of a pattern. The

techniques used in the episode visualization category reveal

the occurrences of patternswithin an event sequence and also

allow the identification of periodic occurrence patterns.
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Table 4.3: A comparison of visualization techniques for sequential patterns using individual representations,

flow diagrams, aggregated pattern visualizations, placement strategies, and episode visualizations.

Year Σ-Scalability Pattern-Scalability Support Comparison Identification

i
n
d

[222] 2009 - - - - / ++

[25] 2016 - - - - / ++

[154] 2018 + + / +

fl
o
w

[229] 2000 - - / +

[203] 2003 - + + -

[225] 2007 - - - -

[157] 2009 + - + -

[230] 2011 - - / -

[158] 2014 + - + +

[236] 2015 + + + -

[237] 2017 - - + +

[232] 2017 - - + +

a
g
g

[15] 2018 + ++ + +

p
l
a
c
e

[239] 2012 - ++ + +

[159] 2014 ++ ++ ++ /

[241] 2014 ++ ++ ++ /

[8] 2018 ++ ++ + /

e
p
i
s
o
d
e

[153] 2014 - – / ++

[243] 2015 + + - - +

[29] 2017 + ++ / /

[249]: Bertin (1973), Sémiologie

graphique: Les diagrammes-Les

réseaux-Les cartes

4.5 Discussion and Opportunities for
Research

The comparison reveals that there is a tendency of decreasing

scalability visible when the identification of a pattern is

required. This means that every instance (i.e., item, rule

item, event) must be visualized. Visualizations for frequent

itemsets offer the greatest degree of freedom as the items

within an itemset typically have no natural order and thus,

can be placed in a manner to reduce clutter. For association

rules, this degree of freedom is already limited to some extent,

as a rule, especially the antecedent and consequent itemset

must bedistinguishable. The itemsets themselves canbe again

ordered freely. Sequential patterns are the most restrictive

entities because the events (itemsets) have a predefined order

that must be retained to not lose information. Note, that this

observation is not true for abstract visual representations

where the individual entities of a pattern are hidden.

Similarly, the additional display of an interestingness mea-

sure impacts the designs. There exists only a finite number of

visual variables [249] on which information can be mapped.
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[246]: Mackinlay (1986), Au-

tomating the Design of Graph-

ical Presentations of Relational

Information

[247]: Munzner (2014), Visualiza-

tion Analysis and Design

[250]: Shneiderman (1996), The

Eyes Have It: A Task by Data

Type Taxonomy for Information

Visualizations

Designs for frequent itemsets offer again the highest degree

of freedom because it is possible to map the interesting-

ness measure onto the powerful position variable [246, 247]

while retaining the identifiability and limiting the clutter.

Association rules that typically hold two interestingness mea-

sures (support and confidence) nicely show the challenges

of representing both simultaneously without impacting the

scalability or the identifiability.

Many visual designs are embedded into larger systems that

provide the opportunity for the user to not only explore the

mined patterns but also the input data (e.g., items, event se-

quences) aswell as allow the user to filter and query the input,

apply transformations such asmerging or substituting events

up to creating rules to match patterns to newly simplified

events of a higher semantic level. Simplifying and aggregat-

ing events not only reduces the information that needs to be

displayed but also simplifies the identification and especially

the re-identification of patterns by the user. Icons are, for

example, a powerful tool to represent semantical patterns.

Such operations are crucial to allow the user to include her

domain knowledge in the mining process. However, it does

not guarantee that a pattern mining algorithm only reveals

the interesting patterns that impose the visual exploration of

patterns.

To the best of our knowledge, there exists no dedicated visual

design for high-utility patterns. It is, however, clear that this

additional information requires the use of another visual

variable that is not already occupied and imposes the least

perceptional bias and clutter. Additionally, the user should be

able to gain insights into the lowest entities of the pattern (e.g.,

items, events) and their respective utilities to make informed

decisions on the appropriate parameters and thresholds. As

this will have a great impact on the scalability of the system,

it will be useful to display the utility of a pattern first and only

provide details on demand [250]. A visual analytics system

must be able to give the user insight into the input data, i.e.,

the utilities of the entities. This also includes distributions

as well as the aforementioned operations that are typically

available in related systems. These possibilities and others

such as templating will aid the user in setting the correct

parameters and eventually empower the system to include

the user’s domain knowledge.

Besides high-utility pattern mining, other extensions of the
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[251]: Keim (2002), Information

Visualization and Visual Data

Mining

[170]: Behrisch et al. (2019),

Commercial Visual Analytics

Systems-Advances in the Big

Data Analytics Field

[188]:Hahsler et al. (2011), Visual-

izing association rules: Introduc-

tion to the R-extension package

arulesViz

pattern mining methods covered in this survey exist. Exam-

ples are sequential rule mining, periodic pattern mining, and

sequence prediction. As for high-utility pattern mining, the

commonality of these extensions is that the degree of freedom

is further restricted and the complexity of the visualization

must increase as more information and constraints are avail-

able. The comparison provided in this survey sheds light on

the necessity to adjust the visualization technique toward the

tasks and users. This aspect remains inevitable and probably

becomes even more essential for these extensions.

To overcome the limitations of one visual design a system

can include multiple different visual representations of the

same data allowing one to view the data from multiple

perspectives. This has to be carefully designed, for example

through linking and brushing [251] to provide a benefit to

the user. Such systems often raise the complexity and steepen

the learning curve.

Another interesting approach is the application of visual

designs that offer a higher degree of freedom. For example,

a preliminary analysis of sequential patterns can be gained

by using techniques for visualizing itemsets and thus disre-

garding the order of the events at first. Then, the selection

of the user could be displayed with visualization techniques

for sequential patterns.

Interactions impose great benefits for the exploration and

sense-making of patterns. Highlighting techniques can be

useful to show similar or related patterns for example in a

lattice-based representation but also identify the occurrence

of items in other patterns. Filtering and search techniques

support the user in verifying whether an expected pattern or

similar patterns can be found in the result set.

Pattern mining is an essential part of the data mining field

with many possible application domains. Visualization, on

the other hand, is required for the exploration and sense-

making of the mined patterns. As mentioned in Section 4.1,

software libraries are available to provide pattern-mining

algorithms. However, less support is available on the visu-

alization side. Commercial visualization suites have no or

only limited capabilities in visualizing this data type [170].

The arulesViz R-package [188] features different types of

visualizations for association rules. This might be because no
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best-practice visualizations are established that are superior

to the other available techniques.

4.6 Conclusions

We provide a survey of visualization and visual analytic

techniques for frequent itemsets, association rules, and se-

quential patterns which systematically compares the visual

designs in each category to highlight their strengths and

weaknesses.

This survey and the comparison of techniques reflect well

that the perfect visual design does not exist and that compro-

mises have to be made. Limitations can be mitigated using

multiple different designs aswell as interactive visualizations

that feature filtering, sorting patterns according to various

interestingness measures, templating, and providing details

on demand.
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This chapter strives to summarize different approaches and

techniques known from the fields of visual analytics and

interactive visualization and transfers them for the use of

exploratory data analysis in pattern mining. The term visual
pattern analytics is a variation of visual text analytics which

Risch et al. describe as:

“[...] a class of information analysis techniques

and processes that enable knowledge discovery

via the use interactive graphical representations

of textual data.” [252]

In the previous chapters, we have seen that interestingness

measures, or more generally, features reflect certain prop-

erties of patterns or the cluster they represent (see Chapter

3). The visualization chapter (see Chapter 4) shows that any

visualization technique that strives to show the structural

parts of the patterns such that specific items are visible does

not scale well beyond 100 patterns. This is in contrast to the

so-called pattern explosions that are occurring due to the

combinatorial explosion of patternmining (see section 2.2).

Jarke J. van Wĳk mentions:

“The most important case is simply when the

amount of data to be shown does not fit on the

screen or is too large to be understood from a

single image. In this case, navigation and selection

of the data has to be supported to enable the user

to interactively explore the data.” [6]

Everyday techniques such as scroll bars and pagination come

to mind that allow visualizing beyond the boundaries of the

screen but at the same time, the user may lose context. How-

ever, with regards to the exponential search spaces of pattern

mining the linear, quadratic, or even cubic (considering 3D),

screen space may never be sufficient to effectively solve this

problem. But we must not only think about the technical vi-

sual aspects when it comes to scalability. Ultimately the user

must evaluate and decide which patterns are interesting and

it is unlikely that a user wants to spend the effort to explore

thousands or millions of patterns. Additional measures are
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required.

Note that this chapter does not have a dedicated related work

section because I summarize different techniques and classify

my work as well as related work.

5.1 Interactive Visualization

Pattern mining can be well embedded into interactive tools.

The simple approach is to let the user select data and thresh-

olds for the pattern mining algorithm, run the algorithm,

and present the output to the user (see Figure 5.1). Addi-

tionally, the user may interact with the output depending

on the task and domain. We neglect this last aspect here.

Then the user can tune the parameters or transform the input

data to alter the results. This section also does not cover the

transformation of data into structured data. This also heavily

depends on the data at hand and the task. Domains for event

sequences may be time series analysis, text analysis, click

stream sequences, server logs, patient histories, etc.

5.1.1 Structured Data Selection &
Transformation

Selection and filtering are technically typically trivial. For

pattern mining, we must distinguish between two types of

selection: transaction selection and event transformation.

Selection of Transactions

The former is typically performed to find various subspaces

in the data that the user wants to compare or is specifically

interested in. Note that this functionality is provided in

almost every interactive tool. Exemplarily I want to mention

the ODIX tool here which makes heavy use of transaction

selection and pattern mining to solve the task at hand.

The ODIX application is a solution to the VAST Challenge

2017 Mini Challenge 1 [20]. The data consists of cars that

drive to the park and are observed at certain points in the

park at a certain time. We model this data as event sequences
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Figure 5.1: A simplified version

of Fayad’s KDD pipeline [253].

The separate selection, pre-

processing, and transforma-

tion steps are collapsed. The

sequence database is then

mined using various parameters,

thresholds, and constraints lead-

ing to patterns that are in turn in-

spected and, potentially, knowl-

edge is generated.

Figure 5.2: The ODIX interface: Filtering and Sequence Analysis options are available in the left sidebar (A)

and detailed information about extracted sequences is in the sequence detail window (B). The main map

view (C) shows the amount of traffic and average speed for street segments as well as individual trips. Bar

charts on the right (E) provide temporal distribution in semantic aggregation levels as well as the trip amount,

speed, duration and length statistics. Single trips can be analyzed in the detail view in (D). This image is

taken from the original publication [19].

Figure 5.3: Typical patterns of

ranger patrols derived using

frequent pattern extraction, or-

dered by their share amongst

all ranger patrols. The first and

the last as well as the third and

fifth patterns feature almost the

same route, but patrolled in op-

posite directions. This image is

taken from the original publica-

tion [19].
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1: This part is taken from the

publication “ODIX: A Rapid

Hypotheses Testing System for

Origin-Destination Data” (Sec-

tion 3: Application) [19]. I have

been the main author of this sec-

tion and have written all the con-

tents. The paper was internally

reviewed and edited by my co-

authors Juri Buchmüller, Dirk

Streeb, and Daniel Keim.

such that every car trip corresponds to one sequence whereas

the positions of the car at a given time correspond to the

itemsets.
1
We chose to implement ODIX, a novel prototype

helping to explore origin-destination data both in detail and

in aggregated form. The ODIX interface consists of three

main categories: The left side (Figure 5.2, A) shows general

settings and categorical filters, e.g. car types or violations.

The center (C) gives the user spatial access to the data where

the underlying graph structure is mapped onto the map of

the park. The right side (E) provides temporal information.

The upper three bar charts aggregate the number of trips per

hour, weekdays, and months. The bar chart below shows the

number of trips for each date. The user can set a date-range

filter by clicking on this chart. The lower three bar charts

use statistical data: speed, stop time, and the length of a trip.

For each, the user can select to display the maximum or the

average per day. Additionally, the user can add filters based

on these statistics. For example, the user can filter trips with

higher or lower speeds than a given value. By clicking on

one of the segments in the map, a spatial filter is applied to

filter trips that pass through this segment also considering

the direction. Finally, it is possible to group sequences. This

presents the user with all distinct trips in the current filter

selection. Several trips can be selected to further filter down

the data. We used this strategy to find and generate the

typical ranger patterns as depicted in Figure 5.3. Similarly,

the user can search for frequent sequential patterns. These

are also displayed in a table and can be used as a filter. All

filters that are currently in use are listed on the left side. Each

of the filters can be negated or removed individually. Not

shown is a table, which is located below, displaying each trip.

Selecting trips there highlights their route in red in the graph

visualization as well as opens a detail pane for each trip (D).

This helps the user to investigate a few selected trips in detail

and was used, for example, for detailed comparisons of cars

involved in a race.

Note that transaction filtering does not necessarily impact

the search space of the pattern mining problemwhich would

reduce the execution time of the algorithm as well as the

result set.
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Event Transformation

This section summarizes how event sequences, or structured

data in general, may be transformed. Note that these interac-

tions with the structured data may greatly impact the search

space of pattern mining.

Item& Itemset Deletion This step is trivial but can greatly

reduce the search space and result set of patterns. The reason

to delete items or even whole itemsets of an event sequence

is simply if a domain expert considers them irrelevant to the

task at hand. This is also an option to reduce noise in the

data.

Item & Itemset Addition Adding items or itemsets to the

datamay be less common but can be useful if a user annotates

certain events in an event sequence.

Item&ItemsetModification Modifying (i.e., renaming) an

item can be useful to provide amore semanticallymeaningful

name. Modifying itemsets typically refers to switching the

order. This can be useful for erroneous data or uncertain

data.

Merging Items Merging items is a great way to reduce the

search space. The reason for this can be a high correlation

between the two items. This is one possibility to aggregate

low-level data into more semantically meaningful data.

Merging Itemsets Although similar to the previous inter-

action, merging itemsets is semantically different as itemsets

reflect the order in a sequence. An example might be a low-

level click stream sequence where the user first clicks on the

save icon and then confirms to save the document in the

following dialog. Such patterns can be summarized as an

event that represents the user saving the document. The user

ultimately has to decide how to merge the two timestamps

that are associated with the underlying events. Because se-

quential pattern mining is sensitive to the order of events,

uncertainties in time cannot be easily mapped. A user may

therefore choose to combine two items that are alternating in
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Figure 5.4: The number of patterns and execution time in milliseconds calculated from the VAST Challenge

Mini Challenge 1 [20] dataset for varying numbers of the minimum support threshold. Note that the y-axes are

square root scaled. The chart underlines how the number of patterns and execution time grows exponentially.
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one itemset such that they are being modeled as occurring

simultaneously.

Specifically for the merging parts of itemsets and items,

Cappers et al. have created a powerful tool, called Event-

Pad, where the user is capable of generating rules, based on

a visual regular expression syntax, to merge events [154, 254].

Note that parameter estimation is difficult for a user, specifi-

cally in exploratory data analysis where no specific questions

(i.e., parameter settings) can be assumed but rather trying out

various hypotheses. The underlying problem is that the inter-

estingness measures, such as the relative minimum support,

are linear (i.e., from 0% to 100%), however, the result set that

this threshold influences the number of patterns in the result,

as well as computation time and memory/space complexity,

grow exponentially. On the other hand, if the parameter is

too restrictive, no patterns will be returned at all. Figure 5.4

shows this as a chart. Note that the y-axes are square root

scaled.A logarithmic scale is not possible because the number

of patterns is zero for minimum supports 100% - 66% which

would result in a negative infinity value. Further note that

for minimum support of 1%, the absolute minimum support

is 187 since there are 18739 transactions in the dataset. This

number might be too high for certain analysis tasks where

even more infrequent patterns are sought. But already for

this parameter setting, the execution time of the algorithm is

well over one hour. For even lower minimum supports it is

likely that the algorithm fails with an out-of-resources excep-

tion. It is possible to mine for rare patterns specifically [255,

256] but the search space depends on the distribution of

the data (items) and cannot be well predicted to perform an
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automated switch between algorithms. In EDA, it can be as-

sumed that a user does not follow a linear or another specific

strategy to estimate the parameters. Moreover, it will most

likely follow some sort of binary search where first a very

high minimum support threshold is being used resulting in

an empty output, followed by a very low threshold resulting

in thousands of patterns with a long execution time. In the

worst-case scenario, the algorithm fails with an exception

because the system is out of resources. Later the thresh-

olds are calibrated somewhere in between. While adding

more parameters allows the user to steer the result set more

fine-grained, it also adds a lot of complexity to the system

and the results can quickly be similar as described before.

This also assumes that the user has, at least, a conceptual

understanding of what the parameters influence besides the

number of patterns in the result set (see section 5.6 for more

details). Without any understanding, in a black-box scenario,

the user will undoubtedly end up with an out-of-resource

exception eventually.
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5.2 Linking and Brushing

Linking and brushing is a well-known interactive visualiza-

tion technique, to combine several charts using visual linking

such as colors, shapes etc. A simple example is multiple

scatterplots that show various dimensions of a dataset or dif-

ferent projections. Clusters of the dataset could be indicated

by color, whereas the selection of one or multiple points

would highlight the respective points in all charts. According

to Daniel Keim:

“The idea of linking and brushing is to combine

different visualization methods to overcome the

shortcomings of single techniques.” [251]

It further allows us to inspect the same data from various

perspectives (such as dimensions/projections) but also al-

lows us to combine multiple data sources visually.

The Concept Explorer of the VALCRI prototype makes heavy

use of linking and brushing [8]. It allows us to overcome

scalability problems that occur when mining patterns. For

example, the Pattern Selector component shows sequential

patterns in a list view and displays each item. Therefore, its

scalability is quite poor by showing amax of 10 patterns at the

same time. The Sequence Similarity Space Selector (S4) does not
show individual items but rather interestingness measures

of the sequential patterns such as their length (i.e., gener-

ation) and support while also displaying their similarities

(see section 2.3 and subsection 3.4.1). Therefore, these two

components overcome their individual shortcomings. When

the user hovers over one pattern, the pattern is highlighted

in all of the other components.

5.2.1 VALCRI Concept Explorer

The following describes the Concept Explorer, its components,

and also presents a use case. For a task description, the

modeling of the data to event sequences, and the description

of interestingness measures see subsection 3.4.1.
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Figure 5.5: The visual interface of our interactive CCA system. Crime cases and clusters are shown at the

center within the crime cluster table (C – CCT) to support the actual CCA task. We provide the analyst

with a hybrid analysis perspective on the data and feature space on the left-hand side: A two-dimensional

embedding of the crime similarities and the clustering is shown in the Similarity Space Selector (S3
– A).

Another two-dimensional embedding of the crime pattern similarity (features) based on the shared crimes is

shown in the Sequence Similarity Space Selector (S4
– B). The respective crime patterns are also shown in the

pattern selector on the right-hand side (D). Tracked interactions and configurations are shown in the Weight

Observer Component (WOC – E). All views are linked and allow criminal analysts to develop and verify

alternative clusterings from different tightly integrated perspectives. The figure is taken from the original

publication [8].

2: This section takes short ex-

cerpts from my publication

“Making Machine Intelligence

Less Scary for Criminal Analysts:

Reflections on Designing a Vi-

sual Comparative Case Analysis

Tool” (Section 3: Design Study

Methodology) [8]. I have been

the main author of this publica-

tion andhavewrittenmajorparts

of the content. The paper was

co-authored by my co-authors

Dominik Sacha and Florian Stof-

fel and edited by Geoffrey Ellis,

Leishi Zhang, and Daniel Keim.

Concept Explorer Components

2
This section briefly introduces all components of the concept

explorer.

Similarity Space Selector - S3
The Similarity Space Selec-

tor (S3
) provides a simple interface for crime investigators

to understand the relations and similarities among multiple

crimes across different dimensionality reduction and cluster-

ing results. It represents the two-dimensional data space as

crimes are arranged according to feature similarities (i.e. if

they contain similar crime patterns).

Crime Cluster Table - CCT The comparative case analysis

(CCA) table is a central component of our user interface. As

mentioned, crime investigators manually maintain such a

spreadsheet where crimes are listed and manually identi-

fied characteristics of a crime are placed column-wise. The
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respective cells of crimes that contain such a characteristic

are color-coded and contain annotations. Manual filtering

and sorting operations in the spreadsheet table provide some

sense-making capabilities.

Sequence Similarity Space Selector - S4 S4
is a feature

projection view that offers an important perspective on the

feature space, supporting the feature selection and emphasis

task to improve the data clusters of the projections in the data

projection view S3
. The visual clusters are only as good and

useful as the features, therefore, the user needs to understand

feature characteristics of the analyzed dataset including

overlaps, redundancies, correlations and outliers.

Pattern Selector The Pattern Selector allows the user to

browse and explore multiple feature patterns. It shows all

sequential patterns in a list-based form whereas their items

remain visible.

Weight Observer Component - WOC The Weight Ob-

serverComponent (WOC)provides analytical provenance [257]

and captures user interactions [258]. It was initially designed

as a tool for the developers to track and understand how the

Concept Explorer was being used. It tracks and visualizes

the feature weights in a multi-line chart and the DR and

clustering configuration in state-history charts (Figure 5.7).

The end-users did not find it particularly useful but sug-

gested that it could be part of a reporting feature, outlining

their exploration of the data. The Security, Ethics, Privacy &

Legal (SEPL) board highlighted its crucial role in court cases

when analysts have to justify their decision-making. We also

observed that the component can be useful as a bookmarking

feature to save and load configurations and feature weights

for specific analytical tasks.

Concept Explorer

3
The components introduced in the previous section are

part of the Concept Explorer and embedded into the VAL-

CRI framework (Figure 5.5). This framework provides a

web-based dashboard design in the front end and a Java-

based back end to perform more complex operations such
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as dimensional reduction (DR) and clustering. The VALCRI

workstation consists of two stacked 27-inch touch screens.

The user can open a canvas on each screen, each with multi-

ple components that can be arranged and resized freely. The

components are tightly coupled to provide a better analyt-

ical understanding of the data and its features. In general,

hovering over a feature (e.g. in S4
) will highlight the feature

in other components (e.g. Pattern Selector), with all crime re-

ports, described by that feature, highlighted aswell. Similarly,

hovering over crime reports highlights features within the

reports. This linking and brushing capability are important

to understanding the influences of features in the data simi-

larity space (see Section 3). The Similarity Space Selector (S3
)

is in charge of creating the clusters, the cluster information

is broadcast to the other components, for example, the CCT.

Filters can be applied by all components to reduce the crime

report data set and enable users to drill down for a specific

set of crime reports containing a user-defined set of features.

We present a use case demonstrating a workflow that we

could observe during user evaluations and then report expert

feedback obtained for the current system.

Use Case

The crime set that is being investigated is normally specific to

a region and a time range and this can be obtained with the

respective components available in the VALCRI framework

(timeline and map). Additionally, the set is filtered by search

terms to receive similar types of crimes. In the present use

case, the user is interested in burglaries in schools.

After opening the S3
and S4

components, the user is pre-

sented with a view as can be seen in Figure 5.6 step 1. S4

shows three exposed dark quadratic rectangles referring to

three feature sequences containing a single term that occurs

frequently. These three terms are door (red), rear (blue), and
window (green). The fact that these features are exposed

and are highly saturated, suggests to the user that the data

similarity space visible in S3
is mainly separated by these

features. We have annotated the regions where the crime

reports are located in the same colors as in S4
. The linking

and brushing features of the components are used to obtain

this insight.
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Figure 5.6:A frequently observable use case starting with the initial data. The user identifies the main features

separating the data space (1) and increases the weights (importance) of interesting features and defines a new

clustering (2). A CCA analysis with detail on demand follows (3). The cluster robustness across different DRs

is tested afterward (4). The use-case ends with a drill-down operation including the pruning of the feature

space (5). The figure is taken from the original publication [8].

The user is further interested in these features and increases

the weights for the features door and window and applies a

new clustering to better distinguish the crime reports. The

results are visible in step 2.1 where S3
shows four clusters.

The green and the yellow cluster circled in green, contain

crime reports with the feature window. The yellow and the

red cluster circled in red, contain door. The blue cluster,

on top, does not contain any of both features. All clusters

contain crime reports with the feature rear meaning that the

similarity space is currently not separated by this. The user

is also interested in the feature rear and therefore increases

its weight. S3
updates immediately resulting in the view

given in step 2.2 - note that all clusters are rather distorted.

The lower part of the clusters circled in blue, consists of

crime reports containing the feature rear. The user manually

triggers a re-clustering and also increases the number of

clusters using the lower slider in S3
. The result can be seen

in step 2.3. This sub-workflow presented in step 2 can be

frequently observed - we call it “cluster-mitosis".

The clusters can be interpreted using the Pattern Selector

(step 3.1) and the CCT (step 3.2). The dark-blue cluster (third

column from the right) contains only crime reports that have
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all three features. This cluster is located in the bottom center

location in S3
(step 2.3). With the CCT (step 3.2) the user

can now perform typical CCA tasks, such as comparing

the features of the clusters to spot interesting co-occurring

features. The feature sequences rear window and rear door,
circled in purple, are only present in clusterswhere the single-

term sequences are present (orange, purple and dark-blue

clusters). The bars displaying the frequency of the feature in

the cluster are not full, showing that some crimes contain for

example the feature sequence door rear. But this sequence is
too infrequent to be in the feature result set and therefore is

not visible as a column in the table. Furthermore, the gray

bars in the header, show that the feature sequence rear window
is more frequent than rear door. The user expands the dark-
blue cluster (bottom) in the CCT to inspect the individual

crime reports. A similar view is visible in Figure 5.5 (C). By

clicking on one crime report, the “crime card” component

opens showing more details of that crime including the

Modus Operandi (step 3.3). As this cluster only contains

crime reports holding all three features, the user can find

these features in the text. Due to the order of the terms, the

crime also contains the sequences rear door and rear window.

The user checks the other projection methods such as “dis-

tance" (MDS) and “neighbors" (t-SNE).Whilst the “distances"

only show that the clusters expanded a little (4.1), the “neigh-

bors" projection shows a different picture (4.2). This pro-

jection favors neighborhoods and therefore shows identical

crimes in non-overlapping rings. These “crime rings" can be

important in the users’ analysis. The user learns that sev-

eral crime rings contain the feature sequence climb roof. The
feature is highlighted in step 4.2 (right side) and the crime

reports are highlighted with a black border in step 4.2 (left

side). The user is further interested in these crimes and filters

the crime data set on the feature climb roof (drill down).

The remaining dataset contains 46 crime reports. However,

the set of features has increased to 110 because a pattern

must only occur in 5% of the crime reports (i.e. 2) to remain

in the result set. These longer and more specific sequences

can be interpreted by the experts without the need to read

the MO. S4
shows an outlier circled in yellow in step 5.1.

At this location three features climb, roof, and climb roof are
overplotted. These features are outliers since they describe

all crimes in the result set. Thus, these features are uninter-
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Figure 5.7: The use case as it

is recorded in the WOC com-

ponent. The line chart repre-

sents the weights of the fea-

tures. The upper state-history

chart represents the clustering.

Thedifferent colors represent dif-

ferent clustering algorithms or

changes in the parameters. The

lower state-history chart shows

changes in the dimensionality re-

duction algorithms. The figure

is taken from the original publi-

cation [8].

esting and do not influence the DR in the data space. The

user removes these features by changing the range slider as

indicated by the red arrow in step 5.1. The user sets the range

of the support for a feature to 2 - 40. Features that have fewer

or more occurrences are removed by setting their weights to

0. This change only affects the outlier features. The remaining

feature set contains 107 features and their similarity space is

newly laid out (step 5.2). Note that this did not change the

data similarity space in S3
.

Whilst browsing the features in the Pattern Selector, the user

spots one feature climb roof skylight and repeats the cluster-

mitosis step to obtain a cluster for this feature. Now, these

features are described by the red cluster (step 5.3) - as they

are redundant they are overplotted in S4
(step 5.2, purple

circle).

This use case was captured by the Weight Observer Com-

ponent (WOC) as shown in Figure 5.7. Going from left to

right, it shows the weights (importance) were increased for

the features window and door. The upper state history chart

then shows that a new clustering was triggered manually

(change from light blue to orange). Afterward, the weight

for feature rear was increased in step 2.2. A re-clustering

was executed in step 2.3 which is visible in the change of

color from orange to light orange in the upper state-history

chart. The user experimented with the projections as shown

in the lower state-history chart (steps 4.1 and 4.2). The tactical

analyst proceeded with a drill-down for climb roof and then

removed uninteresting features (their weight was changed

to 0 in step 5.1). The cluster-mitosis step was repeated with

the feature skylight for step 5.3.
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5.3 Querying

Querying for patterns is powerful since it allows the user

to validate expectations in the form of “is pattern X con-

tained in the results”. More sophisticated querying engines

also allow searching for similar patterns. For sequential

patterns, a regular expression-based engine is predestined,

however, typically difficult for a user to understand. There-

fore, visual approaches that hide this complexity have been

introduced [154]. Depending on the domain, query interfaces

may involve sketch-based approaches [259]. Klemettinen et

al. already used a similar approach in 1994 but called it tem-

plating instead of querying [83]. They distinguished between

positive/inclusive and negative/restrictive templates. For

the former, the mining algorithm would specifically include

association rules that match the template, for the latter it

would exclude the specified rules. Note that this worked in

combination with other thresholds of interestingness mea-

sures such as support and confidence.

A pure query interface is somewhat contradictory to our

used definition of EDA which mentions that EDA forcefully

reveals patterns (see Chapter 1). A query interface that relies

on querying only is not sufficient according to that definition

as the user has to specifically search for certain things which

may satisfy rapid hypothesis testing. However, querying ca-

pabilities in an exploratory system are tremendously helpful

as they allow the user to verify expectations. Verification is

an important aspect of knowledge generation [94] (see Fig-

ure 3.2 in section 3.2). section 5.6 will also discuss querying

in the light of explainable artificial intelligence and trust

building.
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5.4 Visual Information Seeking Mantra

The popular visual information-seekingmantra by Ben Shnei-

derman states:

“Overview first, zoom and filter, then details-on-

demand.” [250]

This mantra applies to the exploration of patterns as well.

Arguably, the most challenging part when it comes to ex-

ploring patterns is the overview part. A human may never

be capable of overviewing the sheer amount of patterns

that can be generated in pattern mining. To worsen this, the

previous chapter shows that if the structure in its detail is

being visualized the scalability is vastly reduced to hundreds

or fewer patterns. But how can we provide an overview of a

pattern result set that scales better? I argue that the best way

to do this is by exploiting interestingness measures, aka fea-

tures. Even though they only show aspects, they can provide

an insightful picture to the human if carefully selected. A

proper selection, of course, largely depends on the data, user,

and task (see section 3.2). However, even then we cannot

scale indefinitely which is why filters such as thresholds for

interestingness measures must be applied a-priori. Another

approach is to use progressive visual pattern analytics (see

section 5.5) to not immediately overwhelm the user with

the amount of information. Note that I intentionally do not

survey design aspects as this would be out of scope for this

thesis but the previous chaptermay provide some inspiration

about different designs.

5.4.1 Distant reading, close reading

A term that aligns well with the visual information-seeking

mantra is distant reading, close reading. The term distant read-

ing was coined by Franco Moretti in 2000 [261]. There exists

no crisp definition for the term but it broadly refers to the use

of computational methods on documents and text corpora to

gain insights. This is to free humans from the burden of read-

ing hundreds or thousands of documents to gain relevant

insight. Moretti provides one such example by measuring

the length of the title of novels between 1740 and 1850 and

showing that the average and median length decreases over

time (Figure 5.8). Moretti correlates this with the expansion



5.4 Visual Information Seeking Mantra 129

Figure 5.8: An example of dis-

tant reading by F. Moretti. The

figure shows how the number

of words in the title of novels

between 1740 to 1850 became

shorter on average [260].

[260]: Moretti (2009), Style, Inc.

Reflections on Seven Thousand

Titles (British Novels, 1740–1850)

of the markets which made publishing novels more competi-

tive and “[...] they learn to compress meaning; and as they

do that, they develop special “signals” to place books in the

right market niche.” [260]

These computational methods extract (numerical) features

from the documents to analyze them and eventually gain

insight and generate knowledge. Close reading on the other

hand refers to the careful study of a text. This does not mean

the opposite of distant reading in general but rather suggests

that both techniques can be combined such that a user gains

insights through distant reading and then can inspect a cer-

tain text or text passage in detail. The assumption is that

the text (passage) is representative of the other documents

belonging to the corpus or cluster.

This translates, of course, well to pattern mining since the

interestingness measures of patterns are features that repre-

sent clusters. Distant reading thus refers to the analysis of

these measures whereas close reading corresponds to the

analysis of the pattern itself and the cluster it represents.

5.4.2 Example: Multi-Dimensional Pattern
Exploration

For a task description and description of interestingness

measures see subsection 3.4.3.
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4: This section is taken from my

publication “Visual Analytics

of Co-Occurrences to Discover

Subspaces in Structured Data”

(Section 2.1: Requirement Analy-

sis) [10]. I have been the main au-

thor of this publication and sec-

tion and have written all the con-

tents. The paper was internally

reviewed by my co-authors Giu-

liana Lindholz, Hanna Haupt-

mann, Mennatallah El-Assady,

Kwan-Liu Ma, and Daniel Keim.

Requirement Analysis

4
Wesummarize our goalswith the following requirements:

R1: Agnostic to structured data The examples show that

the task of finding meaningful patterns in subspaces of data

persists, while the data is often modeled in a variety of

discrete structures. Thus, an approach is desirable that is

agnostic to the type of structured data.

R2: Agnostic to interestingness measures Depending on

the data and task, different interestingness measures (IMs)

are suitable and required. In the previous example, the

only IM was the support, however, many other IMs are

available which must be compatible with our approach.

Therefore, the sought technique should be also agnostic to

the interestingness measures.

R3: Agnostic and scalable to the attributes Attributes rep-

resent additional properties for each structured entity. Their

information varies greatly and thus, the sought approach

shall be agnostic to the type of attribute data as well as show

acceptable scalability to explore multiple data attributes and

their characteristics simultaneously. We limit ourselves to

discrete attribute data and consider continuous attributes in

future work. Note that discretization can always be reached

through binning or other measurements.

R4: Overview and comparison Our approach shall pro-

vide an overview to the user and allow us to compare various

subspaces simultaneously. Thus, an interactive visualization

with good scalability is required to show the large amounts

of subspaces.

R5: Minimize parameter estimation Because additional

IMs typically add new parameters, wewant to limit ourselves

to reduce the number of parameters a user has to choose. In

the optimal case, the user has to select no parameters before

she can explore the data. This ensures that no data will be

removed or filtered and thus cannot be explored in the first

place.
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Figure 5.9: The processing pipeline of our implemented approach. The user can parameterize and influence

every step. The results are propagated to the MDPE-vis.

5: This section is taken from my

publication “Visual Analytics

of Co-Occurrences to Discover

Subspaces in Structured Data”

(Section 5: Multi-Dimensional

Pattern Exploration Visualiza-

tion) [10]. I have been the

main author of this publica-

tion and section and have writ-

ten all the contents. The paper

was internally reviewed by my

co-authors Giuliana Lindholz,

Hanna Hauptmann, Mennatal-

lah El-Assady, Kwan-Liu Ma,

and Daniel Keim.

Tool

5
Our interactive visual interface (MDPE-vis) implements the

MDPE-approach described in the previous section. Figure 5.9

shows how the output from the initial (pattern) mining, in
the form of two tables, is further processed before being

visualized to the user. The interactive mining & filtering step is

optional and will be described at the end of this section to

improve the readability and clarity of the process.

Initial Mining

Two parameters are both defaulted to twowhich the authors

strongly recommend keeping. Increasing the initial minimum
support parameter higher than two is possible and will speed

up themining process significantly but may prune subspaces

that may have been interesting to the user. The effect of this

parameter is the same as interactively increasing the filter

option of the support (Figure 5.10D2) which leads to fewer

rows in the right table. Once the application is started, the

user cannot set this filter lower than the value of the initial

minimum support. We, therefore, recommend leaving the

default setting and using the interactive filter setting with the

drawback that the initial mining process may take longer.

The opposite is true for the initial mining depth parameter. The
higher this number, the more rows will be added to the right

table - exponentially. This is more severe for datasets with

a large alphabet (Σ) in the structured data part. However,

with these datasets, the curse of dimensionality predicts

that the data is more sparse which means that shorter struc-

tured sub-entities are more descriptive. It is always possible

for the user to increase the generation of the sub-entities
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Figure 5.10: The overview of MDPE-vis displaying the output Table 3.4 (A1) and Table 3.5 (B1) of our
approach. The co-occurrence tables of the MDPE-approach are visualized as pixel-based tables (A) on a

pannable and zoomable canvas, where each row is accompanied by two interestingness measures displayed

as a bar chart (B). The canvas is framed on each side by an overview pane that highlights rows of equal

co-occurrences (C). The static header features filter and sorting options, as well as pixel filters (D). The

structured entities are only visible as a label next to each row and as a detail-on-demand view in the form of a

tooltip (E). The user can search for specific structured entities and change the perspective on the co-occurrence

data by changing the normalization (F). A statistical overlay and guidance can be accessed (G). Options when

selecting rows become available in the top center (H).

through the interactive mining capabilities (subsection 5.5.3)

and because of the a-priori-property of the co-occurrences

(subsection 3.4.3). For small alphabets, < 10 increasing this

parameter to threemight be useful whereas for large alpha-

bets > 50 reducing this parameter to one may be sufficient.

It is difficult to estimate this parameter as, in the end, the

best value depends on how the structured data is distributed

according to their sub-entities.

User defined and dimensionality reduction based
ordering

The columns of the tables represent attribute characteristics

and can be ordered arbitrarily. Some attribute characteristics

follow a natural total order, such as age groups. Each row

represents a structured entity where no total order is given,
as structured entities are only partially ordered as discussed

in observation 3 in the previous section. Therefore, the user

can define the order for one or more columns (i.e., attribute

characteristics)which is useful for some tasks as later detailed

in the use case section (Section 3). The MDPE-approach also
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Figure 5.11: In the VAST Challenge 2017 narrative, the suspicious truck illegally dumps waste in a northern

lake of the preserve (blue route in the map of the tooltip). The respective rows are selected and, thus,

highlighted. The truck makes in total of 23 trips and only drives between 2 am and 5 am and only on Tuesdays

and Thursdays. The left table only contains one distinct row representing the truck, as it always takes the

same route and, therefore, the event sequences are identical. The right table contains multiple identical rows

with sub-entities (i.e., sequential patterns) that are redundant, generating a largely visible block.

[262]: Van Der Maaten et al.

(2009), Dimensionality reduc-

tion: A comparative review

always employs a default order. We experimented with four

algorithms: Principal Component Analysis (PCA), Multi-

Dimensional Scaling (MDS), t-Distributed Stochastic Neigh-

bor Embedding (t-SNE), and Locally Linear Embedding

(LLE) [262]. For each technique, we set the number of output

dimensions to one. We discard t-SNE and LLE due to their

varying necessary parameter estimations and runtime. We

use the MDS with an Euclidean distance measure based

on the co-occurrences. The PCA provides a less visually

coherent result and is therefore discarded. As our observa-

tion 2 (redundancy) states, multiple structured sub-entities

can describe the same structured entities (e.g., transactions).

This also leads to the effect that the co-occurrence vectors

(i.e., rows of the tables) contain the same values and are,

thus, placed together by applying the MDS. We call these

rows with equal co-occurrence vectors visible blocks (see, for
example, in Figure 3.9).

Visual Exploration

The visual exploration is enabled by MDPE-vis (Figure 5.10).

The figure shows the example data from subsection 3.4.3,

more specifically Table 3.4 (A1) and Table 3.5 (A2). Note,



134 5 Visual Pattern Analytics

[263]: Yang et al. (2022), The Pat-

tern is in the Details: An Evalua-

tion of InteractionTechniques for

Locating, Searching, andContex-
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that the order of the rows is different because of the ap-

plied dimensionality reduction as discussed in Section 5.

The pixel-based tables (A) and the bar charts representing

interestingness measures (B) are drawn onto a zoomable

and pannable canvas, which is framed on each side by an

overview pane displaying rows of equal (normalized) co-

occurrences (C). On top, a static header provides sorting

and filtering options (D) as well as a legend, a search field

to filter for specific structured entities, as well as an option

to change the normalization (F ). Note, that the information

about the structured entity itself is only visible as a label for

each row and in the tooltip (E). In the following, we will

detail all components of our interactive visualization. They

are prefixed by a letter referencing the labels in Figure 5.10.

(A) Pixel-based Tables The pixel-based tables represent

the co-occurrence values of the tables based on our MDPE-

approach in Section 3.4.3. A pixel-based representation al-

lows the highest density to represent information. In combi-

nation with the zoomable and pannable canvas, this design

provides the highest degree of scalability while the search

space reduction of theMDPE-approach reduces the necessity

of drawing too many rows and columns (i.e., pixels) in gen-

eral. A recent study by Yang et al. also found that panning

and zooming are the fastest interactions and provide as good

of a context as overview+detail designs for matrix visual-

izations [263]. This design is also in line with our require-

ments R3 - agnostic and scalable to the attributes and R4
- overview and comparison. The left table (A1, Figure 5.10)

refers to the output Table 3.4 where the distinct structured

entities and their co-occurrences are listed. The right table

(A2) represents the data of Table 3.5. The order of the columns

is identical in both tables; however, the order of the rows

is different due to the dimensionality reduction step (see

Section 5). The pixels are colored using a diverging colormap

because of the relative subspace perspective. In the example

case (Table 3.2), the co-occurrence vector for the entire popu-

lation would contain 2 everywhere (Table 3.6). Note, that this

is a random case of the example that the co-occurrences of the

population are uniformly distributed. As each attribute con-

tains two attribute characteristics, the normalized value for

each cell of the population vector is calculated by
2
22 = 50%,

where the numerator is the co-occurrence value of the cell

and the denominator is the sum of all co-occurrence values



5.4 Visual Information Seeking Mantra 135

for this attribute. Themiddle row of the right table (A2) repre-

sents the co-occurrences of the itemset {bread} and all values

have a 0% deviation because the item {bread} occurs in all

the transactions and thus, its co-occurrence vector is identical

to the co-occurrence vector of the population. A deviation is,

for example, visible for {candy}which is the bottom row of

the right table (A2). As visible in Table 3.5 in the attribute Age
Group, the co-occurrence value for the attribute characteristic
Age Group:≤ 18 is 2, which is 100% when it is normalized.

Thus, the deviation to the population where the normalized

value is 50% is 50% which is represented as a dark-blue

pixel. Because the attribute contains only two characteristics,

the other cell representing the attribute characteristic Age
Group:> 18 to the right shows a deviation of −50%, which is

colored as dark red.

Space is reserved between the two tables. The area is used to

draw Bézier curves to link both tables visually. This is shown

in Figure 5.11 where the two tables are additionally vertically

aligned by the selection. To avoid clutter, the connecting

curves are only shown when the user selects one or multiple

rows in either table. The color of the lines refers to one

selection. The colors are uniformly selected from the HSV

color space. As the right table holds the sub-entities of the

structured data, a selection there shows all entities where

the currently selected sub-entity is contained. Similarly, a

selection in the left table reveals all contained sub-entities.

The current selection and linked entities are additionally

highlighted. This reduces the opacity of all non-selected or

non-linked rows. The user can additionally align the tables

vertically based on the selection.

(B) Interestingness Measures Bar Charts Interestingness

measures are represented as bar charts. This design is ag-

nostic to any specific interestingness measure (R2). In the

example, as shown in Figure 5.10, there are two interesting-

ness measures (IMs) represented: length (green) and support

(purple). Because IMs can be, and in this case are, a-priori, we

use a double encoding. Themaximum for the IM length in the

high aggregation table (B2) is typically very low and much

smaller than the maximum length of the low aggregation

table (B1). The opposite is true for the support where high

values are typically in the high aggregation table (B2) and

low values occur in the low aggregation table (B1). Another
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impression of these phenomena is shown in Figure 3.7 and

3.8 where we use the same colors to depict the IMs. Note,

that with larger search spaces of the structured data, the

differences in the value ranges are typically much larger.

The width of the bar charts is normalized to the minimum

and maximum of the respective table. If the width was nor-

malized globally (across both tables), the values for one IM

would be so small in one of the tables that they would be

almost invisible to the user. The brightness of a color encodes

the value of the interestingness measure and is normalized

globally across both tables. For example, in Figure 5.10 the

bar displaying support of the middle row of the right table

(B2) representing {bread} is outstanding and in a dark purple

color because the support of 4 is the highest value not only

for this table (A1) and in general (see Figure 3.7). On the

left side (B1) the middle row also has an outstanding bar

for the support. However, in this case, the underlying value

is 2 which is the highest support of this table but not the

maximum globally, therefore, represented in a lighter purple

color. Note, that the initial mining depth parameter was set

to one resulting in sub-entities only of length 1 (see Figure 3.8)

and, thus, forming a uniform distribution for the green bar

charts (B2). Gray transparent overlays over the bar charts

indicate when a minimum and maximum threshold is set.

This is visible in Figure 5.11 where the maximum threshold

for the IM length has been lowered to 26 for the left table and

the support has been lowered to 6407 for the right table.

(C) Overview Panes Two overview panes are placed on

both sides of the canvas. Larger datasets cannot be viewed

entirely on the canvas, and the overview panes support

the user in navigating the pannable and zoomable canvas.

In Figure 5.11, the functionality is more intuitively visible

because of the larger dataset. The opaque white background

displays the overall length (i.e., the number of rows) for each

table. Because in this dataset the left table contains less than

half of the rows than the right table, the white background

only covers approximately 43% of the height. The remaining

space below is displayed with a striped pattern indicating

empty space. The gray overlays on both sides indicate the

vertical position of the canvas for each table. The more the

user zooms out, the larger the gray overlays grow within a

vertical direction. In Figure 5.10, the gray overlays cover the

whole space, as both tables are entirely visible.
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The second functionality of the overview panes is the display

of visible blocks which occurs because the co-occurrence-

vectors of these rows are equal (see Observation 2 in Sec-

tion 12) and placed together because of the dimensionality

reduction step (see Section 5). A visible block is formed if

two or more rows have an equal co-occurrence vector. These

blocks do not always stand out in the pixel-based repre-

sentation due to visual noise. Therefore, visual blocks are

indicated by the ocher-colored blocks in the overview panes.

The larger the ocher-colored block in the overview pane, the

more rows belong to the block. When hovering the blocks,

the respective rows in the table are brushed and highlighted.

A tooltip further indicates the number of rows with equal

co-occurrence vectors. This is, for example, visible in Fig-

ure 5.10 as the first two rows of the right table (A2) form

a visible block which is indicated also in the overview pane

(C2). A gray line connects the rows with the indicator in the

overview pane. The second visible block is not shown in this

figure as it is cropped, however, the gray connection line is

still visible. To avoid clutter, the user can parameterize and

filter the indicators by a minimum threshold, which hides

all indicators of visible blocks that have fewer rows than the

set threshold. The default value for this parameter is set to

the minimum allowed value of two.

(D) Filtering and Sorting The filter and sorting options

are located in the static header, which does not zoom and

pan with the canvas (Figure 5.10,D). The user can also filter

for specific values (D3), or visually speaking, filter the tables

based on more blue or red pixels. The user can do this for a

specific attribute characteristic or any attribute characteristic

of a specific attribute. The attribute labels are located at the

bottom of the static header. Grey lines connect the static

labels with the dynamic canvas blocks. This supports the

user in navigating the canvas and preserves the overview

in the horizontal direction. In the canvas, we adapt the gap

size between the attribute column blocks to be increased

with smaller zoom levels to make the distinction between

attributes even clearer. In the header, the user can click on

an attribute that shows all the underlying attribute charac-

teristics, which are the columns of the pixel-based table in

the canvas. For each of the attribute characteristics, the user

can sort the respective table by this column. The user can

determine a sorting order, which is reflected by small num-
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bers in the header. This allows sorting the table specifically

by multiple columns. The sorting options for both tables are

independent, allowing a higher degree of flexibility for the

analysis. The default order with the lowest priority is always

determined by the dimensionality reduction step.

With the same interactions, the user can also filter the table

for values of specific attribute characteristics. All employed

filtering options result in a reduction of rows only. This

implies that no aggregations are changing, and therefore al-

ready visible colors do not change. Such behavior is desirable

for the consistency of dynamic visualizations [159]. An at-

tribute characteristic filter can set a minimum and maximum

threshold. Only rows that have all cells within the defined

range are retained. The user can further filter the rows by IMs.

Figure 5.10 at locationsD1 andD2 shows range-sliders where

the user can define the minimum and maximum threshold

for the IMs length (green) and support (purple). Note, that

the sliders for the left table (D1) are inverted to align with

the bar charts of the canvas, as their baseline is on the right

(towards the center of the canvas).

Lastly, the user may select specific rows of interest and may

remove these rows explicitly or keep only the selection and

remove all other rows. In combination with the iterative min-

ing, this is similar to a templating approachwith positive (i.e.,

interesting) and negative (i.e., uninteresting) templates [83,

218]. This is also described as a design goal by Stolper et

al. [159].

When the user opens the interactive visualization, no filters

and no sorting options are set initially allowing the user to get

a first overview impression of the data, ormore specifically, of

the co-occurrences and interestingness measures that follow

our requirements R4 and R5.

(E) Detail-on-Demand View As previously mentioned,

the structured data itself is only visible in the form of labels

aligned with each row and additionally in the detail-on-

demand view in the form of a tooltip. This design decision

follows our requirement R1 and also supports the require-

ments R3 and R4 as visualizing structured data in a scalable

manner is difficult if not impossible due to the various con-

straints inferred by the structure itself. The simple structured
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data representation in the tooltip shows items of an item-

set vertically stacked, whereas the itemsets themselves are

aligned horizontally. For the VAST Challenge 2017 use case

(see Section 3), we added a map representing the structured

data where the blue lines represent all routes and a red line

shows the specifically structured sub-entities (see Figure 5.11).

The tooltip also contains two bar charts that depend on the

row and the hovered attribute (column group). The upper bar

chart shows the histogram of the attribute, whereas the lower

bar chart shows the deviations of the histogram compared to

the global histogram of all data.

Besides the structured data, the detail-on-demand view also

displays the statistics of the co-occurrences as well as the

other IMs. A table represents the differently normalized co-

occurrence values (see Section 12) for the respective subspace

(i.e., row), the co-occurrence value of the overall population,

and the deviation of the subspace to the population. Below

the table in the detail-on-demand view, the remaining IMs

are represented which are in this implementation support

and length. As shown in the example of Figure 5.10, the

support for the sub-entity {candy} is 2, which is 50% relative

support because the input data consists of 4 rows. The length

is 1 because this itemset contains only one item (i.e., the

cardinality of the itemset).

(F ) Querying, Perspectives, and Miscellaneous Options
The top part of the static header provides various features

for the user’s workflow. In the center (F ) is a search query

field, allowing the user to filter the rows of both tables by

their structured data. For example, the query candy will only

leave rowswhere the structured entities, i.e., itemsets contain

the item candy. Also, more complex, regular-expression-like,

queries are possible. This feature is useful for the users to

verify preexisting knowledge about the data and better learn

and understand how the application works and how visual

patterns can be interpreted.

Next to the search field, a drop-downmenu provides all avail-

able and implemented perspectives on the data. A change

here will only adapt the colors of the pixels, while the cur-

rent viewport of the canvas is retained. The legend on the

left is updated accordingly and shows the minimum and

maximum value for each colored bin.
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Figure 5.12: The provenance

view allows the user to backtrack

to various states (i.e., filter and

order settings).

[264]: North et al. (2011),

Analytic provenance: pro-

cess+interaction+insight

On the right side are two buttons that hold all current sorting

and filtering settings. The sorting settings can be reordered

by dragging and dropping, and both settings for each filter

or sorting option can be deleted individually.

MDPE-vis supports analytic provenance [264]. This is not

only useful for analytic reasoning, justification, and report-

ing but also practical to the user as it provides an “undo"

functionality. Such a feature is useful as the user can filter the

data and may want to revert to an earlier state in the analysis

to choose a different path in the exploration. We support

this with a state metaphor. A state is a combination of filters

and sorting preferences, plus settings such as the currently

selected perspective. At any point in time, the user can open

a state panel and save the current state. A snapshot of the

current view is automatically generated and combined with

a user-defined label. The state representation is added to the

panel in the form of an icon plus the label. New states are

added below the last state and form a sequence. If the user

reverts to an older state and saves this again as a new state,

a branching will occur forming a tree as it is visible on the

right. This allows the user to branch out and try different

paths in the exploration. The active state is highlighted.
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Figure 5.13:Glyphs on top of the

pixels indicate whether the devi-

ation is statistically significant.

(a) The guidance dialog lists

potentially interesting patterns

that are being identified

through various statistics.

The summary describes the

statistical property. The details

reveal a visual description and

a list of matched patterns.

(b) A click on the “show me" button closes the dialog, zooms, and pans

the canvas automatically to the respective rows. Additionally, the rows are

highlighted.

Figure 5.14: A guidance system is available as a dialog. It contains multiple elements, whereas each guidance

element consists of a statistical description, a description of the corresponding visual effects, and a list of

matching patterns. Therefore, the guidance feature can be easily extended with more elements using various

statistics and machine-learning strategies.

(G) Statistical Overlay and Guidance The leftmost button

(house symbol) resets the canvas back to a default position.

The button for the statistical overview to the right opens a

dialog where the user can specify the thresholds for three

variants of the binomial test (two-sided, left-sided, right-

sided). The glyph is displayed on a pixel when the p-value

of the statistical test is below the threshold. The glyph is

composed of three parts, which refer to the three different

types of tests. The rectangle is displayed if the two-sided test

is significant. The triangle on top is displayed if the right-

sided test is significant if the value is significantly greater

than the average. The triangle on the bottom is displayed for

the left-sided test. The color of the glyph is chosen based on

the background color of its pixel. The glyph is filled with

white color if it’s relatively dark; otherwise black.

We implemented a preliminary guidance system. The right-
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most button (Figure 5.10 (G)), opens a dialog window (Fig-

ure 5.14a) which entails a list of possibly interesting patterns.

Their interestingness is determined using basic statistics

such as the pattern with the highest support and the longest

pattern (most items). Other statistics are based on the co-

occurrences to find the pattern with the highest positive and

negative deviation, which is visible by the darkest blue or red

pixels in a row. Also, the variance across all co-occurrences

for a pattern can be determined, which is equal to the row

that contains the most blue and red pixels. The guidance

system is implemented as an extendible interface that al-

lows for any statistics and machine learning method to be

added. Each calculation based on the whole dataset must

result in one element that contains a statistical description

of relevance, a summary that describes the visual effects in

the interface, and a list of matched patterns. Each element

contains a “show me" button that closes the dialog, zooms,

and pans the canvas to thematched patterns. The patterns are

automatically selected such that they are highlighted in the

overview. In section 4.5, we will discuss further possibilities

for extensions and limitations.

(H) Options for Selection When the user selects one or

multiple rows, these options becomeactive. Theuser can align

the tables vertically such that the selection and connected

rows on the other table align vertically. Additionally, the filter

can be enabled, which removes all non-selected rows from

the canvas. A remove button deletes the selected rows from

the canvas, which can be useful if the sub-sequences and

their correlations are deemed uninteresting or previously

explored. The right-most button clears the selection.

5.4.3 Example: QuestionComb

6
QuestionComb is an application that allows the user to

label questions as information-seeking and non-information-

seeking (see subsection 3.4.2). The interface consists of several

views where the user can select, label, and group instances

(see Figure 5.15). An instance is a question plus its context

consisting of the utterance before and after the question plus

the speaker’s information. In the instance selection view,

the user can select the next question deemed appropriate to

label. The selected instance is shown in the instance labeling



5.4 Visual Information Seeking Mantra 143

Figure 5.15: The QuestionComb interface consists of instances (i.e., questions with context) that are presented

in the instance selection view (1). The annotation view (2) shows one instance (i.e., the question with the

utterance before and after plus speaker information) and lets the user assign a label. The instance structuring

view lets the user group the questions into custom clusters and assign the clusters with custom labels

(3). The rule view consists of two panels that divide the rules into information-seeking questions and

non-information-seeking questions (4). The figure is taken from the original publication [9].

Figure 5.16: The rules are being
visualized in hierarchical form.

Maximal rules are visualized on

the top-level hierarchy and the

user can visualize all contained

rules. The figure is taken from

the original publication [9].

[265]: Ham et al. (2009), "Search,

Show Context, Expand on De-

mand": Supporting Large Graph

Exploration with Degree-of-

Interest

view where the utterance before and after are displayed and

the relevant question is in between. The user can label the

question which changes the instance’s color in all views. In

the instance structuring view, the user can move instances

and group them. Then the groups can be labeled individually.

The rule view is divided into two panels representing the

respective labels. The rules in these labels are sequential

rules.

The rules in the panels are maximal rules (see section 2.3)

to reduce the number of rules being displayed and not

overwhelm the user [265]. Figure 5.16 shows three rules

whereas the top rule is a maximal rule and the user has

opened up the rules that are contained in this rule. The
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maximal rule could be formalized as

〈{which,WDT,which}, {of, IN}, {DT}, {VBZ}〉 → 〈{ISQ}〉
(5.1)

The visual representation shows the items in one itemset

vertically and the itemsets themselves horizontally. The font

style of the items indicates the type such as bold font for the

lemmatized tokens, question words are italic, and POS tags

have a normal font. This design is inspired byBrath et al. [266].

Between the itemsets, the size of the triangles indicates the

maximum distance between the itemsets of all sequences the

rule represents. Here, the minimum is 1 and the maximum

is 5 as this is a threshold set when mining the sequences

(see subsection 3.4.2). This design is inspired by Chen et

al. [15] (see Figure 4.23 and subsection 4.3.3). The numbers

in the box represent the interestingness measures confidence
(see Definition 3.3.3) and support (see Definition 3.3.2). The

number with the gray background represents the confidence

value. The confidence ranges from 0.95, 1 since the minimum

confidence is set to 95% (see subsection 3.4.2). The support

ranges from 0.01, 1 since the minimum support is set to 1%.

Note that the support value is static whereas the confidence

value is continuously updated whenever the user labels

a question. Therefore, the list of maximal rules changes

whenever the user assigns a label to one instance. The lists

are sorted by the rules with the highest confidence and the

highest support such that the user has immediate feedback

about the model that is being created.

5.4.4 Conclusions

Ben Shneiderman’s information visualization mantra is very

general and does not detail any specific designs in order to

reach that goal. The examples from the multi-dimensional

pattern exploration (MDPE) and QuestionComb show pos-

sible designs on how to achieve overview first, zoom and

filter, and details on demand. The former example leans

more towards distant and close reading by not visualizing

the structure in the overview at all but only interestingness

measures in the form of co-occurrences (or other correlation

measures) and common interestingness measures such as
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length and support. Visualizing only interestingness mea-

sures empowers the tool on its scalability which could not

be achieved by visualizing structures only or in combination

with interestingness measures. The approach also leverages

the information from the lattice by ordering the rows accord-

ing to their co-occurrence vectors effectively placing patterns

of one equivalence class (see section 2.3) below each other

creating visual blocks. These blocks provide visual cues and

become more apparent the greater the equivalence class

is. The zooming is quite literally supported as the whole

visualization is drawn on a zoomable and pannable canvas.

The canvas performs semantic zooming where the structure

of the patterns becomes visible at high zoom levels. Filtering

is directly supported using filters on the interestingness mea-

sures (sliders) which do not require a recalculation of the

mining algorithm and are thus fast to compute and provide

immediate feedback to the user. Filtering can be performed

using minimal and maximal thresholds. A search box allows

the user to query for specific patterns and is important for

rapid hypothesis testing as well as verification. The structure

itself provided by the semantic zooming can be interpreted

as details on demand, however, a tooltip provides even more

detailed information on structure and co-occurrence metrics.

The QuestionComb tool follows another approach to provide

an overview exploiting equivalence classes and the lattice

itself using maximal patterns. This helps to reduce the over-

all number of patterns and leaves only a few patterns that

need to be visualized in the tool allowing us to visualize the

structure of the rules themselves. This is important in this

instance, as the users are linguistic experts and they need

to understand the model they are creating while labeling

the instances (questions). We, therefore, find it difficult to

abstract from this information. The details on demand are

in this instance the rules themselves that are contained in a

maximal rule.

The VALCRI concept explorer (see subsection 5.2.1) uses

yet another approach as overview- and detail-visualizations

are placed side-by-side and connected through linking and

brushing techniques. Views such as S4
provide an overview

while, again, only visualizing interestingness measures (sup-

port as opacity and length as the width of the rectangle).
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Also, this tool exploits the lattice and places the patterns

according to their distances on the scatterplot. Patterns of

one equivalence class are therefore on top of each other (de-

pending on the dimensionality reduction algorithm used).

As in the MDPE-approach, the concept explorer also allows

the user to apply minimum andmaximum thresholds hiding

the respective patterns in all visualizations.
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5.5 Progressive Visual Pattern
Analytics

Progressive Visual Analytics (PVA) is a subfield of visual

analytics that is dedicated to showing the user intermediate

results and allowing the user to steer running processes

to generate knowledge more efficiently. The term has been

coined by Stolper et al. [159], however, similar approaches

have been seen before such as by Williams and Munzner in

their MDSteer tool [267]. Jean-Daniel Fekete is an active and

well-known researcher in this field with many significant

publications [268–271]. A doctoral thesis was published in

2020 by Vincent Raveneau on the topic of progressive visual

analytics for sequential pattern mining [272]. The scope of

my thesis goes beyond the topic of PVA for sequential pattern

mining but at the same time acknowledges its importance

for the exploration of patterns.

The scope of this section is specifically targeted to approaches

that involve the human in the mining process itself (see

Figure 5.17).

5.5.1 Incremental, generation-based mining

Pattern mining can be easily adapted to be incremental. The

major action is to change the algorithms such as SPAM [77]

or SPADE [273] (for sequential pattern mining) from a depth-

first-search to a breadth-first-search [159]. These algorithms

automatically produce new generations (see Definition 2.1.7),

therefore, the algorithms must only be halted after an entire

Figure 5.17: Progressive Visual

Pattern Analytics. The user is

taken into the loop of pattern

mining to explore the patterns

while they are being generated.

This allows the user to influence

the mining process early on to,

optimally, only receive interest-

ing patterns.
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generation has been calculated. However, an incremental

algorithm is not sufficient to be classified as progressive as it

does not allow the user to include their feedback [272]. Fur-

thermore, it does not prevent any type of pattern explosion

but only delays it since eventually generations with many

patterns will be mined (see section 2.2).

5.5.2 Prefix and Suffix Mining

This type of mining is not restricted to sequences as a total

order of items in sets can be defined without loss of gen-

erality. This is also known as pattern growth and is used

in mining algorithms such as SPAM [77]. Vrotsou et al. use

this interactive mining technique by letting the user extend

event sequences (sequential patterns) while linking other in-

formation of the data to the currently created sequences[274].

Their graph representation lets the user append another

event (itemset) as a prefix or suffix to a sequence eventually

creating a graph (see Figure 4.21). Users typically have a good

understanding of such extensions which are more intuitive

than the general containment definition used in pattern min-

ing (further discussed in section 5.6). This type of interaction

involves the user maximally but there are two limitations to

this method: Firstly, this approach is not directly usable for

sequences that contain multiple items in one itemset as the

representation only represents linear sequences. Secondly,

the user might not discover all important patterns since a

pattern 〈{a}, {b}, {c}〉 can only be created with the patterns

〈{a}, {b}〉 and extending {c} as a suffix or 〈{b}, {c}〉 or by
appending {a} as a prefix. It cannot be created if the current

pattern is 〈{a}, {c}〉.

5.5.3 Multi-selection-based Mining

This technique is a combination of (multi-) selection-based

mining and incremental, generation-based mining. It allows

the user to select one or more patterns from a current gener-

ation and mine for the next higher generation that contains

the selected patterns. There are some technical peculiarities

that I describe in the following. The task and interestingness
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measures description of this technique is in subsection 3.4.3

and the tool is described in section 4.

7
The user can drill down into the search space using interac-

tive mining, which is the implementation of the described

Action 3 in Section 3.4.3. This is done by selecting rows and

choosing, via a context menu, the option drill down. In the

upcoming dialog, the user may choose how many gener-

ations (see Definition 2.1.7) should be mined. The default

and recommended value is to mine only the next higher

generation of the selection.

Our algorithmic basis is the CM-SPAMalgorithm by Fournier

et al. as it shows good performance with dense datasets [221].

The CMAP approach of Fournier et al. is an extension to

the SPAM algorithm [77] and functions as a bloom filter

reducing the amount of the more computationally expensive

candidate generation routines of the SPAM algorithm. SPAM

uses an efficient vertical database layout, representing the

occurrence of an item across all event sequences in a bitmap.

The algorithm mines the search space by extending prefixes

with an Itemset-Extension and Sequence Extension. We intro-

duce several modifications to make the CM-SPAM algorithm

interactive. There is a difference in the mining technique

for each table as the left table (A1) contains the original,

distinct structured entities and the right table (A2) contains

already mined sub-entities. While our MDPE-approach is

generalized for any type of structured data, our implemen-

tation currently only works with event sequence data and

itemsets as the former data type is an extension to itemsets.

For any other type of structured data or mining type such

as rules, a different type of algorithm has to be selected and

implemented. Our various modifications are however similar

for any type of pattern mining algorithm.

To not run into a so-called pattern explosion caused by the

exponential search space, we constrain the mining algorithm

to a maximum length lMAX (i.e., generation or cardinality).

We modify the mining from a depth-first-search to a breadth-

first-search similar to Perer et al. [158] which allows us to

effectively mine structured sub-entities by generation (see

section 2.2). Let S be the structured entities contained in the

input data D and P be the set of structured sub-entities of

D that satisfies the minimum support (sMIN ) and does not

exceed a maximum length lMAX . Let further Pk be the set
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of structured sub-entities of the current highest generation:

p ∈ Pk ⊂ P |lengthp = k = lMAX . The user can drill down

into the search space using two interactions, which effectively

adds more structured sub-entities to P . P can be considered

as the rows of the right table. A drill-down operation will

add more rows to this table. Each drill down mines for the

next generation(s) of sub-entities Pkx. The user can define

this by increasing the maximum length lMAX , which must

be at least k 1.

The first interaction is based on the selection of structured

entities SSEL ⊆ S. This is a selection of rows SSEL in the

left table which holds the distinct transactions S. This is

trivial to accomplish with the algorithm. The user selects

rows of the low aggregation table (Table 3.4, Figure 5.10 A1).

This table only holds distinct structured entities, therefore

the following algorithmic procedure is required: (1a:) All

already mined sub-entities P of the selected entities (i.e.,

rows) SSEL are considered (PSEL v SSEL). (1b:) As the

SPAM algorithm is prefix-based, only the highest genera-

tion of the considered sub-entities is used (Pk). (1c:) The

minimum support threshold is determined by the minimal

support of Pk:minSup = minp∈Pk
supportp. The smaller the

number of selected structured entities (i.e., rows) by the user,

the faster the algorithm can mine additional sub-entities, as

the selection simply serves as a projection of the original data.

The second drill-down interaction is based on a selection of

structured sub-entities PSEL which are stored in the high

aggregation table (Table 3.5, Figure 5.10 A2). The initial

assumption to use this selection and filter for the highest

generation to mine for longer sub-entities is, however, not

correct as the SPAM approach is prefix-based. Therefore, a

prefix < {a}, {b} > (a occurs before b) can only be extended

with c yielding < {a}, {b}, {c} >. It is, however, not possible

to receive< {a}, {c}, {b} > or< {c}, {a}, {b} > even though

< {a}, {b} > is contained in both of these sub-entities (i.e.,

subsequences). To mine all desired sub-entities of the higher

generation, two additional steps have to be included: (2a:)

All structured entities have to be considered where PSEL is

contained: SSEL ⊆ {s ∈ S, p ∈ PSEL | p v s}. (2b:) After-

ward, steps 1a - 1c can be executed based on SSEL. The result

of the k 1 generation may include sub-entities where some

sub-entities of the user’s selection PSEL are not contained in
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the mined sub-entities. This requires another pruning step.

(2c:) Let the mined subsequences with a threshold length l be

{pl ∈ Pl | supportp ≥ sMIN ∧ lengthp = l}. All desired sub-

entities must be contained in PSEL: {pl ∈ Pl, p ∈ PSEL | p v
pl}. The sub-entities where this condition does not hold are

still kept in the result set as these sub-entities are used when

further drilling down into the search space. They are, how-

ever, hidden from the user and only become visible if another

drill-down interaction verifies their condition. The check for

containment of sa v sb runs in Om whereas m = lengthsb.

We employ additional heuristics acting as a bloom filter to

speed up this process.

In either of the two cases, additional sub-entities are being

mined which will add the resulting sub-entities to the high

aggregation table (Figure 5.10 A2). If the user selected all

rows and would mine to the highest possible generation, the

size of the original search space would still not be reached

as in our MDPE-approach no combinations of attribute char-

acteristics are being mined and displayed. In other words,

only the number of rows can be increased but not the num-

ber of columns. However, the scenario that a user would

drill down in the entirety of the search space is highly un-

likely because in many applications visual patterns can be

early determined because of the a-priori property of the co-

occurrences and thus, mining for additional sub-entities that

would only reveal the exact same co-occurrence distributions

is not useful.

5.5.4 Representation Learning

Van Leeuwen provides an overview and more details about

these approaches [275]. The general idea is to present a subset

of patterns to the user and let the user label these patterns

(i.e., interesting and not interesting) [276] or let the user

provide a user-defined ranking of these patterns [277]. Then

the question is how to proceed with the information the

user supplied. One possibility is to adapt weights that are in

turn used to specify a sampling distribution [276]. Another

possibility is to use the lattice itself and define a distance

measure where either similar patterns or dissimilar patterns

are proposed [277]. Also, a domain-specific distance mea-

sure could be used to achieve the same task [278]. Another
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possibility is to use various types of preference learning to

derive an interestingness measure from the user’s feedback.

A simple approach would be to correlate a user-supplied

ranking with various interestingness measures. Boley et al.

use a combined strategy by learning which algorithm pro-

duces the best results and by learning a utility function over

the feature representation [279]. The best-deemed algorithm

then efficiently generates the best-tailored result set, thus,

saving computation time. The learned utility function then

provides a ranking of the most promising patterns that the

user might be interested in. Dzyuba et al. assume that a user

can prefer one pattern over another but cannot express this

preference for any pattern pairs [277]. The user is asked to

rank a small subset of the patterns and the utility function

over the feature representation and then tries to derive a total

order from that. The main problem of these approaches is

the utility function and available features as they need to be

defined a-priori and thus introduce a bias [275].

5.5.5 Belief system

Subjective interestingness measures (see Chapter 3) try to

formalize existing knowledge to use it to find either pattern

that the user is looking for (i.e., similar to the input) or try

to avoid such similar patterns to “surprise” the user. The

main challenge is how existing knowledge can be formalized

as this heavily depends on the data and task. Lastly, the

user must be able to understand how they can formalize

their knowledge and this is typically a time-consuming en-

deavor. In data mining, such formalized domain knowledge

is typically referred to as a belief system. De Bie concep-

tualized a framework that is based on maximum entropy

where a prior probability distribution can be created through

a belief system [280]. The patterns that are interesting ac-

cording to this distribution can be presented to the user and

re-evaluated. The input of the user is then used to update

the maximum entropy-based probability distribution. While

such an approach lifts the burden of defining a custom utility

function, it does require certain normalizations and data,

and task-specific adjustments [281, 282].
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5.5.6 Conclusions

The most challenging problem in progressive and interactive

pattern mining is the initial sample of patterns that the user

must evaluate. This sample must be representative and yet

small enough to not discourage the user. The next problem

is that the mining based on this sample may still produce a

large number of patterns if thresholds or utility functions are

set wrong. In my experience, the multi-selection approach

combined with generation-based mining works well as users

do not tend to select too many patterns at once and typically

leave the default of onlymining the next generation. A simple

interaction to delete uninteresting patterns (i.e., hiding them

from the interface) also prevents the user from selecting

these patterns to mine deeper into the search space. The

selection-based approach also does not require any utility

function or belief system and the user can freely choose to

perform the mining based on the semantics of the pattern

(or the underlying data) which may not be captured in any

interestingness measure.
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5.6 Explainable Artificial Intelligence

One might wonder how the popular topic of explainable arti-

ficial intelligence (xAI) [283] relates to pattern mining. After

all, pattern mining is typically a deterministic approach of

incremental algorithms where every step and every solution

can be traced back to the original data. While this is true, a

person outside of the fields of computer science or machine

learning may not have the relevant knowledge about how

these algorithms work and thus perceive such systems as a

black box.

5.6.1 Understanding Patterns

This already starts with the interpretation of a pattern itself.

For example for a sequential pattern 〈{a}, {b}〉 I try to avoid

saying “b is followed by a” or “a before b” asmany users imply

that b immediately follows a. This is, however, not true as

the pattern without any additional constraints (e.g., window

constraint) allows for any number of events in between a and
b. I, therefore, try saying “a occurs anywhere before b”. It may

not be immediately clear but it at least sparks questions from

the user referring to that topic which allows me to explain it

in more detail.

5.6.2 Understanding Interestingness Measures

Interestingness measures are typically used to filter and

rank patterns. Therefore, the user typically has to estimate

parameters, such as thresholds, to tune a system. Since in-

terestingness measures are essentially quantified properties

of patterns or the cluster they represent a user must have

at least a conceptual understanding of what this measure

represents. Not only this, but furthermore, the user must

understand what certain thresholds and the combination of

them, imply.

5.6.3 Understanding the Lattice

The lattice (see section 2.2) and the concept of containment

often seem complex to the users. This is mostly because of the
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Figure 5.18: Our proposed trust-

building model illustrates the

trust-building process using two

orthogonal concepts: methodolog-
ical understanding and expectation
match. The figure is taken from

the original publication [21].

8: This section is taken from

my publication ‘Minions, Sheep,

and Fruits: Metaphorical Narra-

tives to Explain Artificial Intelli-

gence and Build Trust” (Section

3.2 Trust-Building Model) [21]. I

have been themain author of this

publication and section and have

written all the contents. The pa-

per was co-authored by Rita Sev-

astjanova, Florian Stoffel, Daniel

Keim, Jürgen Bernard, and Men-

natallah El-Assady.

partial order and that one pattern can have multiple parents

(contained patterns) which is contrary to a much easier

concept of prefix or suffix extensions. However, the lattice

contains important information about similarities of patterns

(see section 2.3). I find it useful to represent this information

in a continuous space such as scatterplots (subsection 5.2.1) or

reduced to one dimension (see subsection 5.4.2) to represent

this similarity. It is a much more natural understanding

for the user of how these patterns are related and lifts the

complexity of the partial order and containment-specific

relationships of the patterns.

5.6.4 Understanding Concepts & Metaphorical
Narratives

In the following, we argue that a conceptual understanding

also called methodological understanding is key for any

system.

8
The application of metaphorical narratives positively influ-

ences the trust-building process of the domain expert. We

argue that the trust-building of a domain expert in an AI

model can be decomposed into two major dimensions. We

hereby assume that the user has a general motivation to work

with the application as it promises to ease her daily routines
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[284]: (2018), Cognitive Biases

in Visualizations

and provide more insights into some available data. Our

proposed trust-building model is depicted in Figure 5.18.

The dimension, shown on the x-axis, is called expectation

match. Typically, domain experts have a good understanding

of what to expect as the outcome of some given system ac-

cording to their expertise. We denote the expectation match

as two intersecting sets whereas setM represents the output

of the system and D is the output as it is expected by the

domain expert. The expectations arise from the respective

domain knowledge of the task and the data that are provided

by the domain expert. An increasing expectation match is

visualized in the chart from left to right. Quantifying this

dimension is not trivial due to the facts that: (i) it is often dif-

ficult for domain experts to fully formalize their expectations

and (ii) the output of any system is typically not consumed

directly but through interpreting different (interactive) vi-

sualizations whereas the interpretation is affected by many

occurring biases [284]. Advancement to the right of the chart

can be performed in two ways. The first one is to modify

the model such that the output of the model changes. We

denote this asM → D. The second way is an adaption of the

user’s expectations whichwe refer to asD →M . Both are not

exclusive and may happen simultaneously in practice. The

dimension depicted on the y-axis represents methodological

understanding. We hereby explicitly refer to the complete

system including all used AI models plus the visualizations

and interaction possibilities. Furthermore, methodological

understanding refers to an understanding of what the system

as a whole is performing, how the data is transformed during

the process, and how this is associated with the given task(s).

A position at the bottom thus depicts a user with no method-

ological understanding of something which is also typically

referred to as a black box. The other extreme in the upper

region of the chart is a user that has a full understanding of

how the data is transformed and how the results are being

generated and can be explained. The resulting four quad-

rants describe the states of the user concerning the system

and can explain how the user possibly reacts. Quadrant 4

describes a user with no methodological understanding and

no expectation match. Through interviews and observations

of the domain experts, a typical reaction in such a case is the

repetition of the analysis process to see whether the output of

the system is changing or not. This may also include various,

random parameter settings. However, if the output does not
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[285]: Lee et al. (2004), Trust in

Automation: Designing for Ap-

propriate Reliance

increase the expectation match, the users discontinue using

the system (or the respective part of the system) and explore

alternative ways to receive the expected output. This might

be even to an extent where the data is processed manually.

We, therefore, consider this a state where a user has no trust

in the system. Quadrant 3 refers to a domain expert who

does not have any or little methodological understanding but

the output of the systemmatches the expectations. While the

user might have trust in this system, it gives the modeling

expert great powers - and responsibilities. From a pessimistic

perspective also the great ability to manipulate the user. This

situation is, however, not uncommon as we can experience

this in many commercial products of our everyday lives, for

example, in recommender systems of online shops, search

engines, and social networks. Such systems try to contin-

uously adapt their output towards the user’s expectations

which imposes a high risk of including the user’s biases and

not producing objectively correct results. The consequence

of this phenomenon is also called a “filter bubble.” Quadrant

2 is the desired state as only here the user can effectively

use the system as the underlying methods are understood,

and the output of the system is valid from the user’s point

of view. We consider this as the quadrant with the highest

trust in the system and where it is likely that the best condi-

tions exist to generate more knowledge and validate existing

knowledge. This is possible by using different data where the

expected output is little or unknown and by varying param-

eter settings. Ultimately, the user should have understood

the limitations of the system and the underlying methods.

Lee et al. name this state a calibrated trust [285]. We consider

quadrant 1 as an intermediate state where the user has a high

methodological understanding but the output of the system

does not match the user’s expectations. However, trust in

the system is likely to be high. The user is therefore possibly

motivated to validate the used models and processes or even

check the implementation for errors. We refer to this process

as debugging the system. In the case of finding an error on

the concept-, implementation-, or even data level, the user is

adapting the model (M → D) and thus progressing towards

quadrant 2. If no errors can be discovered the user might be

even willing to adapt her expectations towards the output

(D →M ). This is mainly due to the higher trust in the system

as compared to the bottom of the chart. An advancement

from quadrant 4 to quadrant 3 is possible but probably not as
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efficient. In this case, the model might randomly change the

output due to the random parameter settings set by the user

or the model applies an active learning methodology which

typically only gradually changes the output. As the trust is

missing the user will not be as persistent in using the system.

In general, we consider this transition to be slower than from

quadrants 1 to 2. We propose metaphorical narratives as a

method to elevate the domain expert in her methodological

understanding. In Figure 5.18 this would result in transitions

from quadrant 4 to 1 or 3 to 2, respectively. We further argue

that a movement as depicted by the red arrow (Figure 5.18)

is ideal for two reasons. First, the domain expert can validate

the methods and may discover that some applied AI models

are not suitable for the given task. This is especially important

in the earlier stages of the design study and helps to prevent

the time-consuming development of systems that turn out to

be ineffective in supporting the domain expert in her tasks.

Second, the user might be willing to adapt her expectations

(D →M ). We consider the second effect as an essential part

of the knowledge-generation process. While a state depicted

by quadrant 3 is not desirable for the analysis of data in a

scientific manner, the metaphorical narratives can be used to

transition to quadrant 2 (black arrow).

We propose metaphorical narratives as a method to elevate

the domain expert in her methodological understanding. In

Figure 5.18 this would result in transitions from quadrant 4

to 1 or 3 to 2, respectively. We further argue that a movement

as depicted by the red arrow (Figure 5.18) is ideal for two

reasons. First, the domain expert can validate the methods

and may discover that some applied AI models are not

suitable for the given task. This is especially important in

the earlier stages of the design study and helps to prevent

the time-consuming development of systems that turn out to

be ineffective in supporting the domain expert in her tasks.

Second, the user might be willing to adapt her expectations

(D →M ). We consider the second effect as an essential part

of the knowledge-generation process. While a state depicted

by quadrant 3 is not desirable for the analysis of data in a

scientific manner, the metaphorical narratives can be used to

transition to quadrant 2 (black arrow).
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Figure 5.19:The concept of a pro-
jection plot in combination with

visual clustering is explained

by the metaphorical narrative

of a sheep run. The figure is

taken from the original publica-

tion [21]. Image credit: Rita Sev-

astjanova

9: This section is taken from

my publication ‘Minions, Sheep,

and Fruits: Metaphorical Narra-

tives to Explain Artificial Intel-

ligence and Build Trust” (Sec-

tion 3.3: Exemplary Metaphor-

ical Narratives) [21]. I have been

the main author of this publica-

tion and section and have writ-

ten all the contents. The paper

was co-authored by Rita Sevast-

janova, Florian Stoffel, Daniel

Keim, Jürgen Bernard, and Men-

natallah El-Assady.

[8]: Jentner et al. (2018), Making

machine intelligence less scary

for criminal analysts: reflections

on designing a visual compara-

tive case analysis tool

Example Metaphorical Narrative This example is based

on our VALCRI prototype (see subsection 3.4.1 & subsec-

tion 5.2.1). We used this metaphorical narrative after one user

stated “your clustering scares me to death!”. We observed

that users were very hesitant to use the system as they feared

breaking something or getting into a state in the system they

could not get out of. The metaphorical narrative helped the

users to gain a conceptual understanding of how central

parts of the concept explorer are functioning and improved

their trust in the system significantly.

9
The Concept Explorer combines multiple complex AI mod-

els to support the criminal investigator in its Comparative

Case Analysis task [8]. Two central AI models are dimen-

sionality reduction techniques with weighted feature vectors

and visual clustering techniques that operate on the low-

dimensional output of the dimensionality reduction model.

To explain the difference between both methods and the

general concepts behind them, we chose the metaphorical

narrative of a flock of sheep (Figure 5.19). Sheep have different

attributes such as size, length, and height. We explained that

the domain expert can tell the shepherd what attributes she
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considers more or less important. The shepherd tries to place

the sheep onto the sheep run based on how similar the sheep

are according to their user-weighted attributes. Afterward,

the user provides the shepherd with a set of colors. The

shepherd tries to find groups of sheep on the sheep run

without looking at their attributes and assigns each group

one of the colors. The user can investigate and explore the

groups, look at the distinctive attributes or find attributes

that are shared among different groups. After teaching the

basic concepts of dimensionality reduction and clustering

techniques, the domain experts started to use the tool with

muchmore confidence. The evaluations after establishing the

metaphorical narrative showed that the users ceased their

wishes for more guidance from the tool and observations

confirmed the now more exploratory data analysis with the

support of the system.

Conclusions

Although this is not a popular research area for xAI, it is

crucial for pattern mining as well. In the end, the user is

the ultimate decision maker judging the interestingness of a

pattern and therefore must have an idea of what a pattern

represents and what, in turn, the interestingness measures

(i.e., properties) of a pattern represent. It is not required that

a user understands the details of pattern mining and inter-

estingness measures in detail but rather has an idea of the

most crucial concepts. Another crucial part is the expectation

match. A simple example would be a black box system with

two dials and a display showing a number. The task of the

user is to turn both dials to get a specific value showing on

the display. If the dials are variables for a linear model, the

user will soon understand the concept but not necessarily the

underlying formula and should be able to reach the number

eventually. For non-linear models, this may be much harder

if not impossible and the user will likely find no underlying

pattern to these dials and the output. After a while, the user

will simply be discouraged from using the system any longer

as they deem it not working properly. Translated to pattern

mining this might be simply a pattern that a user expects to

be in the result set. This is for example in contrast to the as-

pect of surprisingness or unexpectedness of interestingness

measures (see subsection 3.1.1).
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[42]: El-Assady et al. (2019), To-

wards XAI: structuring the pro-

cesses of explanations

We suggest metaphorical narratives as one tool to convey

concepts of a more complex system. However, these are likely

not the only possibility. In another work, we describe the

building blocks of xAI [42].
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10: This section is taken frommy

publication “Visual Analytics of

Co-Occurrences to Discover Sub-

spaces in Structured Data” (Sec-

tion 6.4: User Study: What We

Eat In America Dataset) [10]. I

have been the main author of

this publication and section and

have written all contents. The

paper was internally reviewed

by my co-authors Giuliana Lind-

holz, Hanna Hauptmann, Men-

natallah El-Assady, Kwan-Liu

Ma, and Daniel Keim.

5.7 Evaluating Visual Pattern Analytics

The following presents one user study conducted for the

multi-dimensional pattern exploration tool. See subsection3.4.3

for a task description and subsection 5.4.2 for a tool descrip-

tion.

5.7.1 User Study: What We Eat In America
Dataset

10
We conducted a user study with 15 participants. The par-

ticipants were recruited from the Computer and Information

Science Department at the University of Konstanz, and every

participant has experiencewith visualizations and visual ana-

lytics tools. Out of the 15 participants, two are on a Bachelor’s

level, two are on a Master’s level, 10 are Ph.D. students, and

one is a PostDoc. None of the participants was the author of

the paper. All of the studies have been conducted by the first

author of this paper. The participantswere compensatedwith

some chocolate bars but received no compensation otherwise.

The study was conducted online via Zoom. The participants

could choose whether they would like to enable the camera.

Some of the participants agreed to record the call in video

and audio. It was made clear that the recordings would not

be published and deleted in an appropriate time frame. The

interviewer’s camera was turned off during the study. The

participants provided their answers using an anonymous

online form that was open and filled out during the study.

They could decide freely whether they speak aloud about

what answers they wrote down or tell the interviewer that

they had finished answering the question. In most of the

studies, the participants used both approaches depending

on the questions. The answers were provided in bullet points

in English and German. Each user study lasted about two

hours andwas divided into five parts. Note that the guidance

feature was disabled during the study as it was not stable

enough as a feature.

1: Introduction andoverall task The interviewer explained

the process of the study and then introduced the overall task

of subspace search and correlation analysis in categorical
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data. At the end of this part, the participants were asked

whether they understood the task and had any additional

questions. Afterward, the participants were asked how they

would tackle this task if presented with such a dataset. This

part lasted for roughly 10 to 15 minutes, depending on the

questions.

2: Introduction of the tool The participants were asked

whether they knew the VAST Challenge 2017 MC1 dataset.

Nine participants reported that they had heard of it, and six

reported that they didn’t know it. None of the participants

had previously worked with this dataset. Then the concepts

of the approach were introduced by the interviewer using

PowerPoint slides, and afterward, the tool was introduced

using screen sharing with the same dataset. The interviewer

explained interaction possibilities, possible perspectives, the

statistical overlay, and the filtering and sorting capabilities

of the tool. The participants could ask questions on the spot

and were asked whether they had any additional questions

regarding the tool. This part lasted around 25 to 30 minutes,

depending on the questions.

3: Estimation about the search spaces This part consisted

of estimation questions about the search spaces. The par-

ticipants were not expected to know or derive the correct

formulas but to give a rough estimate of how large the respec-

tive search space would be. Therefore, they were asked to

provide their answers as the power of a natural number (i.e.,

10X
). The parameters of the VAST Challenge dataset have

been used to estimate the various search spaces. The first

question was to estimate the theoretically possible amount of

combinations using 60 attribute characteristics. The second

question was to estimate the theoretically possible amount of

sequential patterns in theVAST challenge dataset (Σ = 40 and
longest sequence = 57). It was underlined that no assump-

tions regarding the data should be made for this question.

The third question was to guess the actual amount of pat-

terns that exist in the dataset, including assumptions such

as "cars may not be at two locations at the same time" and

"cars must follow the roads in the park (i.e., cannot jump)". It

was also made clear that there exists no formula for such a
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[286]: Agriculture (2022), What
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[288]: Disease Control et al.
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2018 Data Documentation, Code-

book, and Frequencies; Demo-

graphic Variables and Sample

Weights (DEMO_J)

case, and the answer could be only provided if the patterns

were mined. The answers to each question were provided

after the respective question. Most participants chose not

to tell the interviewer their answers but provided their an-

swers in an anonymous form. Afterward, it was explained

that the approach, as described in this paper, only uses pat-

terns of generations one and two (length), which greatly

reduces the number of patterns. The VAST Challenge dataset

shows 114540 values (pixels) to the user using this approach.

This part lasted about 10 to 15 minutes, depending on the

questions.

4: Paired analytics session The mode was switched, and

the participants were asked to share their screens and use

the tool in a paired analytics manner and a think-aloud

fashion. Before that, the interviewer introduced the dataset

to the participant, which is called “What We Eat In America

(WWEIA)" [286]. For the study, the dataset from 2017-2018

had been prepared and consisted of 7640 participants logging

their intake of one day [287]. More specifically, the sequences

consist of the “Combination Food Type" (DR1CCMTX) and

the “Name of eating occasion" (DR1_030Z). Note that the

eating occasion is provided in English and Spanish. The

dataset has been joined with the dataset “Body Measures

(BMX_J)" [288] which contains the body mass index of the

persons that participated in the study. Finally, the dataset

was also joined with the dataset of “Demographic Variables,

and Sample Weights (DEMO_J)" [289] which contains the

gender and age information of the participants. Altogether,

the prepared dataset for the study contained the following

attributes for each participant:

I Gender (DEMO_J - RIAGENDR) with male and female

as characteristics

I Age (DEMO_J - RIDAGEYR) in age groups of 5 years

(0-5, 5-10, ..., 80+)

Table 5.1: The WWEIA dataset consists of 7640 sequences containing what people eat for what occasion

associated with attributes about the person’s gender, age, BMI, intake day, intake hour, and whether they

were breastfed.

Structured Data Attributes
SID Event Sequences Gender Age BMI Day Hour Breastfed

1 < {o:Lunch, t:Cereal}, {o:Snack, t:Chips}, ... > m 20-25 normal Mo {8,10,...} No

2 < {o:Cena, t:Meat}, {o:Botana, t:Ice cream}, ... > f 40-25 obese I Fr {18,22,...} No

3 < {o:Breakfast, t:Cereal}, {o:Lunch, t:Salad}, ... > f 15-20 normal We {6,12,...} No
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I Body Mass Index (BMX_J - BMXBMI) in categories by

the World Health Organization (underweight, normal,

overweight, obese I - III, missing)

I Intake Day (DR1IFF_J - DR1DAY); Sunday - Saturday

I Intake Hour (DR1IFF_J - DR1_020); 0 - 23

I Breastfed infant (DR1IFF_J - DRABF); Yes, No

Table 5.1 shows a summary of the dataset. None of the partic-

ipants had previously worked with the dataset or a similar

dataset. Before starting their analysis, they were asked to

write down some expectations and hypotheses about the

dataset. The participants then spent around 30 to 45 minutes

using the tool. They could ask questions and discuss their

findings with the interviewer.

5: Post interview First, the participants were asked to write

down the insights they found in the WWEIA dataset using

the tool and, more specifically, whether their initial hypothe-

ses could be verified, falsified, or not answered. Furthermore,

they were asked whether they had missed anything signif-

icantly in the dataset and, if yes, what they would have

needed (e.g., specific features, more time, etc.). Finally, they

were asked to revisit their answers to the first part of the

study about what approaches, algorithms, and tools they

would use now that the participants had more insights about

such datasets and their search spaces. The next section in

the post-interview dealt with specific UI features used. For

each feature, the participants could indicate whether it was

helpful for their analysis or unhelpful/distracting. For each

of the questions, they could also write an optional answer

specifying their problems. The UI features included canvas

navigation, different perspectives, filtering features, sorting

capabilities, and interactions based on the selection of rows.

The last four questions were more general, where the par-

ticipants were asked to write down what they found most

difficult using the tool, what theymost liked about it, whether

they would use it again, and finally, what they would im-

prove. The post-interview part took around 20 to 30 minutes,

depending on the discussions.

Results This section reports the most significant results

of the study. Regarding their own approaches to how to

tackle the dataset, none of the participants know of a readily
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Figure 5.20: Participants’ estimates about the search space of attribute characteristics. The correct answer is

marked in green. Note that the x-axis is logarithmic.

available tool for such datasets and tasks. Five participants

reported they would try out tools such as KNIME, Tableau,

Charticulator or spreadsheets to gain some insights into the

data. Most of the participants would try to use Python and

Jupyter Notebooks to get insight into the data, such as man-

ually filtering the data by attributes based on hypotheses

and then running pattern-mining algorithms to gain insight.

Four of the participants reported they would try to run pat-

tern mining first and then use correlation measures with

the attributes. Two participants stated they would transfer

the data into vector space to apply correlation measures and

dimensionality reduction to find patterns and outliers. The

second time this question was asked in the post-interview six

participants answered they would not use their previously

mentioned approaches at all. Three participants answered

that they would still use Python/Jupyter Lab approaches but

only for hypothesis testing and not for exploration.

The questions about the search spaces revealed that the

search space size for 60 attribute characteristics was much

more intuitive for the participants to estimate, as seven out

of 15 guessed correctly with the formula 260
(Figure 5.20).

However, the search space of sequential pattern mining was

greatly underestimated. Only one person was able to derive

the formulas and provide the correct answer. All other par-
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Figure 5.21: Participants’ estimates about the search space of sequential pattern mining. The correct answer is

marked in green. Note that the x-axis is logarithmic. Only one participant estimated the correct amount by

deriving the correct formulas. All other participants greatly underestimated the size of the search space.

ticipants answered in ranges from 103
to 10200

, whereas the

correct answer is 10686
(Figure 5.21). The actual amount of sub-

sequences in the VAST Challenge dataset was guessed more

correctly, however, eight of the participants responded with

102
to 105

and five participants with 107
to 1010 whereas only

one participant estimated correctly with 106
(Figure 5.22).

During the paired analytics phase, the participants spent

the most time with the view, as shown in Figure 5.23. As

recommended by the interviewer, they reduced the length

of the right table to 1, resulting in the table only displaying

single occasions and food types. Furthermore, most partic-

ipants activated the statistical overlay to understand better

which correlations are significant with an alpha threshold of

5%. The annotations in the figure represent only some of the

insights that the participants generated. Many more signifi-

cant findings can be made as it is visible by the black glyphs

on the pixels. However, even though they are significant,

some findings were deemed noise or random occurrences,

such as that persons who consume frozen meals reported

their meals on a Tuesday. Other findings, such as Lunchables

are consumed more by children and teenagers, confirmed

expectations. The BMI category underweight is overrepre-

sented for the same group as the BMI has been designed for

adults and tends to be too low for children. Later on, the

participants increased the length filter again to two, which

shows all the data. Using browsing, filtering, and sorting,

they analyzed the data in a hypothesis-driven manner.
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Figure 5.22: Participants’ estimates about the search space of sequential patterns that are actually in the data.

The correct answer is marked in green. Note that the x-axis is logarithmic. Note that the participants may

have been biased, as the correct answer to the previous question was given to them before answering it.

Figure 5.23: The view the participants spent most of their time in. The length of the right table is reduced

to 1 leaving only single occasions and food types per row (no combinations). The column groups represent

the attributes of gender, age group, BMI category, intake day, intake hour, and breastfeeding. The statistical

overlay is activated with all three possible tests with α = 0.01. Several insights can be generated using this

view. The notes only represent some of the insights of the participants. All of the annotated insights are

significant by two of the statistical tests. As it is visible by the black glyphs, many more insights can be derived

only based on this view.
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Figure 5.24: The various ratings of the canvas navigation and features to support navigating the canvas. Note

the slightly different answer type for each question and note that the did not use option was only available for

the home button.

Ten of the participants reported that they gained 5-10 new

insights, and four participants reported that they could gain

more than ten new insights. Only one participant reported

gaining 1-2 new insights into the WWEIA dataset. Twelve

of the participants were sure or assumed that they had

missed or overlooked something in the data. The partici-

pants overwhelmingly reported needing more time with

the tool and the dataset. Another limiting factor was the

steep learning curve, especially in the interpretation of the

various perspectives and the knowledge of what task to use

what perspective. Another difficulty was memorizing the

attributes and attribute characteristics (column groups and

columns). The participants mentioned that they felt more

comfortable navigating the tool at the end as theymemorized

the order. In the beginning, they needed to use the header

and tooltip for orientation which slowed them down. Only

three participants wished for more filtering options, such as

filtering based on p-values. Four stated they would like to

use a guidance feature. Again, this was turned off during the

study as it was not stable enough.

The canvas navigation was deemed as very easy or easy by 14

of the participants (see Figure 5.24). The study revealed that

panning and zooming in non-chromium browsers is much

laggier, as well as that the zoom levels jump quite a lot on

MacOS. The feedback regarding the lines from the headers

and the overview panes on either side was mixed, as six and

seven participants reported they did not use them as an aid

for navigation. Otherwise, these components were rated help-

ful or very helpful. Similarly, five of the participants did not

use the “fly home" button. The feedback regarding the tooltip

was overwhelmingly positive, with 12 participants stating

“very helpful" and three participants rating it “helpful." Itwas,
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however, mentioned that the tooltip can be distracting dur-

ing panning and zooming as it covers a large area of the space.

The feedback for the perspectives (normalizations, see sec-

tion 12) varied significantly. The subspace, subspace devi-

ation, and subset perspective were most used and rated

helpful or very helpful by the majority. The subset deviation,

support, support deviation, and normalized PMI perspective

were mostly not used by the participants. All participants

answered that the statistical overlay was very helpful or help-

ful for their analysis. Likewise, all participants reported that

they did not miss any perspective or did not know whether

any important perspective was missing. Again, many of the

participants reported that they had difficulties interpreting

the perspectives and choosing the appropriate perspective

based on their task. They suggested more time/experience

with the tool or more training as a countermeasure.

The interestingness measure filters (sliders) were rated help-

ful or very helpful by all participants (Figure 5.26a). The

co-occurrence filters that allow filtering for specific pixel col-

ors and the pattern search were less used but rated positively.

The pattern row removal for a selection of rows was mostly

not used by the participants. Only three participants used

that feature and rated it very helpful or helpful. A similar

reaction is visible for the attribute characteristic sorting as

it was mostly not used, but the persons who used it rated it

positively. Ten participants reported that they did not miss

any additional filtering capabilities, three answered “I don’t

know," and two answered “Yes," where they specified that

they wished for filtering based on p-values and that the filter-

ing could bemore specific such that AND andOR queries are

possible. The filters are combined using AND in the current

state, whereas only the co-occurrence filters are ORed. Mul-

tiple participants expressed the wish to search for multiple

Figure 5.25: The various ratings for the different perspectives/normalizations and the statistics overlay
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(a) Filter Features (b) Sorting Feature

Figure 5.26: The ratings for filter and sorting features.

filter queries in the pattern search. This would have been

helpful for English and Spanish occasions or related food

types. The ratings for missing sorting capabilities were simi-

lar, and the participants expressed the wish to sort patterns

alphabetically and sort bymultiple attribute characteristics of

one attribute. Furthermore, it was remarked that the flipping

of the tables (because of the MDS) could be confusing.

The selection features and use cases were also rated positively

(Figure 5.27). The first question referred to a selection to high-

light specific rows to follow the pixels along the horizontal

axis better. Most participants rated this as helpful, only one as

not helpful, and two did not use this feature. The participants

stated that it was unintuitive that the selection only works

on pixels and not on the row labels and that the tooltip can

be distracting in this case. If too many rows are selected, the

edge bundles connecting the two tables become overplotted,

and in the worst case, the canvas navigation becomes laggy.

Figure 5.27: The various selection features and use cases.
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Otherwise, they rated this feature as useful and necessary

for exploration. The selection for sensemaking was mostly

not used and referred to selecting one or multiple rows and

then browsing the highlighted rows in the other table without
using any additional filters. The participants reported that

this is too tedious. However, combined with the alignment

or filter (third question), this feature becomes incredibly

valuable and is rated positively by most. The participants

agreed that the selection and filtering should be two separate

interactions as otherwise, it would be too confusing to follow

the tool. No other feedback was provided regarding missing

selection features.

The last part of the interview concerned more general feed-

back,where the first questionwas aboutwhat the participants

found most difficult in using the tool/approach. The ma-

jority reported that the steep learning curve is an obstacle,

especially with the many available perspectives and various

options. They furthermore reported that a good entry point

for the analysis would be helpful, such as an initial tour or

guidance feature (whichwas disabled at the time). Otherwise,

the long loading times of the tool were noted negatively.

Regarding the question of what the participants liked the

most, the overwhelming answer was the good overview of

the dataset combined with the many available correlation-

s/visual patterns in a single image, allowing them to test the

hypotheses extremely rapidly without much user interaction.

Several users rated the tool as a truly exploratory analysis.

Furthermore, it was appreciated that the filters and statistical

overview helped quickly reduce the tables to find specific ar-

eas of interest and verify/falsify hypotheses. While the steep

learning curve was remarked for the previous question, the

participants acknowledged that once the tool and its capabili-

ties are understood, the analysis becomes very easy and quick

as it does not change between datasets even if the structured

data is different. The option to flip the colormap was rated

positively as for many participants, it was unintuitive that

blue colors have a positive deviation as theirmental state com-

pared the colors to a temperature where a red color (warmer)

equals higher values. Furthermore, it was appreciated that a

CSV uploadwas provided, and 14 participants stated in a sep-

arate question that they would use the tool again for another

analysis. One participant answered with “I don’t know," as
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they were unsure whether they would have the right datasets

in the future. The question on what they would improve

was answered similarly to what they found most difficult.

One participant mentioned that it would be good to hide

specific attributes or attribute characteristics to better focus

on the remaining ones. Four participants would like to see a

recommender/guidance system to find a better entry point

for the tool. The last question about miscellaneous feedback

was answered by one participantwith “A very powerful tool!"

In a post-study, we demonstrated the guidance system to

four of the user study participants that specifically suggested

such a feature for the tool. The participants agreed that the

guidance system is useful as an onboarding process for the

tool to showcase to the user what is possibly interesting and

what statistical effects cause the visual effects in the interface.

The four participants were satisfied with the current set of

statistics and could not suggest any further statistics without

making any specific assumptions about the dataset.

5.7.2 Conclusions

Evaluating VPA, like any system, is crucial. However, there

are some limitations. When it comes to exploration and

sense-making, it is ultimately the user doing the verdict. This

implies that useful data and a useful task have to be used. This

is because we derive interestingness from semantics. If a user

is asked to rank the two patterns 〈{a}, {b}〉 and 〈{b}, {a}〉
most users would indecisive because the items a and b have

no semantic meaning. This would not necessarily change if

we supply interestingness measures such as the support that

could be 50% for the first pattern and 70% for the second one.

Most users would argue that this information is only some

small perspective on these patterns whereas the full picture

is not evident. Of course, one could simply argue that the

task is to find the pattern with the highest support but this

task is arbitrary and does not necessarily reflect the meaning

of exploration which is vaguer (see Chapter 1). Therefore, a

VPA system is always bound to a specific dataset and tasks

and cannot be easily transferred to a different domain and

task.
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Another limitation of evaluations is that they only show

that a user can find certain interesting patterns in a dataset

within a certain timeframe. It is much more difficult, if not

impossible to show that all interesting patterns were found.

If all interesting patterns are known a-priori then the task is

not truly an exploration task as the assumption is that the

user has little knowledge about the dataset and therefore

cannot estimate if all interesting patterns were found. On the

other hand, the interestingness is subjective, therefore it is

difficult to assess what the user should find interesting.

An important aspect of the example evaluation is guidance.

Exploration tools are typically complex and thus guidance is

appreciated. This is important for the trust-building phase

as a guidance tool shows the user why a certain pattern is

deemed interesting and how this is conveyed in the visual-

ization(s). Even though the user does not necessarily agree

that a specific pattern is of interest it provides comparison

capabilities and an understanding of visual cues.
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We are now at a point to reflect on this dissertation.

6.1 Discussion

We are faced with two major challenges: Firstly, how can a

user properly define thresholds and parameters with little

or no prior knowledge about a dataset? Secondly, trial and

error of the aforementioned parameters will inevitably end

up in a pattern explosion. Are we able to prevent that?

Scalability Starting with the second challenge we have to

humbly admit that our measures are not eliminating the

exponential search spaces. This is an impossible endeavor

as the root cause of the search spaces lies in the definition

of containment itself - the deep core of structure mining al-

lowing us to neglect the need for a distance measure. But

we have identified several approaches to mitigate the prob-

lem starting by constraining the pattern mining algorithm

using thresholds and templates. These constraints can be

very effective, specifically for verification purposes and rapid

hypothesis testing. However, for exploratory data analysis,

they impose danger as too relaxed constraints may cause a

pattern explosion potentially overwhelming the user or even

breaking the application. Nevertheless, it is rewarding to

spend effort on designing specific (task, user, & data) interest-

ingness measures (feature engineering) as these cannot only

be used for pruning but furthermore be visualized with far

better scalability than if the structures need to be visualized

themselves. One should not neglect the explainable artificial

intelligence aspects in this design as the better the users

understand these measures, the more effectively they can

make use of them. This does not mean that they have to be

taught in every detail but merely a conceptual understanding

may be sufficient [21].

Other actions such as equivalence classes are another pos-

sibility to eliminate duplicates. However, I do not argue for

always using closed patternmining even though it is deemed
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[10]: Jentner et al. (2022), Visual
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to be lossless regarding information. I find it difficult to create

a general rule on whether generator patterns or closed pat-

terns are better suited to providing an overview. This remains

data-, user-, and task-dependent and should be decided case

to case thoroughly involving the user in this discussion. For my

work of finding subspaces in structured data [10], I even find

the redundancy of equivalence classes helpful as these create

visual blocks of equal pixels that additionally highlight the

subspaces (see Figure 5.11).

Various techniques such as linking and brushing, or the gen-

eral information visualization mantra are helpful to combine

the visual scalability of interestingness measures with the

semantic, high-dimensional details that lay in the structure of

the data. However, the greatest potential lies in progressive

visual pattern analytics (VPA) as it allows us to always start

with a relatively small set of patterns and gradually expand it

while navigating through the search space. This is so effective

as the search spaces visually have a diamond-type shape

(see section 2.2) where relatively few patterns are on top

and the bottom. Progressive VPA sparks two questions: (i)

can a user derive potentially interesting patterns from their

sub-patterns? And: (ii) does a user need to see every pattern

to determine its interestingness for the task at hand? While

both questions cannot be universally answered, this thesis,

my research and the research of other scientists show that it

is possible for certain areas and can be successfully applied.

This, however, does not mean that it is generally possible

to rely on this assumption. For the second question, we can

quite heretically argue that a user will never be able nor

willing to assess all patterns in large search spaces anyway.

The answer to the question “Have I seen enough (patterns)?”

will depend very much on the user and from case to case as

this is an entirely subjective decision.

Chicken and Egg Situation of Constraints Back to the first

challenge: did we gain anything? The previously mentioned

techniques and approaches allow us to tame the pattern

explosion. This gives the user ultimately the possibility to

relax certain constraints without fearing breaking the tool or

being presented with a ridiculous amount of results. This

effort in “making machine learning less scary” ultimately

encourages the users to fully exploit an application and its

functionalities which in return allows them to explore more



6.2 Future Work 177

[8]: Jentner et al. (2018), Making

machine intelligence less scary

for criminal analysts: reflections

on designing a visual compara-

tive case analysis tool

[21]: Jentner et al. (2018),

Minions, Sheep, and Fruits:

Metaphorical Narratives to Ex-

plain Artificial Intelligence and

Build Trust

[290]: Ramesh et al. (2022), Hier-
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sis with Latent DiffusionModels
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[295]: Gan et al. (2018), A Sur-
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Mining

[296]: Plaisant et al. (2016), The

diversity of data and tasks in

event analytics

of the data [8, 21]. It further enables the machine learning

expert to define sensible default thresholds and constraints

to provide the user with a good starting point. Guidance

features in the application are a welcomed tool for users to

initially learn and understand how a potentially interesting

pattern may be represented in a visual analytics tool (see

section 5.7). However, understanding the concepts of how

the data is modeled, pattern-mining, and interestingness

measures still remain relevant.

Is Pattern Mining Still Relevant? A most daring question

concerning the recent impressive advances in deep neu-

ral networks, specifically, image generation, latent diffusion

models, and reinforcement learning from human feedback

(RHEL) with their prototypes like Dall-E2 [290], Stable Dif-

fusion [291], and ChatGPT [292]. Paaßen et al. underline

that structured data does not have a vectorial and survey

various methods of vectorial representations of structured

data [293]. It comes to mind to exploit machine learning to

automatically learn which patterns are interesting. However,

this requires training data to be available and as I show in

Chapter 3, the measures will likely depend on data, user, and

the task, and therefore, cannot be easily transferred across

domains. There are, however, approaches to leverage neural

networks to mine patterns improving on the scalability [294].

The verdict is yes, pattern mining is still relevant and is being

actively researched even after almost 30 years.

6.2 Future Work

This thesis lays out a foundation for the exploration of mined

patterns in structured data. There is a plethora of future

opportunities for research. On the one hand, improving the

performance of pattern mining algorithms is being actively

researched [295], on the other hand, the design space of inter-

estingness measures, algorithms, (interactive) visualization-,

and visual analytics techniques is vast such that there are

many possible combinations and extensions imaginable on

how to enable a user exploring patterns for a certain domain

and task [296].
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[297]: Gotz (2016), Soft patterns:

Moving beyond explicit sequen-

tial patterns during visual analy-
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[298]: Aggarwal et al. (2009), Fre-

quent pattern mining with un-

certain data

[299]: Leung et al. (2008), A Tree-

Based Approach for Frequent

Pattern Mining from Uncertain

Data

[300]: Hullman (2020), Why Au-

thors Don’t Visualize Uncer-

tainty

[301]: Dehn (2020), Visual Ana-

lytics for the Exploration of Se-

quential Rules

[302]: Sperrle et al. (2022), Lotse:

A Practical Framework for Guid-

ance in Visual Analytics

[303]: Sperrle et al. (2019), Spec-

ulative Execution for Guided Vi-

sual Analytics

Uncertainty Mining Because structured data is discrete,

pattern mining is not robust to uncertainty [297]. There are

different types of uncertainties such as did event a occurred

before b or at the same time, or the other way round. Another

type of uncertainty is if an event occurred at all. Mining on

uncertain databases, also called fuzzy mining, is tackled by

some datamining approaches [298, 299]. Themajor challenge

is that fuzzy mining increases the search space even more as

it extends the number of possible combinations. However,

uncertainty is not only algorithmically complex but also

complex to visualize as it requires the usage of more visual

encodings and must be quantifiable [300].

Comparison of Pattern Sets Visualizing and exploring a

single set of patterns is already challenging. Comparing re-

sult sets is even more difficult because the comparison can

be made via interestingness measures, structure, and seman-

tics. It is, however, interesting to do for certain applications

such as to compare two datasets using pattern mining or to

compare different thresholds, utility functions, etc. Giuliana

Lindholz (Dehn), whom I supervised for her thesis, created

such an approach to compare sequential rules in her master

thesis [301].

Guidance, Active Learning, and Speculative Execution
These are core topics of progressive visual pattern analytics

and there are many valuable research possibilities. For exam-

ple, Sperrle et al. proposed a framework for guidance [302].

There are existing (task-dependent) approaches to using

belief systems, and utility functions over feature representa-

tions (see section 5.5) but visual analytics tools that combine

guidance with these techniques are scarce. I see great poten-

tial in such approaches if a tool is capable of explaining why

a certain pattern is potentially interesting to the user. This

would also allow the user to interact better with the system

and accept or deny the conclusion of the model actively influ-

encing an underlying utility function. Speculative execution

can be useful to mine for certain types of patterns, however,

the pattern explosion aspect will be quite challenging [303].

Note that these are only three selected areas that I find

interesting for further research but there aremanymore! This

thesis talked so often about the problem of a pattern explosion
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that here I can joyfully state that the circumstances are present

for a design explosion as there are so many combinations

of algorithmic-, interaction-, and visualization techniques

possible that almost every new endeavor will have a unique

aspect to it.

6.3 Conclusions

This thesis presents various techniques and approaches to

how patterns from structured data mining can be explored.

After introducing interestingness measures, it assesses their

properties and provides a complementary perspective and

taxonomy of what interestingness measures are and how

they can be successfully used. This ultimately gives the user

more responsibility in the need to understand what these

interestingness measures represent but in return allows for

more effective use. Several use cases underline these argu-

ments. A survey of visualization techniques follows showing

how structure and interestingness measures can be visual-

ized. It highlights the creativity of the research community

in finding unique and elegant solutions. The comparison

of the techniques reveals that tradeoffs are necessary when

it comes to scalability vs. visualizing structures (in detail).

The interactive visualization and visual analytics techniques

are presented and transferred to the pattern mining domain

demonstrating how individual shortcomings of interesting-

ness measures and visual designs can be mitigated. Specif-

ically, progressive visual pattern analytics is a resourceful

area for further research. I have been thoroughly inspired

by many works and I hope that my research and this thesis

serve as an inspiration for others. I am very excited to see

how this field continues to develop and grow in the future.





Bibliography

[1] Zhi-Hua Zhou. Machine Learning. Springer, 2021 (cit. on pp. 1, 39).

[2] Christopher Westphal and Teresa Blaxton. Data mining solutions: methods and

tools for solving real-world problems. John Wiley & Sons, Inc., 1998 (cit. on p. 1).

[3] Bing Liu. Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data.

Second Edition. Data-Centric Systems and Applications. Springer, 2011 (cit. on p. 1).

[4] David Caster Hoaglin, Frederick Mosteller, and John Wilder Tukey. Understanding

robust and exploratory data analysis. Vol. 3. Wiley New York, 1983 (cit. on p. 1).

[5] Eytan Adar. Banning exploration in my infovis class. https://medium.com/
eytanadar/banning-exploration-in-my-infovis-class-9578676a4705. 2017
(cit. on pp. 1, 2).

[6] Jarke J. van Wĳk. Views on Visualization. In: IEEE Trans. Vis. Comput. Graph. 12
(2006), pp. 421–433. doi: 10.1109/TVCG.2006.80 (cit. on pp. 3, 113).

[7] Wolfgang Jentner, Geoffrey Ellis, Florian Stoffel, Dominik Sacha, andDaniel A. Keim.

A Visual Analytics Approach for Crime Signature Generation and Exploration. In:

The Event Event: Temporal & Sequential Event Analysis, IEEE VIS 2016 Workshop. 2016
(cit. on pp. 4, 6).

[8] Wolfgang Jentner, Dominik Sacha, Florian Stoffel, Geoffrey P. Ellis, Leishi Zhang,

and Daniel A. Keim. Making machine intelligence less scary for criminal analysts:

reflections on designing a visual comparative case analysis tool. In: The Visual
Computer 34 (2018), pp. 1225–1241 (cit. on pp. 4, 6, 46–48, 50, 52, 53, 63, 104, 105, 109,

120–122, 124, 126, 159, 177).

[9] Rita Sevastjanova, Wolfgang Jentner, Fabian Sperrle, Rebecca Kehlbeck, Jürgen

Bernard, andMennatallah El-Assady. QuestionComb: A Gamification Approach for

the Visual Explanation of Linguistic Phenomena through Interactive Labeling. In:

ACM Trans. Interact. Intell. Syst. 11 (2021), 19:1–19:38. doi: 10.1145/3429448 (cit. on

pp. 4, 7, 55, 56, 142, 143).

[10] Wolfgang Jentner, Giuliana Lindholz, Hanna Hauptmann, Mennatallah El-Assady,

Kwan-Liu Ma, and Daniel A. Keim. Visual Analytics of Co-Occurrences to Discover

Subspaces in Structured Data. In: Accepted at Association for Computing Machinery,
Transactions on Interactive Intelligent Systems (ACM TIIS) (2022) (cit. on pp. 4, 8, 22,

23, 29, 58, 59, 65, 77, 130, 131, 149, 162, 176).

[11] Daniel Seebacher. Visual Analytics of Spatial Events: Methods for the Interactive

Analysis of Spatio-Temporal Data Abstractions. PhD thesis. University of Konstanz,

Germany, 2021 (cit. on p. 5).

[12] VisualAnalytics for Sense-makingandCriminal IntelligenceAnalysis, http://www.valcri.org/,

last retrieved 14th Sep.,2017 (cit. on pp. 6, 9).

https://medium.com/eytanadar/banning-exploration-in-my-infovis-class-9578676a4705
https://medium.com/eytanadar/banning-exploration-in-my-infovis-class-9578676a4705
https://doi.org/10.1109/TVCG.2006.80
https://doi.org/10.1145/3429448


[13] Dominik Sacha, Wolfgang Jentner, Leishi Zhang, Florian Stoffel, and Geoffrey P.

Ellis. Visual Comparative Case Analytics. In: 8th International EuroVis Workshop
on Visual Analytics, EuroVA@EuroVis 2017, Barcelona, Spain, 12-13 June 2017. 2017,
pp. 49–53. doi: 10.2312/eurova.20171119 (cit. on pp. 6, 11).

[14] Dominik Sacha, Wolfgang Jentner, Leishi Zhang, Florian Stoffel, Geoffrey Ellis, and

Daniel A. Keim. Applying Visual Interactive Dimensionality Reduction to Criminal

Intelligence Analysis. Tech. rep. VALCRI, 2017 (cit. on pp. 6, 15).

[15] Yuanzhe Chen, Panpan Xu, and Liu Ren. Sequence Synopsis: Optimize Visual

Summary of Temporal Event Data. In: IEEE Trans. Vis. Comput. Graph. 24 (2018),

pp. 45–55. doi: 10.1109/TVCG.2017.2745083 (cit. on pp. 7, 103, 109, 144).

[16] Wolfgang Jentner andDaniel A. Keim. Visualization and Visual Analytic Techniques

for Patterns. In: Springer International Publishing, 2019. Chap. 12, pp. 303–337. doi:

10.1007/978-3-030-04921-8 (cit. on p. 9).

[17] Philippe Fournier-Viger, Jerry Chun-Wei Lin, Roger Nkambou, Bay Vo, and Vincent

S Tseng. High-Utility Pattern Mining. Springer, 2019 (cit. on pp. 9, 34, 36).

[18] Wolfgang Jentner, Geoffrey Ellis, Florian Stoffel, Dominik Sacha, and Daniel Keim.

A visual analytics approach for crime signature generation and exploration. In:

IEEE VIS2016 Workshop on Temporal & Sequential Event Analysis. 2016 (cit. on pp. 9,

52).

[19] Juri Buchmüller, Wolfgang Jentner, Dirk Streeb, and Daniel A. Keim. ODIX: A Rapid

Hypotheses Testing System for Origin-Destination Data IEEE VAST Challenge

Award for Excellence in Spatio-temporal Graph Analytics. In: 12th IEEE Conference
on Visual Analytics Science and Technology, IEEE VAST 2017, Phoenix, AZ, USA, October
3-6, 2017. 2017, pp. 197–198. doi: 10.1109/VAST.2017.8585686 (cit. on pp. 9, 115,

116).

[20] Mark A. Whiting, Kris Cook, R. Jordan Crouser, John Fallon, Georges Grinstein,

Jereme Haack, Cindy Henderson, Kristen Liggett, Diane Staheli, Jana Strasburg,

Jerry Tagestad, and Carrie Varley. VAST Challenge 2017 Mini Challenge 1. http:
//www.vacommunity.org/VAST+Challenge+2017+MC1. Accessed: 2018-12-12. 2017
(cit. on pp. 9, 23, 114, 118).

[21] Wolfgang Jentner, Rita Sevastjanova, Florian Stoffel, Daniel A. Keim, Jürgen Bernard,

and Mennatallah El-Assady. Minions, Sheep, and Fruits: Metaphorical Narratives

to Explain Artificial Intelligence and Build Trust. In: Workshop on Visualization for AI
Explainability. 2018 (cit. on pp. 10, 40, 155, 159, 175, 177).

[22] Mennatallah El Assady, Daniel Hafner, Michael Hund, Wolfgang Jentner, Christian

Rohrdantz, Fabian Fischer, Svenja Simon, Tobias Schreck, and Daniel Keim. Visual

analytics for the prediction of movie rating and box office performance. In: 2014

(cit. on p. 10).

[23] Franz Wanner, Tobias Schreck, Wolfgang Jentner, Lyubka Sharalieva, and Daniel A.

Keim. Relating interesting quantitative time series patterns with text events and text

features. In: Visualization and Data Analysis 2014, San Francisco, CA, USA, February
3-5, 2014. Vol. 9017. 2014, 90170G. doi: 10.1117/12.2039639 (cit. on p. 11).

https://doi.org/10.2312/eurova.20171119
https://doi.org/10.1109/TVCG.2017.2745083
https://doi.org/10.1007/978-3-030-04921-8
https://doi.org/10.1109/VAST.2017.8585686
http://www.vacommunity.org/VAST+Challenge+2017+MC1
http://www.vacommunity.org/VAST+Challenge+2017+MC1
https://doi.org/10.1117/12.2039639


[24] Mennatallah El-Assady, Wolfgang Jentner, Manuel Stein, Fabian Fischer, Tobias

Schreck, and Daniel Keim. Predictive visual analytics: Approaches for movie

ratings and discussion of open research challenges. In: An IEEE VIS 2014 Workshop:
Visualization for Predictive Analytics. 2014 (cit. on p. 11).

[25] FranzWanner,Wolfgang Jentner, Tobias Schreck,Andreas Stoffel, Lyubka Sharalieva,

and Daniel A. Keim. Integrated visual analysis of patterns in time series and text

data - Workflow and application to financial data analysis. In: Inf. Vis. 15 (2016),

pp. 75–90. doi: 10.1177/1473871615576925 (cit. on pp. 11, 97, 109).

[26] Wolfgang Jentner, Mennatallah El-Assady, Dominik Sacha, Dominik Jäckle, and

Florian Stoffel. Dynamite: Dynamic Monitoring Interface for Task Ensembles. In:

IEEE Conf. on Visual Analytics Science and Technology (VAST Challenge MC1). 2016
(cit. on p. 11).

[27] Mennatallah El-Assady, Valentin Gold, Annette Hautli-Janisz, Wolfgang Jentner,

Miriam Butt, Katharina Holzinger, and Daniel A Keim. VisArgue: A visual text

analytics framework for the study of deliberative communication. In: PolText 2016-
The International Conference on the Advancesin Computational Analysis of Political Text.
2016, pp. 31–36 (cit. on p. 11).

[28] Florian Stoffel, Wolfgang Jentner, Michael Behrisch, Johannes Fuchs, and Daniel A.

Keim. Interactive Ambiguity Resolution of Named Entities in Fictional Literature.

In: Comput. Graph. Forum 36 (2017), pp. 189–200. doi: 10.1111/cgf.13179 (cit. on

p. 11).

[29] Wolfgang Jentner, Mennatallah El-Assady, Bela Gipp, and Daniel A. Keim. Feature

Alignment for the Analysis of Verbatim Text Transcripts. In: 8th International EuroVis
Workshop on Visual Analytics, EuroVA@EuroVis 2017, Barcelona, Spain, 12-13 June 2017.
2017, pp. 13–17. doi: 10.2312/eurova.20171113 (cit. on pp. 11, 98, 106, 109).

[30] Dirk Streeb, Juri Buchmüller, Udo Schlegel, Wolfgang Jentner, Michael Behrisch,

Bruno Schneider, and Daniel Seebacher. Uncovering the Mistford Toxic Conspiracy.

In: 12th IEEE Conference on Visual Analytics Science and Technology, IEEE VAST 2017,
Phoenix, AZ, USA, October 3-6, 2017. 2017, pp. 243–244. doi: 10.1109/VAST.2017.
8585661 (cit. on p. 11).

[31] Wolfgang Jentner, Dominik Jäckle, Ulrich Engelke, Daniel A. Keim, and Tobias

Schreck. A Concept for Consensus-based Ordering of Views. In: 9th International
EuroVis Workshop on Visual Analytics, EuroVA@EuroVis 2018, Brno, Czech Republic,
June 4, 2018. 2018, pp. 61–65. doi: 10.2312/eurova.20181114 (cit. on p. 11).

[32] Wolfgang Jentner, Florian Stoffel, Dominik Jäckle, Alexander Gärtner, and Daniel A

Keim. DeepClouds: Stereoscopic 3D Wordle based on Conical Spirals. In: Workshop
on Visualization as Added Value in the Development, Use and Evaluation of Language
Resources (VisLR III)@ LREC. 2018 (cit. on p. 12).

[33] Eren Cakmak, Giuliano Castiglia, Wolfgang Jentner, Juri Buchmüller, and Daniel A

Keim. Visualization For Train Management: Improving Overviews in Safety-critical

Control Room Environments. In: BDVA 2018: 4th International Symposium on Big
Data Visual and Immersive Analytics. 2018 (cit. on p. 12).

https://doi.org/10.1177/1473871615576925
https://doi.org/10.1111/cgf.13179
https://doi.org/10.2312/eurova.20171113
https://doi.org/10.1109/VAST.2017.8585661
https://doi.org/10.1109/VAST.2017.8585661
https://doi.org/10.2312/eurova.20181114


[34] Niklas Weiler, Matthias Kraus, Timon Kilian, Wolfgang Jentner, and Daniel A Keim.

Visual Analytics for Semi-Automatic 4D Crime Scene Reconstruction. In: (2018)

(cit. on p. 12).

[35] Isabel Piljek, Giuliana Dehn, Jannik Frauendorf, Ziad Salem, Yerzhan Niyazbayev,

Juri Buchmüller, Eren Cakmak, Wolfgang Jentner, Florian Stoffel, and Daniel A.

Keim. Identifying Patterns and Anomalies within Spatiotemporal Water Sampling

Data : VAST Challenge 2018: Award for Elegant Design of an Interactive Display. In:

13th IEEE Conference on Visual Analytics Science and Technology, IEEEVAST 2018, Berlin,
Germany, October 21-26, 2018. 2018, pp. 98–99. doi: 10.1109/VAST.2018.8802466
(cit. on p. 12).

[36] Benedikt Bäumle, InaBoesecke, Raphael Buchmüller, YannickMetz, Juri Buchmüller,

Eren Cakmak, Wolfgang Jentner, and Daniel A. Keim. Interactive Webtool for

Tempospatial Data and Visual Audio Analysis : VAST Challenge 2018: Honorable

Mention for Interactive Analytic Tool. In: 13th IEEE Conference on Visual Analytics
Science and Technology, IEEE VAST 2018, Berlin, Germany, October 21-26, 2018. 2018,
pp. 96–97. doi: 10.1109/VAST.2018.8802517 (cit. on p. 12).

[37] Eren Cakmak, Udo Schlegel, Matthias Miller, Juri Buchmüller, Wolfgang Jentner,

and Daniel A. Keim. Interactive Classification Using Spectrograms and Audio

Glyphs. In: 13th IEEE Conference on Visual Analytics Science and Technology, IEEE
VAST 2018, Berlin, Germany, October 21-26, 2018. 2018, pp. 110–111. doi: 10.1109/
VAST.2018.8802500 (cit. on p. 12).

[38] Udo Schlegel, Wolfgang Jentner, Juri Buchmüller, Eren Cakmak, Giuliano Castiglia,

Renzo Canepa, Simone Petralli, Luca Oneto, Daniel A. Keim, and Davide Anguita.

Visual Analytics for Supporting Conflict Resolution in Large Railway Networks. In:

Recent Advances in Big Data and Deep Learning, Proceedings of the INNS Big Data and
Deep Learning Conference INNSBDDL 2019, held at Sestri Levante, Genova, Italy 16-18
April 2019. 2019, pp. 206–215. doi: 10.1007/978-3-030-16841-4\_22 (cit. on p. 12).

[39] Mennatallah El-Assady, Wolfgang Jentner, Fabian Sperrle, Rita Sevastjanova, An-

nette Hautli-Janisz, Miriam Butt, and Daniel A. Keim. lingvis.io - A Linguistic

Visual Analytics Framework. In: Proceedings of the 57th Conference of the Association for
Computational Linguistics, ACL 2019, Florence, Italy, July 28 - August 2, 2019, Volume 3:
System Demonstrations. 2019, pp. 13–18. doi: 10.18653/v1/p19-3003 (cit. on pp. 12,

56).

[40] Michael Dose, Norbert Wendt, Markus Mühling, Thomas Pollok, Wolfgang Jentner,

Stephan Schindler, Anna Louise Tilling, Ross King, Florian Fest, Thomas Philipp,

and Markus Kastelitz. FLORIDA: Analyse von Videomassendaten im Kontext

terroristischer Anschläge. In: Crisis Prevention (2019) (cit. on p. 12).

[41] Wolfgang Jentner, Juri Buchmüller, Fabian Sperrle, Rita Sevastjanova, Thilo Spinner,

Udo Schlegel, Dirk Streeb, andHanna Schäfer. N.E.A.T. - Novel Emergency Analysis

Tool. In: 14th IEEE Conference on Visual Analytics Science and Technology, IEEE
VAST 2019, Vancouver, BC, Canada, October 20-25, 2019. 2019, pp. 104–105. doi:

10.1109/VAST47406.2019.8986900 (cit. on p. 13).

https://doi.org/10.1109/VAST.2018.8802466
https://doi.org/10.1109/VAST.2018.8802517
https://doi.org/10.1109/VAST.2018.8802500
https://doi.org/10.1109/VAST.2018.8802500
https://doi.org/10.1007/978-3-030-16841-4\_22
https://doi.org/10.18653/v1/p19-3003
https://doi.org/10.1109/VAST47406.2019.8986900


[42] Mennatallah El-Assady,Wolfgang Jentner, RebeccaKehlbeck,Udo Schlegel, Rita Sev-

astjanova, Fabian Sperrle, Thilo Spinner, and Daniel Keim. Towards XAI: structuring

the processes of explanations. In: Proceedings of the ACMWorkshop onHuman-Centered
Machine Learning, Glasgow, UK. Vol. 4. 2019 (cit. on pp. 13, 161).

[43] Thomas Pollok, Matthias Kraus, Chengchao Qu, Matthias Miller, Tobias Moritz,

Timon Urs Kilian, Daniel A. Keim, and Wolfgang Jentner. Computer vision meets

visual analytics: Enabling 4D crime scene investigation from image and video data.

In: 9th International Conference on Imaging for Crime Detection and Prevention, ICDP
2019, London, UK, December 16-18, 2019. 2019, pp. 44–49. doi: 10.1049/cp.2019.1166
(cit. on p. 13).

[44] Matthias Kraus, Thomas Pollok, Matthias Miller, Timon Urs Kilian, Tobias Moritz,

Daniel Schweitzer, Jürgen Beyerer, Daniel A. Keim, Chengchao Qu, and Wolfgang

Jentner. Toward Mass Video Data Analysis: Interactive and Immersive 4D Scene

Reconstruction. In: Sensors 20 (2020), p. 5426. doi: 10.3390/s20185426 (cit. on

p. 13).

[45] Luis Marti-Bonmati, Ángel Alberich-Bayarri, Ruth Ladenstein, Ignacio Blanquer,

J Damian Segrelles, Leonor Cerdá-Alberich, Polyxeni Gkontra, Barbara Hero, JM

Garcia-Aznar, Daniel Keim, et al. PRIMAGE project: predictive in silico multiscale

analytics to support childhood cancer personalised evaluation empowered by

imaging biomarkers. In: European radiology experimental 4 (2020), pp. 1–11 (cit. on

p. 13).

[46] Maximilian T. Fischer, SimonDavidHirsbrunner,Wolfgang Jentner,MatthiasMiller,

Daniel A. Keim, and Paula Helm. Promoting Ethical Awareness in Communication

Analysis: Investigating Potentials and Limits of Visual Analytics for Intelligence

Applications. In: FAccT ’22: 2022 ACM Conference on Fairness, Accountability, and
Transparency, Seoul, Republic of Korea, June 21 - 24, 2022. 2022, pp. 877–889. doi:

10.1145/3531146.3533151 (cit. on p. 13).

[47] Wolfgang Jentner, Fabian Sperrle, Daniel Seebacher, Matthias Kraus, Rita Sevast-

janova, Maximilian T Fischer, Udo Schlegel, Dirk Streeb, Matthias Miller, Thilo

Spinner, et al. Visualisierung der COVID-19-Inzidenzen und Behandlungskapaz-

itäten mit CoronaVis. 2022 (cit. on p. 14).

[48] Wikipedia authors. Hasse diagram. https://en.wikipedia.org/wiki/Hasse_
diagram. 2021 (cit. on pp. 21, 24, 69).

[49] RakeshAgrawal andRamakrishnan Srikant. Fast Algorithms forMiningAssociation

Rules in Large Databases. In: VLDB’94, Proceedings of 20th International Conference on
Very Large Data Bases, September 12-15, 1994, Santiago de Chile, Chile. 1994, pp. 487–499
(cit. on pp. 23, 32, 35, 36, 44, 88).

[50] Nicolas Pasquier, Yves Bastide, Rafik Taouil, and Lotfi Lakhal. Discovering Frequent

Closed Itemsets for Association Rules. In:Database Theory - ICDT ’99, 7th International
Conference, Jerusalem, Israel, January 10-12, 1999, Proceedings. Vol. 1540. 1999, pp. 398–
416. doi: 10.1007/3-540-49257-7\_25 (cit. on p. 24).

[51] Frequent Pattern Mining. Springer, 2014 (cit. on pp. 25, 58, 61, 81, 96).

https://doi.org/10.1049/cp.2019.1166
https://doi.org/10.3390/s20185426
https://doi.org/10.1145/3531146.3533151
https://en.wikipedia.org/wiki/Hasse_diagram
https://en.wikipedia.org/wiki/Hasse_diagram
https://doi.org/10.1007/3-540-49257-7\_25


[52] Philippe Fournier-Viger, Jerry Chun-Wei Lin, Bay Vo, Tin Chi Truong, Ji Zhang, and

Hoai Bac Le. A survey of itemset mining. In: Wiley Interdiscip. Rev. Data Min. Knowl.
Discov. 7 (2017). doi: 10.1002/widm.1207 (cit. on pp. 26, 31, 58, 81).

[53] Piotr Indyk and Rajeev Motwani. Approximate Nearest Neighbors: Towards Re-

moving the Curse of Dimensionality. In: Proceedings of the Thirtieth Annual ACM
Symposium on the Theory of Computing, Dallas, Texas, USA, May 23-26, 1998. 1998,
pp. 604–613. doi: 10.1145/276698.276876 (cit. on p. 28).

[54] Mario Köppen. The curse of dimensionality. In: 5th online world conference on soft
computing in industrial applications (WSC5). Vol. 1. 2000, pp. 4–8 (cit. on p. 28).

[55] Frances Y Kuo and Ian H Sloan. Lifting the curse of dimensionality. In: Notices of the
AMS 52 (2005), pp. 1320–1328 (cit. on p. 28).

[56] Michel Verleysen andDamien François. The Curse of Dimensionality inDataMining

and Time Series Prediction. In: Computational Intelligence and Bioinspired Systems, 8th
International Work-Conference on Artificial Neural Networks, IWANN 2005, Vilanova i la
Geltrú, Barcelona, Spain, June 8-10, 2005, Proceedings. Vol. 3512. 2005, pp. 758–770.
doi: 10.1007/11494669\_93 (cit. on p. 28).

[57] Michael E. Houle, Hans-Peter Kriegel, Peer Kröger, Erich Schubert, and Arthur

Zimek. Can Shared-Neighbor Distances Defeat the Curse of Dimensionality? In:

Scientific and Statistical Database Management, 22nd International Conference, SSDBM
2010, Heidelberg, Germany, June 30 - July 2, 2010. Proceedings. Vol. 6187. 2010, pp. 482–
500. doi: 10.1007/978-3-642-13818-8\_34 (cit. on p. 28).

[58] Arthur Zimek, Ira Assent, and Jilles Vreeken. Frequent Pattern Mining Algorithms

for Data Clustering. In: Frequent Pattern Mining. Springer, 2014, pp. 403–423. doi:

10.1007/978-3-319-07821-2\_16 (cit. on p. 28).

[59] Rakesh Agrawal, Johannes Gehrke, Dimitrios Gunopulos, and Prabhakar Ragha-

van. Automatic Subspace Clustering of High Dimensional Data for Data Mining

Applications. In: SIGMOD 1998, Proceedings ACM SIGMOD International Conference
on Management of Data, June 2-4, 1998, Seattle, Washington, USA. 1998, pp. 94–105.
doi: 10.1145/276304.276314 (cit. on p. 28).

[60] Harsha S. Nagesh, Sanjay Goil, and Alok N. Choudhary. Adaptive Grids for

ClusteringMassive Data Sets. In: Proceedings of the First SIAM International Conference
on Data Mining, SDM 2001, Chicago, IL, USA, April 5-7, 2001. 2001, pp. 1–17. doi:

10.1137/1.9781611972719.7 (cit. on p. 28).

[61] Robert James Hilderman and Howard John Hamilton. Knowledge discovery and

interestingness measures: A survey. Department of Computer Science, University

of Regina Regina, 1999 (cit. on p. 31).

[62] Pang-Ning Tan, Vipin Kumar, and Jaideep Srivastava. Selecting the right interest-

ingness measure for association patterns. In: Proceedings of the Eighth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, July 23-26, 2002,
Edmonton, Alberta, Canada. 2002, pp. 32–41. doi: 10.1145/775047.775053 (cit. on

p. 31).

https://doi.org/10.1002/widm.1207
https://doi.org/10.1145/276698.276876
https://doi.org/10.1007/11494669\_93
https://doi.org/10.1007/978-3-642-13818-8\_34
https://doi.org/10.1007/978-3-319-07821-2\_16
https://doi.org/10.1145/276304.276314
https://doi.org/10.1137/1.9781611972719.7
https://doi.org/10.1145/775047.775053


[63] Kenneth McGarry. A survey of interestingness measures for knowledge discovery.

In: Knowledge Eng. Review 20 (2005), pp. 39–61. doi: 10.1017/S0269888905000408
(cit. on pp. 31, 35, 38).

[64] Liqiang Geng and Howard J. Hamilton. Interestingness measures for data mining:

A survey. In: ACM Comput. Surv. 38 (2006), p. 9 (cit. on pp. 31–33, 35, 44, 81).

[65] Yuejin Zhang, Lingling Zhang, Guangli Nie, and Yong Shi. A Survey of Inter-

estingness Measures for Association Rules. In: BIFE. 2009, pp. 460–463 (cit. on

p. 31).

[66] Tianyi Wu, Yuguo Chen, and Jiawei Han. Re-examination of interestingness mea-

sures in pattern mining: a unified framework. In: Data Min. Knowl. Discov. 21 (2010),
pp. 371–397. doi: 10.1007/s10618-009-0161-2 (cit. on pp. 31, 36).

[67] José Maria Luna, Philippe Fournier-Viger, and Sebastián Ventura. Frequent itemset

mining: A 25 years review. In: WIREs Data Mining Knowl. Discov. 9 (2019). doi:

10.1002/widm.1329 (cit. on p. 31).

[68] Christian Borgelt. Frequent item set mining. In:WIREs Data Mining Knowl. Discov. 2
(2012), pp. 437–456. doi: 10.1002/widm.1074 (cit. on pp. 31, 81, 84).

[69] Jeffrey D. Ullman. A Survey of Association-Rule Mining. In: Discovery Science,
Third International Conference, DS 2000, Kyoto, Japan, December 4-6, 2000, Proceedings.
Vol. 1967. 2000, pp. 1–14. doi: 10.1007/3-540-44418-1\_1 (cit. on p. 31).

[70] Jochen Hipp, Ulrich Güntzer, and Gholamreza Nakhaeizadeh. Algorithms for

Association Rule Mining - A General Survey and Comparison. In: SIGKDD Explor.
2 (2000), pp. 58–64. doi: 10.1145/360402.360421 (cit. on pp. 31, 81).

[71] Akbar Telikani, Amir H. Gandomi, and Asadollah Shahbahrami. A survey of

evolutionary computation for association rule mining. In: Inf. Sci. 524 (2020),

pp. 318–352. doi: 10.1016/j.ins.2020.02.073 (cit. on p. 31).

[72] Qiankun Zhao and Sourav S Bhowmick. Association rule mining: A survey. In:

Nanyang Technological University, Singapore 135 (2003) (cit. on p. 31).

[73] Philippe Fournier-Viger, Jerry Chun-Wei Lin, Rage Uday Kiran, Yun Sing Koh, and

Rincy Thomas. A survey of sequential pattern mining. In: Data Science and Pattern
Recognition 1 (2017), pp. 54–77 (cit. on pp. 31, 58, 81).

[74] Chetna Chand, Amit Thakkar, and Amit Ganatra. Sequential pattern mining:

Survey and current research challenges. In: International Journal of Soft Computing
and Engineering 2 (2012), pp. 185–193 (cit. on p. 31).

[75] Qiankun Zhao and Sourav S Bhowmick. Sequential pattern mining: A survey. In:

ITechnical Report CAIS Nayang Technological University Singapore 1 (2003), p. 135
(cit. on pp. 31, 81).

[76] Wensheng Gan, Jerry Chun-Wei Lin, Philippe Fournier-Viger, Han-Chieh Chao,

and Philip S. Yu. A Survey of Parallel Sequential Pattern Mining. In: ACM Trans.
Knowl. Discov. Data 13 (2019), 25:1–25:34. doi: 10.1145/3314107 (cit. on p. 31).

https://doi.org/10.1017/S0269888905000408
https://doi.org/10.1007/s10618-009-0161-2
https://doi.org/10.1002/widm.1329
https://doi.org/10.1002/widm.1074
https://doi.org/10.1007/3-540-44418-1\_1
https://doi.org/10.1145/360402.360421
https://doi.org/10.1016/j.ins.2020.02.073
https://doi.org/10.1145/3314107


[77] Jay Ayres, Jason Flannick, Johannes Gehrke, and Tomi Yiu. Sequential PAttern

mining using a bitmap representation. In: KDD. 2002, pp. 429–435 (cit. on pp. 32,

147–149).

[78] Mohammed Javeed Zaki and Ching-Jiu Hsiao. CHARM: An Efficient Algorithm for

Closed Itemset Mining. In: SDM. 2002, pp. 457–473 (cit. on pp. 32, 84).

[79] Miho Ohsaki, Shinya Kitaguchi, Kazuya Okamoto, Hideto Yokoi, and Takahira

Yamaguchi. Evaluation of Rule Interestingness Measures with a Clinical Dataset on

Hepatitis. In: PKDD. Vol. 3202. 2004, pp. 362–373 (cit. on p. 33).

[80] Ning Zhong, Yiyu Yao, and Setsuo Ohsuga. Peculiarity Oriented Multi-database

Mining. In: Principles of Data Mining and Knowledge Discovery, Third European
Conference, PKDD ’99, Prague, Czech Republic, September 15-18, 1999, Proceedings.
Vol. 1704. 1999, pp. 136–146. doi: 10.1007/978-3-540-48247-5\_15 (cit. on p. 33).

[81] Robert J Hilderman and Howard J Hamilton. Knowledge Discovery and Measures

of Interest. Kluwer Academic Publishers, 2001 (cit. on p. 33).

[82] Sigal Sahar. Interestingness via What is Not Interesting. In: Proceedings of the Fifth
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San
Diego, CA, USA, August 15-18, 1999. 1999, pp. 332–336. doi: 10.1145/312129.312272
(cit. on pp. 33, 35).

[83] Mika Klemettinen, HeikkiMannila, Pirjo Ronkainen, Hannu Toivonen, andA. Inkeri

Verkamo. Finding Interesting Rules from Large Sets of Discovered Association

Rules. In: Proceedings of the Third International Conference on Information and Knowledge
Management (CIKM’94), Gaithersburg, Maryland, USA, November 29 - December 2, 1994.
1994, pp. 401–407. doi: 10.1145/191246.191314 (cit. on pp. 33, 84, 90, 91, 107, 108,

127, 138).

[84] Abraham Silberschatz and Alexander Tuzhilin. On Subjective Measures of Interest-

ingness in Knowledge Discovery. In: Proceedings of the First International Conference
on Knowledge Discovery and Data Mining (KDD-95), Montreal, Canada, August 20-21,
1995. 1995, pp. 275–281 (cit. on pp. 34, 35, 38).

[85] Abraham Silberschatz and Alexander Tuzhilin. What Makes Patterns Interesting in

KnowledgeDiscovery Systems. In: IEEE Trans. Knowl. Data Eng. 8 (1996), pp. 970–974.
doi: 10.1109/69.553165 (cit. on pp. 34, 35).

[86] Bing Liu, Wynne Hsu, and Shu Chen. Using General Impressions to Analyze

Discovered Classification Rules. In: Proceedings of the Third International Conference
on Knowledge Discovery and Data Mining (KDD-97), Newport Beach, California, USA,
August 14-17, 1997. 1997, pp. 31–36 (cit. on pp. 34, 35).

[87] Bing Liu,Wynne Hsu, Lai-FunMun, andHing-Yan Lee. Finding Interesting Patterns

Using User Expectations. In: IEEE Trans. Knowl. Data Eng. 11 (1999), pp. 817–832.
doi: 10.1109/69.824588 (cit. on p. 34).

[88] Gregory Piatetsky-Shapiro and Christopher J Matheus. The interestingness of

deviations. In:Proceedings of theAAAI-94workshop onKnowledgeDiscovery inDatabases.
Vol. 1. 1994, pp. 25–36 (cit. on pp. 34, 35).

https://doi.org/10.1007/978-3-540-48247-5\_15
https://doi.org/10.1145/312129.312272
https://doi.org/10.1145/191246.191314
https://doi.org/10.1109/69.553165
https://doi.org/10.1109/69.824588


[89] Charles X. Ling, Tielin Chen, Qiang Yang, and Jie Cheng. Mining Optimal Actions

for Profitable CRM. In: Proceedings of the 2002 IEEE International Conference on Data
Mining (ICDM 2002), 9-12 December 2002, Maebashi City, Japan. 2002, pp. 767–770.
doi: 10.1109/ICDM.2002.1184049 (cit. on p. 34).

[90] Ke Wang, Senqiang Zhou, and Jiawei Han. Profit Mining: From Patterns to Actions.

In: Advances in Database Technology - EDBT 2002, 8th International Conference on
Extending Database Technology, Prague, Czech Republic, March 25-27, Proceedings.
Vol. 2287. 2002, pp. 70–87. doi: 10.1007/3-540-45876-X\_7 (cit. on p. 34).

[91] Padhraic Smyth and Rodney M. Goodman. Rule Induction Using Information

Theory. In: Knowledge Discovery in Databases. AAAI/MIT Press, 1991, pp. 159–176

(cit. on p. 35).

[92] VasantDhar andAlexanderTuzhilin.Abstract-DrivenPatternDiscovery inDatabases.

In: IEEE Trans. Knowl. Data Eng. 5 (1993), pp. 926–938. doi: 10.1109/69.250075
(cit. on p. 35).

[93] Hong Yao and Howard J. Hamilton. Mining itemset utilities from transaction

databases. In: Data Knowl. Eng. 59 (2006), pp. 603–626. doi: 10.1016/j.datak.
2005.10.004 (cit. on p. 35).

[94] Dominik Sacha, Andreas Stoffel, Florian Stoffel, Bum Chul Kwon, Geoffrey P. Ellis,

and Daniel A. Keim. Knowledge Generation Model for Visual Analytics. In: IEEE
Trans. Vis. Comput. Graph. 20 (2014), pp. 1604–1613. doi: 10.1109/TVCG.2014.
2346481 (cit. on pp. 38, 81, 127).

[95] Rinke Hoekstra. The knowledge reengineering bottleneck. In: Semantic Web 1 (2010),
pp. 111–115. doi: 10.3233/SW-2010-0004 (cit. on p. 39).

[96] Henry Shevlin, Karina Vold, Matthew Crosby, and Marta Halina. The limits of

machine intelligence: Despite progress in machine intelligence, artificial general

intelligence is still a major challenge. In: EMBO reports 20 (2019), e49177 (cit. on

p. 39).

[97] Kleanthis-Nikolaos Kontonasios, Eirini Spyropoulou, and Tĳl De Bie. Knowledge

discovery interestingness measures based on unexpectedness. In: WIREs Data
Mining Knowl. Discov. 2 (2012), pp. 386–399. doi: 10.1002/widm.1063 (cit. on p. 39).

[98] Silvia Miksch and Wolfgang Aigner. A matter of time: Applying a data-users-tasks

design triangle to visual analytics of time-oriented data. In: Comput. Graph. 38 (2014),
pp. 286–290. doi: 10.1016/j.cag.2013.11.002 (cit. on p. 40).

[99] ReinhardDiestel. Graph Theory, 4th Edition. Vol. 173. Graduate texts inmathematics.

Springer, 2012 (cit. on pp. 40, 42).

[100] Deborah R. Carvalho, Alex Alves Freitas, and Nelson F. F. Ebecken. Evaluating the

Correlation Between Objective Rule Interestingness Measures and Real Human

Interest. In: Knowledge Discovery in Databases: PKDD 2005, 9th European Conference on
Principles and Practice of Knowledge Discovery in Databases, Porto, Portugal, October 3-7,
2005, Proceedings. Vol. 3721. 2005, pp. 453–461. doi: 10.1007/11564126\_45 (cit. on

p. 45).

https://doi.org/10.1109/ICDM.2002.1184049
https://doi.org/10.1007/3-540-45876-X\_7
https://doi.org/10.1109/69.250075
https://doi.org/10.1016/j.datak.2005.10.004
https://doi.org/10.1016/j.datak.2005.10.004
https://doi.org/10.1109/TVCG.2014.2346481
https://doi.org/10.1109/TVCG.2014.2346481
https://doi.org/10.3233/SW-2010-0004
https://doi.org/10.1002/widm.1063
https://doi.org/10.1016/j.cag.2013.11.002
https://doi.org/10.1007/11564126\_45


[101] Jiawei Han, Jianyong Wang, Ying Lu, and Petre Tzvetkov. Mining Top-K Frequent

Closed Patterns without Minimum Support. In: Proceedings of the 2002 IEEE Interna-
tional Conference on Data Mining (ICDM 2002), 9-12 December 2002, Maebashi City,
Japan. 2002, pp. 211–218. doi: 10.1109/ICDM.2002.1183905 (cit. on p. 46).

[102] Petre Tzvetkov, Xifeng Yan, and Jiawei Han. TSP: Mining top-k closed sequential

patterns. In: Knowl. Inf. Syst. 7 (2005), pp. 438–457. doi: 10.1007/s10115-004-
0175-4 (cit. on p. 46).

[103] Heungmo Ryang and Unil Yun. Top-k high utility pattern mining with effective

threshold raising strategies. In: Knowl. Based Syst. 76 (2015), pp. 109–126. doi:

10.1016/j.knosys.2014.12.010 (cit. on p. 46).

[104] Janet Prowse and Elizabeth Bennett. Working Manual of Criminal Law. Carswell

Legal Pubns, 2000 (cit. on pp. 46, 48).

[105] NPIA. National Policing Improvement Agency: Professional Practice on Analysis.

2008 (cit. on p. 46).

[106] Nina Cope. Intelligence Led Policing or Policing Led Intelligence?: Integrating

Volume Crime Analysis into Policing. In: Br. J. Criminol. 44 (2004), pp. 188–203

(cit. on p. 47).

[107] David Collier. The Comparative Method. In: POLITICAL SCIENCE: THE STATE OF
DISCIPLINE II. 1993, pp. 105–118 (cit. on p. 48).

[108] C. Bennell and D. V. Canter. Linking commercial burglaries by modus operandi:

tests using regression and ROC analysis. In: Science & Justice 42 (2002) (cit. on p. 48).

[109] David V. Canter, Laurence J. Alison, Emily Alison, and Natalia Wentink. The

Organized/Disorganized Typology of Serial Murder: Myth orModel? In: Psychology,
Public Policy, and Law 10 (2004), pp. 293–320 (cit. on p. 48).

[110] Christopher D. Manning, Mihai Surdeanu, John Bauer, Jenny Rose Finkel, Steven

Bethard, andDavidMcClosky. The StanfordCoreNLPNatural Language Processing

Toolkit. In: Proceedings of the 52nd Annual Meeting of the Association for Computational
Linguistics, ACL 2014, June 22-27, 2014, Baltimore, MD, USA, System Demonstrations.
2014, pp. 55–60 (cit. on pp. 48, 49).

[111] Apache OpenNLP. https://opennlp.apache.org/. Accessed: 2017-09-13 (cit. on

pp. 48, 49).

[112] George A. Miller. WordNet: A Lexical Database for English. In: Commun. ACM 38

(1995), pp. 39–41. doi: 10.1145/219717.219748 (cit. on p. 49).

[113] Collin F. Baker, Charles J. Fillmore, and John B. Lowe. The Berkeley FrameNet

Project. In: 36th Annual Meeting of the Association for Computational Linguistics and 17th
International Conference on Computational Linguistics, COLING-ACL ’98, August 10-14,
1998, Université de Montréal, Montréal, Quebec, Canada. Proceedings of the Conference.
1998, pp. 86–90 (cit. on p. 49).

[114] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduction

to information retrieval. Cambridge University Press, 2008 (cit. on p. 49).

https://doi.org/10.1109/ICDM.2002.1183905
https://doi.org/10.1007/s10115-004-0175-4
https://doi.org/10.1007/s10115-004-0175-4
https://doi.org/10.1016/j.knosys.2014.12.010
https://opennlp.apache.org/
https://doi.org/10.1145/219717.219748


[115] Dan Jurafsky and JamesH.Martin. Speech and language processing: an introduction

to natural language processing, computational linguistics, and speech recognition,

2nd Edition. Prentice Hall series in artificial intelligence. Prentice Hall, Pearson

Education International, 2009 (cit. on p. 49).

[116] Rakesh Agrawal and Ramakrishnan Srikant. Mining Sequential Patterns. In: Pro-
ceedings of the Eleventh International Conference on Data Engineering, March 6-10, 1995,
Taipei, Taiwan. 1995, pp. 3–14. doi: 10.1109/ICDE.1995.380415 (cit. on pp. 49, 96).

[117] Antonio Gomariz, Manuel Campos, Roque MarıU0301XXXXXXXXXXXn, and Bart

Goethals. ClaSP: An Efficient Algorithm for Mining Frequent Closed Sequences. In:

Advances in Knowledge Discovery and Data Mining, 17th Pacific-Asia Conference, PAKDD
2013, Gold Coast, Australia, April 14-17, 2013, Proceedings, Part I. 2013, pp. 50–61. doi:

10.1007/978-3-642-37453-1_5 (cit. on p. 49).

[118] Xifeng Yan, Jiawei Han, and Ramin Afshar. CloSpan: Mining Closed Sequential

Patterns in Large Datasets. In: Proceedings of the Third SIAM International Conference
on Data Mining, San Francisco, CA, USA, May 1-3, 2003. 2003, pp. 166–177. doi:

10.1137/1.9781611972733.15 (cit. on p. 49).

[119] Hassan Saneifar, Sandra Bringay, Anne Laurent, and Maguelonne Teisseire. S2MP:

Similarity Measure for Sequential Patterns. In: Data Mining and Analytics 2008,
Proceedings of the Seventh Australasian Data Mining Conference (AusDM 2008). Glenel-
g/Adelaide, SA, Australia, 27-28 November 2008, Proceedings. 2008, pp. 95–104 (cit. on

p. 49).

[120] IBM. IBM i2 Intelligence Analysis Platform (cit. on p. 49).

[121] John T. Stasko, Carsten Görg, and Zhicheng Liu. Jigsaw: supporting investigative

analysis through interactive visualization. In: Information Visualization 7 (2008),

pp. 118–132. doi: 10.1057/palgrave.ivs.9500180 (cit. on p. 49).

[122] Dominik Jäckle, Florian Stoffel, Sebastian Mittelstädt, Daniel A. Keim, and Harald

Reiterer. Interpretation of Dimensionally-reduced Crime Data: A Study with

Untrained Domain Experts. In: Proceedings of the 12th International Joint Conference on
Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP
2017) - Volume 3: IVAPP, Porto, Portugal, February 27 - March 1, 2017. 2017, pp. 164–175.
doi: 10.5220/0006265101640175 (cit. on p. 49).

[123] Leishi Zhang, Chris Rooney, Lev Nachmanson, B. L. William Wong, Bum Chul

Kwon, Florian Stoffel, Michael Hund, Nadeem Qazi, Uchit Singh, and Daniel A.

Keim. Spherical Similarity Explorer for Comparative Case Analysis. In: Visualization
and Data Analysis 2016, San Francisco, California, USA, February 14-18, 2016. 2016,
pp. 1–10 (cit. on p. 49).

[124] Dominik Sacha, Michael Sedlmair, Leishi Zhang, John Aldo Lee, Jaakko Peltonen,

Daniel Weiskopf, Stephen C. North, and Daniel A. Keim. What you see is what

you can change: Human-centered machine learning by interactive visualization.

In: Neurocomputing 268 (2017), pp. 164–175. doi: 10.1016/j.neucom.2017.01.105
(cit. on p. 49).

https://doi.org/10.1109/ICDE.1995.380415
https://doi.org/10.1007/978-3-642-37453-1_5
https://doi.org/10.1137/1.9781611972733.15
https://doi.org/10.1057/palgrave.ivs.9500180
https://doi.org/10.5220/0006265101640175
https://doi.org/10.1016/j.neucom.2017.01.105


[125] Dominik Sacha, Leishi Zhang, Michael Sedlmair, John Aldo Lee, Jaakko Peltonen,

Daniel Weiskopf, Stephen C. North, and Daniel A. Keim. Visual Interaction with

Dimensionality Reduction: A Structured Literature Analysis. In: IEEE Trans. Vis.
Comput. Graph. 23 (2017), pp. 241–250. doi: 10.1109/TVCG.2016.2598495 (cit. on

p. 49).

[126] James A. Wise. The Ecological Approach to Text Visualization. In: J. Am. Soc. Inf. Sci.
50 (1999), pp. 1224–1233. doi: 10.1002/(SICI)1097-4571(1999)50:13\<1224::
AID-ASI8\>3.0.CO;2-4 (cit. on p. 50).

[127] Alex Endert, Patrick Fiaux, and Chris North. Semantic Interaction for Sensemaking:

Inferring Analytical Reasoning for Model Steering. In: IEEE Trans. Vis. Comput.
Graph. 18 (2012), pp. 2879–2888. doi: 10.1109/TVCG.2012.260 (cit. on p. 50).

[128] Lauren Bradel, Chris North, Leanna House, and Scotland Leman. Multi-model

semantic interaction for text analytics. In: 9th IEEE Conference on Visual Analytics
Science and Technology, IEEE VAST 2014, Paris, France, October 25-31, 2014. 2014,
pp. 163–172. doi: 10.1109/VAST.2014.7042492 (cit. on p. 50).

[129] Tobias Ruppert, Michael Staab, Andreas Bannach, Hendrik Lücke-Tieke, Jürgen

Bernard, Arjan Kuĳper, and Jörn Kohlhammer. Visual Interactive Creation and

Validation of Text Clustering Workflows to Explore Document Collections. In:

Visualization and Data Analysis 2017, Burlingame, CA, USA, 29 January 2017 - 2
February 2017. 2017, pp. 46–57. doi: 10.2352/ISSN.2470-1173.2017.1.VDA-388
(cit. on p. 50).

[130] John Wenskovitch, Ian Crandell, Naren Ramakrishnan, Leanna House, and Chris

North. Towards a Systematic Combination of Dimension Reduction and Clustering

in Visual Analytics. In: IEEE Transactions on Visualization and Computer Graphics
(2017) (cit. on p. 50).

[131] Paul van der Corput and Jarke J. van Wĳk. Exploring Items and Features with I
F
,

F
I
-Tables. In: Comput. Graph. Forum 35 (2016), pp. 31–40. doi: 10.1111/cgf.12879

(cit. on p. 50).

[132] Cagatay Turkay, Peter Filzmoser, and Helwig Hauser. Brushing Dimensions - A

Dual Visual Analysis Model for High-Dimensional Data. In: IEEE Trans. Vis. Comput.
Graph. 17 (2011), pp. 2591–2599. doi: 10.1109/TVCG.2011.178 (cit. on p. 50).

[133] Xiaoru Yuan, Donghao Ren, Zuchao Wang, and Cong Guo. Dimension Projection

Matrix/Tree: Interactive Subspace Visual Exploration and Analysis of High Di-

mensional Data. In: IEEE Trans. Vis. Comput. Graph. 19 (2013), pp. 2625–2633. doi:

10.1109/TVCG.2013.150 (cit. on p. 50).

[134] Çagatay Demiralp. Clustrophile: A Tool for Visual Clustering Analysis. In: CoRR
abs/1710.02173 (2017) (cit. on p. 50).

[135] Hans Peter Luhn. A Statistical Approach to Mechanized Encoding and Searching of

Literary Information. In: IBM J. Res. Dev. 1 (1957), pp. 309–317. doi: 10.1147/rd.14.
0309 (cit. on pp. 51, 52).

https://doi.org/10.1109/TVCG.2016.2598495
https://doi.org/10.1002/(SICI)1097-4571(1999)50:13\<1224::AID-ASI8\>3.0.CO;2-4
https://doi.org/10.1002/(SICI)1097-4571(1999)50:13\<1224::AID-ASI8\>3.0.CO;2-4
https://doi.org/10.1109/TVCG.2012.260
https://doi.org/10.1109/VAST.2014.7042492
https://doi.org/10.2352/ISSN.2470-1173.2017.1.VDA-388
https://doi.org/10.1111/cgf.12879
https://doi.org/10.1109/TVCG.2011.178
https://doi.org/10.1109/TVCG.2013.150
https://doi.org/10.1147/rd.14.0309
https://doi.org/10.1147/rd.14.0309


[136] Karen Spärck Jones. A statistical interpretation of term specificity and its appli-

cation in retrieval. In: J. Documentation 60 (2004), pp. 493–502. doi: 10.1108/
00220410410560573 (cit. on p. 51).

[137] Aikaterini-Lida Kalouli, Katharina Kaiser, Annette Hautli-Janisz, Georg A. Kaiser,

andMiriamButt. AMultilingualApproach toQuestionClassification. In:Proceedings
of the Eleventh International Conference on Language Resources and Evaluation, LREC
2018, Miyazaki, Japan, May 7-12, 2018. 2018 (cit. on p. 55).

[138] Suhas Ranganath, Xia Hu, Jiliang Tang, Suhang Wang, and Huan Liu. Identifying

Rhetorical Questions in Social Media. In: Proceedings of the Tenth International
Conference on Web and Social Media, Cologne, Germany, May 17-20, 2016. 2016, pp. 667–
670 (cit. on p. 55).

[139] SuhasRanganath, XiaHu, JiliangTang, SuhangWang, andHuanLiu.Understanding

and Identifying Rhetorical Questions in Social Media. In: ACM Trans. Intell. Syst.
Technol. 9 (2018), 17:1–17:22. doi: 10.1145/3108364 (cit. on p. 55).

[140] Mingzhu Zhang and Changzheng He. Survey on association rules mining algo-

rithms. In: Advancing Computing, Communication, Control and Management. Springer,
2010, pp. 111–118 (cit. on p. 58).

[141] Helen Pinto, Jiawei Han, Jian Pei, Ke Wang, Qiming Chen, and Umeshwar Dayal.

Multi-Dimensional Sequential Pattern Mining. In: CIKM. 2001, pp. 81–88 (cit. on

pp. 58, 60).

[142] Hans-Peter Kriegel, Peer Kröger, and Arthur Zimek. Subspace clustering. In: Wiley
Interdiscip. Rev. Data Min. Knowl. Discov. 2 (2012), pp. 351–364 (cit. on p. 59).

[143] Leah Findlater and Howard J. Hamilton. Iceberg-cube algorithms: An empirical

evaluation on synthetic and real data. In: Intell. Data Anal. 7 (2003), pp. 77–97 (cit. on
pp. 59, 60).

[144] Guojun Gan and JianhongWu. Subspace clustering for high dimensional categorical

data. In: SIGKDD Explor. 6 (2004), pp. 87–94. doi: 10.1145/1046456.1046468 (cit.

on p. 59).

[145] Gösta Grahne, Laks V. S. Lakshmanan, XiaohongWang, andMingHao Xie. On Dual

Mining: From Patterns to Circumstances, and Back. In: ICDE. 2001, pp. 195–204
(cit. on p. 60).

[146] Jian Pei, Jiawei Han, Behzad Mortazavi-Asl, Helen Pinto, Qiming Chen, Umeshwar

Dayal, andMeichunHsu. PrefixSpan:Mining Sequential Patterns byPrefix-Projected

Growth. In: ICDE. 2001, pp. 215–224 (cit. on p. 60).

[147] Kevin S. Beyer and Raghu Ramakrishnan. Bottom-Up Computation of Sparse and

Iceberg CUBEs. In: SIGMOD Conference. 1999, pp. 359–370 (cit. on p. 60).

[148] Panida Songram, Veera Boonjing, and Sarun Intakosum. Closed Multidimensional

Sequential Pattern Mining. In: ITNG. 2006, pp. 512–517 (cit. on p. 61).

https://doi.org/10.1108/00220410410560573
https://doi.org/10.1108/00220410410560573
https://doi.org/10.1145/3108364
https://doi.org/10.1145/1046456.1046468


[149] Mihael Ankerst, Anne Kao, Rodney Tjoelker, and Changzhou Wang. DataJewel:

Integrating Visualization with Temporal Data Mining. In: Visual Data Mining.
Vol. 4404. Lecture Notes in Computer Science. Springer, 2008, pp. 312–330 (cit. on

p. 61).

[150] Taowei David Wang, Catherine Plaisant, Ben Shneiderman, Neil Spring, David

Roseman, GregMarchand, Vikramjit Mukherjee, andMark S. Smith. Temporal Sum-

maries: Supporting Temporal Categorical Searching, Aggregation and Comparison.

In: IEEE Trans. Vis. Comput. Graph. 15 (2009), pp. 1049–1056 (cit. on p. 62).

[151] Krist Wongsuphasawat and David Gotz. Exploring Flow, Factors, and Outcomes

of Temporal Event Sequences with the Outflow Visualization. In: IEEE Trans. Vis.
Comput. Graph. 18 (2012), pp. 2659–2668. doi: 10.1109/TVCG.2012.225 (cit. on

p. 62).

[152] Megan Monroe, Rongjian Lan, Hanseung Lee, Catherine Plaisant, and Ben Shnei-

derman. Temporal Event Sequence Simplification. In: IEEE Trans. Vis. Comput. Graph.
19 (2013), pp. 2227–2236. doi: 10.1109/TVCG.2013.200 (cit. on pp. 62, 99).

[153] David Gotz and Harry Stavropoulos. DecisionFlow: Visual Analytics for High-

Dimensional Temporal Event Sequence Data. In: IEEE Trans. Vis. Comput. Graph. 20
(2014), pp. 1783–1792. doi: 10.1109/TVCG.2014.2346682 (cit. on pp. 62, 105, 106,

109).

[154] Bram C. M. Cappers and Jarke J. van Wĳk. Exploring Multivariate Event Sequences

Using Rules, Aggregations, and Selections. In: IEEE Trans. Vis. Comput. Graph. 24
(2018), pp. 532–541. doi: 10.1109/TVCG.2017.2745278 (cit. on pp. 62, 97–99, 109,

118, 127).

[155] AlexanderLex,NilsGehlenborg,Hendrik Strobelt, RomainVuillemot, andHanspeter

Pfister. UpSet: Visualization of Intersecting Sets. In: IEEE Trans. Vis. Comput. Graph.
20 (2014), pp. 1983–1992 (cit. on p. 62).

[156] Alexander Lex and Nils Gehlenborg. Points of view: Sets and intersections. In:

nature methods 11 (2014), p. 779 (cit. on p. 62).

[157] Katerina Vrotsou, Jimmy Johansson, and Matthew Cooper. ActiviTree: Interactive

Visual Exploration of Sequences in Event-Based Data Using Graph Similarity. In:

IEEE Trans. Vis. Comput. Graph. 15 (2009), pp. 945–952. doi: 10.1109/TVCG.2009.117
(cit. on pp. 62, 102, 109).

[158] Adam Perer and Fei Wang. Frequence: interactive mining and visualization of

temporal frequent event sequences. In: 19th International Conference on Intelligent
User Interfaces, IUI 2014, Haifa, Israel, February 24-27, 2014. 2014, pp. 153–162. doi:

10.1145/2557500.2557508 (cit. on pp. 62, 101, 109, 149).

[159] Charles D. Stolper, Adam Perer, and David Gotz. Progressive Visual Analytics:

User-Driven Visual Exploration of In-Progress Analytics. In: IEEE Trans. Vis. Comput.
Graph. 20 (2014), pp. 1653–1662. doi: 10.1109/TVCG.2014.2346574 (cit. on pp. 63,

104, 109, 138, 147, 148).

https://doi.org/10.1109/TVCG.2012.225
https://doi.org/10.1109/TVCG.2013.200
https://doi.org/10.1109/TVCG.2014.2346682
https://doi.org/10.1109/TVCG.2017.2745278
https://doi.org/10.1109/TVCG.2009.117
https://doi.org/10.1145/2557500.2557508
https://doi.org/10.1109/TVCG.2014.2346574


[160] Sara Di Bartolomeo, Yixuan Zhang, Fangfang Sheng, and Cody Dunne. Sequence

Braiding: Visual Overviews of Temporal Event Sequences and Attributes. In: IEEE
Trans. Vis. Comput. Graph. 27 (2021), pp. 1353–1363. doi: 10.1109/TVCG.2020.
3030442 (cit. on p. 63).

[161] Lance Parsons, Ehtesham Haque, and Huan Liu. Subspace clustering for high

dimensional data: a review. In: SIGKDD Explorations 6 (2004), pp. 90–105 (cit. on

p. 63).

[162] Stephan Günnemann. Subspace clustering for complex data. PhD thesis. RWTH

Aachen University, 2012 (cit. on p. 63).

[163] Christian Baumgartner, Claudia Plant, Karin Kailing, Hans-Peter Kriegel, and Peer

Kröger. Subspace Selection for Clustering High-Dimensional Data. In: Proceedings
of the 4th IEEE International Conference on Data Mining (ICDM 2004), 1-4 November
2004, Brighton, UK. 2004, pp. 11–18. doi: 10.1109/ICDM.2004.10112 (cit. on p. 63).

[164] Alfred Inselberg and Bernard Dimsdale. Parallel Coordinates: A Tool for Visualizing

Multi-dimensional Geometry. In: IEEE Visualization. 1990, pp. 361–378 (cit. on p. 63).

[165] Dominik Jäckle, Michael Hund, Michael Behrisch, Daniel A. Keim, and Tobias

Schreck. Pattern Trails: Visual Analysis of Pattern Transitions in Subspaces. In: 12th
IEEE Conference on Visual Analytics Science and Technology, IEEE VAST 2017, Phoenix,
AZ, USA, October 3-6, 2017. 2017, pp. 1–12. doi: 10.1109/VAST.2017.8585613 (cit. on

p. 64).

[166] Andrada Tatu, Fabian Maass, Ines Färber, Enrico Bertini, Tobias Schreck, Thomas

Seidl, and Daniel A. Keim. Subspace search and visualization to make sense of

alternative clusterings in high-dimensional data. In: 7th IEEE Conference on Visual
Analytics Science and Technology, IEEE VAST 2012, Seattle, WA, USA, October 14-19,
2012. 2012, pp. 63–72. doi: 10.1109/VAST.2012.6400488 (cit. on p. 64).

[167] Dirk J. LehmannandHolgerTheisel.Optimal Sets of Projections ofHigh-Dimensional

Data. In: IEEE Trans. Vis. Comput. Graph. 22 (2016), pp. 609–618. doi: 10.1109/TVCG.
2015.2467132 (cit. on p. 64).

[168] Guodao Sun, Sujia Zhu, Qi Jiang, Wang Xia, and Ronghua Liang. EvoSets: Tracking

the Sensitivity of Dimensionality Reduction Results Across Subspaces. In: IEEE
Trans. Big Data 8 (2022), pp. 1566–1579. doi: 10.1109/TBDATA.2021.3079200 (cit. on

p. 64).

[169] Michael Blumenschein, Michael Behrisch, Stefanie Schmid, Simon Butscher, Deb-

orah R. Wahl, Karoline Villinger, Britta Renner, Harald Reiterer, and Daniel A.

Keim. SMARTexplore: Simplifying High-Dimensional Data Analysis through a

Table-Based Visual Analytics Approach. In: 13th IEEE Conference on Visual Analytics
Science and Technology, IEEE VAST 2018, Berlin, Germany, October 21-26, 2018. 2018,
pp. 36–47. doi: 10.1109/VAST.2018.8802486 (cit. on p. 64).

https://doi.org/10.1109/TVCG.2020.3030442
https://doi.org/10.1109/TVCG.2020.3030442
https://doi.org/10.1109/ICDM.2004.10112
https://doi.org/10.1109/VAST.2017.8585613
https://doi.org/10.1109/VAST.2012.6400488
https://doi.org/10.1109/TVCG.2015.2467132
https://doi.org/10.1109/TVCG.2015.2467132
https://doi.org/10.1109/TBDATA.2021.3079200
https://doi.org/10.1109/VAST.2018.8802486


[170] Michael Behrisch, Dirk Streeb, Florian Stoffel, Daniel Seebacher, Brian Matejek,

Stefan Hagen Weber, Sebastian Mittelstädt, Hanspeter Pfister, and Daniel A. Keim.

Commercial Visual Analytics Systems-Advances in the Big Data Analytics Field. In:

IEEE Trans. Vis. Comput. Graph. 25 (2019), pp. 3011–3031. doi: 10.1109/TVCG.2018.
2859973 (cit. on pp. 64, 111).

[171] Jiawei Han, Jian Pei, and Yiwen Yin. Mining Frequent Patterns without Candidate

Generation. In: Proceedings of the 2000 ACM SIGMOD International Conference
on Management of Data, May 16-18, 2000, Dallas, Texas, USA. 2000, pp. 1–12. doi:

10.1145/342009.335372 (cit. on p. 69).

[172] Mohammed Javeed Zaki. Scalable Algorithms for Association Mining. In: IEEE
Trans. Knowl. Data Eng. 12 (2000), pp. 372–390. doi: 10.1109/69.846291 (cit. on

p. 69).

[173] Rakesh Agrawal, Heikki Mannila, Ramakrishnan Srikant, Hannu Toivonen, and

A. Inkeri Verkamo. Fast Discovery of Association Rules. In: Advances in Knowledge
Discovery and Data Mining. AAAI/MIT Press, 1996, pp. 307–328 (cit. on p. 71).

[174] MarkHarrower and Cynthia A Brewer. ColorBrewer. org: an online tool for selecting

colour schemes for maps. In: The Cartographic Journal 40 (2003), pp. 27–37 (cit. on

p. 78).

[175] Daniel A. Keim, Jörn Kohlhammer, Geoffrey P. Ellis, and Florian Mansmann. Mas-

tering the Information Age - Solving Problems with Visual Analytics. Eurographics

Association, 2010 (cit. on p. 81).

[176] Bart Goethals. Survey on frequent pattern mining. In: Univ. of Helsinki 19 (2003),

pp. 840–852 (cit. on p. 81).

[177] Sotiris Kotsiantis and Dimitris Kanellopoulos. Association rules mining: A recent

overview. In: GESTS International Transactions on Computer Science and Engineering
32 (2006), pp. 71–82 (cit. on p. 81).

[178] Nizar R.Mabroukeh and Christie I. Ezeife. A taxonomy of sequential patternmining

algorithms. In: ACM Comput. Surv. 43 (2010), 3:1–3:41 (cit. on pp. 81, 96).

[179] Ian H. Witten, Eibe Frank, and Mark A. Hall. Data mining: practical machine

learning tools and techniques, 3rd Edition. Morgan Kaufmann, Elsevier, 2011 (cit. on

p. 81).

[180] Philippe Fournier-Viger, Jerry Chun-Wei Lin, Antonio Gomariz, Ted Gueniche,

Azadeh Soltani, Zhihong Deng, and Hoang Thanh Lam. The SPMF Open-Source

Data Mining Library Version 2. In: ECML/PKDD (3). Vol. 9853. 2016, pp. 36–40
(cit. on p. 81).

[181] FIMI ’03, Frequent Itemset Mining Implementations, Proceedings of the ICDM

2003 Workshop on Frequent Itemset Mining Implementations, 19 December 2003,

Melbourne, Florida, USA. Vol. 90. CEURWorkshop Proceedings. CEUR-WS.org,

2003 (cit. on p. 81).

https://doi.org/10.1109/TVCG.2018.2859973
https://doi.org/10.1109/TVCG.2018.2859973
https://doi.org/10.1145/342009.335372
https://doi.org/10.1109/69.846291


[182] FIMI ’04, Proceedings of the IEEE ICDMWorkshop on Frequent Itemset Mining

Implementations, Brighton, UK, November 1, 2004. Vol. 126. CEUR Workshop

Proceedings. CEUR-WS.org, 2005 (cit. on p. 81).

[183] Bilal Alsallakh, Luana Micallef, Wolfgang Aigner, Helwig Hauser, Silvia Miksch,

and Peter J. Rodgers. The State-of-the-Art of Set Visualization. In: Comput. Graph.
Forum 35 (2016), pp. 234–260. doi: 10.1111/cgf.12722 (cit. on pp. 82, 84).

[184] Wolfgang Aigner, Silvia Miksch, Heidrun Schumann, and Christian Tominski.

Visualization of Time-OrientedData. Human-Computer Interaction Series. Springer,

2011 (cit. on pp. 82, 96).

[185] Sônia Fernandes Silva and Tiziana Catarci. Visualization of Linear Time-Oriented

Data: A Survey. In: WISE. 2000, pp. 310–319 (cit. on pp. 82, 97).

[186] Wolfgang Aigner, Silvia Miksch, Wolfgang Müller, Heidrun Schumann, and Chris-

tian Tominski. Visualizing time-oriented data - A systematic view. In: Computers &
Graphics 31 (2007), pp. 401–409 (cit. on pp. 82, 97).

[187] Heike Hofmann, Arno Siebes, and Adalbert F. X. Wilhelm. Visualizing association

rules with interactive mosaic plots. In: Proceedings of the sixth ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining, Boston, MA, USA, August
20-23, 2000. 2000, pp. 227–235. doi: 10.1145/347090.347133 (cit. on pp. 82, 94,

107, 108).

[188] Michael Hahsler and Sudheer Chelluboina. Visualizing association rules: Introduc-

tion to the R-extension package arulesViz. In: R project module (2011), pp. 223–238
(cit. on pp. 82, 108, 111).

[189] Jiawei Han. Mining Knowledge at Multiple Concept Levels. In: CIKM. 1995, pp. 19–

24 (cit. on p. 84).

[190] Douglas Burdick, Manuel Calimlim, and Johannes Gehrke. MAFIA: A Maximal

Frequent Itemset Algorithm for Transactional Databases. In: ICDE. 2001, pp. 443–452
(cit. on p. 84).

[191] Nicolas Pasquier, Yves Bastide, Rafik Taouil, and Lotfi Lakhal. Efficient Mining of

Association Rules Using Closed Itemset Lattices. In: Inf. Syst. 24 (1999), pp. 25–46

(cit. on pp. 85, 107).

[192] Gwenael Bothorel, Mathieu Serrurier, and Christophe Hurter. Visualization of

Frequent Itemsets with Nested Circular Layout and Bundling Algorithm. In:

Advances in Visual Computing - 9th International Symposium, ISVC 2013, Rethymnon,
Crete, Greece, July 29-31, 2013. Proceedings, Part II. Vol. 8034. 2013, pp. 396–405. doi:

10.1007/978-3-642-41939-3\_38 (cit. on pp. 85, 107).

[193] George H. Collier. Thoth-II: Hypertext with Explicit Semantics. In: Hypertext’87
Proceedings, November 13-15, 1987, Chapel Hill, North Carolina, USA. 1987, pp. 269–289.
doi: 10.1145/317426.317446 (cit. on p. 85).

https://doi.org/10.1111/cgf.12722
https://doi.org/10.1145/347090.347133
https://doi.org/10.1007/978-3-642-41939-3\_38
https://doi.org/10.1145/317426.317446


[194] Tamara Munzner, Qiang Kong, Raymond T Ng, Jordan Lee, Janek Klawe, Dragana

Radulovic, and Carson K Leung. Visual mining of power sets with large alphabets.

In: Department of Computer Science, The University of British Columbia (2005) (cit. on
pp. 86, 107).

[195] Daniel A Keim, Jörn Schneidewind, and Mike Sips. Fp-viz: Visual frequent pattern

mining. In: InfoVis. 2005 (cit. on pp. 87, 107).

[196] Jiawei Han, Jian Pei, Yiwen Yin, and Runying Mao. Mining Frequent Patterns

without Candidate Generation: A Frequent-Pattern Tree Approach. In: Data Min.
Knowl. Discov. 8 (2004), pp. 53–87. doi: 10.1023/B:DAMI.0000005258.31418.83
(cit. on pp. 86, 87).

[197] John T. Stasko and Eugene Zhang. Focus+Context Display and Navigation Tech-

niques for Enhancing Radial, Space-Filling Hierarchy Visualizations. In: IEEE
Symposium on Information Visualization 2000 (INFOVIS’00), Salt Lake City, Utah, USA,
October 9-10, 2000. 2000, pp. 57–65. doi: 10.1109/INFVIS.2000.885091 (cit. on

p. 87).

[198] Jing Yang, Matthew O. Ward, Elke A. Rundensteiner, and Anilkumar Patro. Inter-

Ring: a visual interface for navigating and manipulating hierarchies. In: Information
Visualization 2 (2003), pp. 16–30. doi: 10.1057/palgrave.ivs.9500035 (cit. on

p. 87).

[199] Carson Kai-Sang Leung and Fan Jiang. RadialViz: An Orientation-Free Frequent

Pattern Visualizer. In: Advances in Knowledge Discovery and Data Mining - 16th
Pacific-Asia Conference, PAKDD 2012, Kuala Lumpur, Malaysia, May 29 - June 1, 2012,
Proceedings, Part II. Vol. 7302. 2012, pp. 322–334. doi: 10.1007/978-3-642-30220-
6\_27 (cit. on pp. 87, 107).

[200] Carson Kai-Sang Leung, Fan Jiang, and Pourang P. Irani. FpMapViz: A Space-Filling

Visualization for Frequent Patterns. In: Data Mining Workshops (ICDMW), 2011
IEEE 11th International Conference on, Vancouver, BC, Canada, December 11, 2011. 2011,
pp. 804–811. doi: 10.1109/ICDMW.2011.86 (cit. on pp. 87, 107).

[201] Ben Shneiderman. Tree Visualization with Tree-Maps: 2-d Space-Filling Approach.

In: ACM Trans. Graph. 11 (1992), pp. 92–99. doi: 10.1145/102377.115768 (cit. on

p. 87).

[202] Carson K. Leung, Vadim V. Kononov, Adam G. M. Pazdor, and Fan Jiang. Pyra-

midViz: Visual Analytics and Big Data Visualization for Frequent Patterns. In: 2016
IEEE 14th Intl Conf on Dependable, Autonomic and Secure Computing, 14th Intl Conf
on Pervasive Intelligence and Computing, 2nd Intl Conf on Big Data Intelligence and
Computing and Cyber Science and Technology Congress, DASC/PiCom/DataCom/Cy-
berSciTech 2016, Auckland, New Zealand, August 8-12, 2016. 2016, pp. 913–916. doi:

10.1109/DASC-PICom-DataCom-CyberSciTec.2016.158 (cit. on pp. 87, 88, 107).

https://doi.org/10.1023/B:DAMI.0000005258.31418.83
https://doi.org/10.1109/INFVIS.2000.885091
https://doi.org/10.1057/palgrave.ivs.9500035
https://doi.org/10.1007/978-3-642-30220-6\_27
https://doi.org/10.1007/978-3-642-30220-6\_27
https://doi.org/10.1109/ICDMW.2011.86
https://doi.org/10.1145/102377.115768
https://doi.org/10.1109/DASC-PICom-DataCom-CyberSciTec.2016.158


[203] Li Yang. Visualizing Frequent Itemsets, Association Rules, and Sequential Patterns

in Parallel Coordinates. In: Computational Science and Its Applications - ICCSA
2003, International Conference, Montreal, Canada, May 18-21, 2003, Proceedings, Part I.
Vol. 2667. 2003, pp. 21–30. doi: 10.1007/3-540-44839-X\_3 (cit. on pp. 88, 95, 100,

107–109).

[204] Li Yang. Pruning and Visualizing Generalized Association Rules in Parallel Coor-

dinates. In: IEEE Trans. Knowl. Data Eng. 17 (2005), pp. 60–70. doi: 10.1109/TKDE.
2005.14 (cit. on p. 89).

[205] Carson Kai-Sang Leung, Pourang Irani, and Christopher L. Carmichael. FIsViz: A

Frequent Itemset Visualizer. In: Advances in Knowledge Discovery and Data Mining,
12th Pacific-Asia Conference, PAKDD 2008, Osaka, Japan, May 20-23, 2008 Proceedings.
Vol. 5012. 2008, pp. 644–652. doi: 10.1007/978-3-540-68125-0\_60 (cit. on pp. 89,

107).

[206] Carson Kai-Sang Leung, Pourang Irani, and Christopher L. Carmichael. WiFIsViz:

Effective Visualization of Frequent Itemsets. In: Proceedings of the 8th IEEE Interna-
tional Conference on Data Mining (ICDM 2008), December 15-19, 2008, Pisa, Italy. 2008,
pp. 875–880. doi: 10.1109/ICDM.2008.93 (cit. on pp. 89, 90, 107).

[207] Carson Kai-Sang Leung and Christopher L. Carmichael. FpVAT: a visual analytic

tool for supporting frequent pattern mining. In: SIGKDD Explor. 11 (2009), pp. 39–48.
doi: 10.1145/1809400.1809407 (cit. on p. 90).

[208] Rakesh Agrawal, Tomasz Imielinski, and Arun N. Swami. Mining Association Rules

between Sets of Items in Large Databases. In: Proceedings of the 1993 ACM SIGMOD
International Conference on Management of Data, Washington, DC, USA, May 26-28,
1993. 1993, pp. 207–216. doi: 10.1145/170035.170072 (cit. on p. 90).

[209] Jiawei Han, Yongjian Fu, Wei Wang, Jenny Chiang, Wan Gong, Krzysztof Koperski,

Deyi Li, Yĳun Lu, Amynmohamed Rajan, Nebojsa Stefanovic, Betty Xia, and Osmar

R. ZaıU0308XXXXXXXXXXXane. DBMiner: A System for Mining Knowledge in

Large Relational Databases. In: Proceedings of the Second International Conference
on Knowledge Discovery and Data Mining (KDD-96), Portland, Oregon, USA. 1996,
pp. 250–255 (cit. on pp. 91, 107, 108).

[210] Chris P. Rainsford and John F. Roddick. Visualisation of Temporal Interval Associa-

tion Rules. In: Intelligent Data Engineering and Automated Learning - IDEAL 2000, Data
Mining, Financial Engineering, and Intelligent Agents, Second International Conference,
Shatin, N.T. Hong Kong, China, December 13-15, 2000, Proceedings. Vol. 1983. 2000,
pp. 91–96. doi: 10.1007/3-540-44491-2\_14 (cit. on pp. 91, 107, 108).

[211] Takeshi Fukuda, Yasukiko Morimoto, Shinichi Morishita, and Takeshi Tokuyama.

Data mining using two-dimensional optimized association rules: Scheme, algo-

rithms, and visualization. In: ACM SIGMOD Record 25 (1996), pp. 13–23 (cit. on

pp. 92, 107, 108).

https://doi.org/10.1007/3-540-44839-X\_3
https://doi.org/10.1109/TKDE.2005.14
https://doi.org/10.1109/TKDE.2005.14
https://doi.org/10.1007/978-3-540-68125-0\_60
https://doi.org/10.1109/ICDM.2008.93
https://doi.org/10.1145/1809400.1809407
https://doi.org/10.1145/170035.170072
https://doi.org/10.1007/3-540-44491-2\_14


[212] Jianchao Han and Nick Cercone. AViz: A Visualization System for Discovering

Numeric Association Rules. In: Knowledge Discovery and Data Mining, Current Issues
andNewApplications, 4th Pacific-Asia Conference, PADKK2000, Kyoto, Japan, April 18-20,
2000, Proceedings. Vol. 1805. 2000, pp. 269–280. doi: 10.1007/3-540-45571-X\_33
(cit. on pp. 92, 108).

[213] Rakesh Agrawal, Manish Mehta, John C. Shafer, Ramakrishnan Srikant, Andreas

Arning, and Toni Bollinger. The Quest Data Mining System. In: KDD. 1996, pp. 244–

249 (cit. on pp. 92, 108).

[214] Clifford Brunk, James Kelly, and Ron Kohavi. MineSet: An Integrated System

for Data Mining. In: Proceedings of the Third International Conference on Knowledge
Discovery and Data Mining (KDD-97), Newport Beach, California, USA, August 14-17,
1997. 1997, pp. 135–138 (cit. on pp. 93, 108).

[215] PakChungWong, PaulWhitney, and James J. Thomas. VisualizingAssociationRules

for Text Mining. In: IEEE Symposium on Information Visualization 1999 (INFOVIS’99),
San Francisco, California, USA, October 24-29, 1999. 1999, pp. 120–123. doi: 10.1109/
INFVIS.1999.801866 (cit. on pp. 93, 107, 108).

[216] Ickjai Lee, Guochen Cai, and Kyungmi Lee. Mining Points-of-Interest Association

Rules from Geo-tagged Photos. In: 46th Hawaii International Conference on System
Sciences, HICSS 2013, Wailea, HI, USA, January 7-10, 2013. 2013, pp. 1580–1588. doi:

10.1109/HICSS.2013.401 (cit. on p. 94).

[217] John A Hartigan and Beat Kleiner. Mosaics for contingency tables. In: Computer
science and statistics: Proceedings of the 13th symposium on the interface. Springer. 1981,
pp. 268–273 (cit. on p. 94).

[218] Bing Liu, Wynne Hsu, Shu Chen, and Yiming Ma. Analyzing the Subjective

Interestingness of Association Rules. In: IEEE Intell. Syst. 15 (2000), pp. 47–55. doi:

10.1109/5254.889106 (cit. on pp. 95, 96, 138).

[219] Fosca Giannotti, Mirco Nanni, Fabio Pinelli, and Dino Pedreschi. Trajectory pattern

mining. In: KDD. 2007, pp. 330–339 (cit. on p. 96).

[220] Gennady L. Andrienko, Natalia V. Andrienko, Peter Bak, Daniel A. Keim, and

Stefan Wrobel. Visual Analytics of Movement. Springer, 2013 (cit. on p. 96).

[221] Philippe Fournier-Viger, Antonio Gomariz, Manuel Campos, and Rincy Thomas.

Fast Vertical Mining of Sequential Patterns Using Co-occurrence Information. In:

PAKDD (1). Vol. 8443. 2014, pp. 40–52 (cit. on pp. 97, 149).

[222] Shin-yi Wu and Yen-Liang Chen. Discovering hybrid temporal patterns from

sequences consisting of point- and interval-based events. In: Data Knowl. Eng. 68
(2009), pp. 1309–1330 (cit. on pp. 97, 109).

[223] Zhicheng Liu, Yang Wang, Mira Dontcheva, Matthew Hoffman, Seth Walker, and

Alan Wilson. Patterns and Sequences: Interactive Exploration of Clickstreams to

Understand Common Visitor Paths. In: IEEE Trans. Vis. Comput. Graph. 23 (2017),

pp. 321–330. doi: 10.1109/TVCG.2016.2598797 (cit. on pp. 98, 99).

https://doi.org/10.1007/3-540-45571-X\_33
https://doi.org/10.1109/INFVIS.1999.801866
https://doi.org/10.1109/INFVIS.1999.801866
https://doi.org/10.1109/HICSS.2013.401
https://doi.org/10.1109/5254.889106
https://doi.org/10.1109/TVCG.2016.2598797


[224] Joseph BKruskal and JamesMLandwehr. Icicle plots: Better displays for hierarchical

clustering. In: The American Statistician 37 (1983), pp. 162–168 (cit. on p. 99).

[225] Heidi Lam, Daniel M. Russell, Diane Tang, and Tamara Munzner. Session Viewer:

Visual Exploratory Analysis of Web Session Logs. In: 2nd IEEE Symposium on Visual
Analytics Science and Technology, IEEE VAST 2007, Sacramento, CA,USA, October 30
- November 1, 2007. 2007, pp. 147–154. doi: 10.1109/VAST.2007.4389008 (cit. on

pp. 99, 109).

[226] Krist Wongsuphasawat, John Alexis Guerra Gómez, Catherine Plaisant, Taowei

David Wang, Meirav Taieb-Maimon, and Ben Shneiderman. LifeFlow: visualizing

an overview of event sequences. In: CHI. 2011, pp. 1747–1756 (cit. on p. 99).

[227] Krist Wongsuphasawat and Jimmy Lin. Using visualizations to monitor changes

and harvest insights from a global-scale logging infrastructure at Twitter. In: 9th
IEEE Conference on Visual Analytics Science and Technology, IEEE VAST 2014, Paris,
France, October 25-31, 2014. 2014, pp. 113–122. doi: 10.1109/VAST.2014.7042487
(cit. on p. 99).

[228] Jürgen Bernard, David Sessler, Thorsten May, Thorsten Schlomm, Dirk Pehrke, and

Jörn Kohlhammer. A Visual-Interactive System for Prostate Cancer Cohort Analysis.

In: IEEE Computer Graphics and Applications 35 (2015), pp. 44–55 (cit. on p. 99).

[229] Heikki Mannila and Christopher Meek. Global partial orders from sequential

data. In: Proceedings of the sixth ACM SIGKDD international conference on Knowledge
discovery and data mining, Boston, MA, USA, August 20-23, 2000. 2000, pp. 161–168.
doi: 10.1145/347090.347122 (cit. on pp. 99, 109).

[230] Debprakash Patnaik, Patrick Butler, Naren Ramakrishnan, Laxmi Parida, Benjamin J.

Keller, and David A. Hanauer. Experiences with mining temporal event sequences

fromelectronicmedical records: initial successes and some challenges. In:Proceedings
of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, San Diego, CA, USA, August 21-24, 2011. 2011, pp. 360–368. doi: 10.1145/
2020408.2020468 (cit. on pp. 99, 109).

[231] MarkGuzdial, ChrisWalton,Michael Konemann, andElliot Soloway. Characterizing

process change using log file data. Tech. rep. Georgia Institute of Technology, 1993

(cit. on p. 100).

[232] Mengdie Hu, Krist Wongsuphasawat, and John T. Stasko. Visualizing Social Media

Content with SentenTree. In: IEEE Trans. Vis. Comput. Graph. 23 (2017), pp. 621–630.

doi: 10.1109/TVCG.2016.2598590 (cit. on pp. 100, 109).

[233] Jürgen Bernard, Nils Wilhelm, Björn Krüger, Thorsten May, Tobias Schreck, and

Jörn Kohlhammer. MotionExplorer: Exploratory Search in Human Motion Capture

Data Based on Hierarchical Aggregation. In: IEEE Trans. Vis. Comput. Graph. 19
(2013), pp. 2257–2266 (cit. on p. 100).

[234] Jia-Kai Chou, Yang Wang, and Kwan-Liu Ma. Privacy preserving event sequence

data visualization using a Sankey diagram-like representation. In: SIGGRAPH Asia
Symposium on Visualization. 2016, 1:1–1:8 (cit. on p. 101).

https://doi.org/10.1109/VAST.2007.4389008
https://doi.org/10.1109/VAST.2014.7042487
https://doi.org/10.1145/347090.347122
https://doi.org/10.1145/2020408.2020468
https://doi.org/10.1145/2020408.2020468
https://doi.org/10.1109/TVCG.2016.2598590


[235] Adam Perer, Fei Wang, and Jianying Hu. Mining and exploring care pathways from

electronic medical records with visual analytics. In: Journal of Biomedical Informatics
56 (2015), pp. 369–378 (cit. on p. 101).

[236] Jian Zhao, Zhicheng Liu, Mira Dontcheva, Aaron Hertzmann, and Alan Wilson.

MatrixWave: Visual Comparison of Event Sequence Data. In: Proceedings of the
33rd Annual ACM Conference on Human Factors in Computing Systems, CHI 2015,
Seoul, Republic of Korea, April 18-23, 2015. 2015, pp. 259–268. doi: 10.1145/2702123.
2702419 (cit. on pp. 101, 109).

[237] Zhicheng Liu, Bernard Kerr, Mira Dontcheva, Justin Grover, Matthew Hoffman,

and Alan Wilson. CoreFlow: Extracting and Visualizing Branching Patterns from

Event Sequences. In: Comput. Graph. Forum 36 (2017), pp. 527–538 (cit. on pp. 102,

103, 109).

[238] PeterGrünwald.A tutorial introduction to theminimumdescription lengthprinciple.

In: CoRRmath.ST/0406077 (2004) (cit. on p. 103).

[239] Jishang Wei, Zeqian Shen, Neel Sundaresan, and Kwan-Liu Ma. Visual cluster

exploration of web clickstream data. In: IEEE VAST. 2012, pp. 3–12 (cit. on pp. 104,

109).

[240] Fernanda B. Viégas, Martin Wattenberg, and Jonathan Feinberg. Participatory

Visualization with Wordle. In: IEEE Trans. Vis. Comput. Graph. 15 (2009), pp. 1137–

1144 (cit. on p. 104).

[241] David Gotz, Fei Wang, and Adam Perer. A methodology for interactive mining

and visual analysis of clinical event patterns using electronic health record data. In:

Journal of Biomedical Informatics 48 (2014), pp. 148–159 (cit. on pp. 104, 109).

[242] Heikki Mannila, Hannu Toivonen, and A. Inkeri Verkamo. Discovery of Frequent

Episodes in Event Sequences. In: Data Min. Knowl. Discov. 1 (1997), pp. 259–289
(cit. on p. 105).

[243] Peter Bodesinsky, Bilal Alsallakh, Theresia Gschwandtner, and Silvia Miksch.

Exploration and Assessment of Event Data. In: 6th International EuroVis Workshop on
Visual Analytics, EuroVA@EuroVis 2015, Cagliari, Sardinia, Italy, May 25-26, 2015. 2015,
pp. 67–71. doi: 10.2312/eurova.20151106 (cit. on pp. 105, 106, 109).

[244] Martin Wattenberg. Arc Diagrams: Visualizing Structure in Strings. In: INFOVIS.
2002, pp. 110–116 (cit. on p. 105).

[245] Jacques Bertin. Semiology of graphics: diagrams, networks, maps. In: (1983) (cit. on

p. 106).

[246] Jock D. Mackinlay. Automating the Design of Graphical Presentations of Relational

Information. In: ACM Trans. Graph. 5 (1986), pp. 110–141 (cit. on pp. 106, 110).

[247] Tamara Munzner. Visualization Analysis and Design. A.K. Peters visualization

series. A K Peters, 2014 (cit. on pp. 106, 110).

[248] Geoffrey P. Ellis and Alan J. Dix. The plot, the clutter, the sampling and its lens:

occlusion measures for automatic clutter reduction. In: AVI. 2006, pp. 266–269
(cit. on p. 106).

https://doi.org/10.1145/2702123.2702419
https://doi.org/10.1145/2702123.2702419
https://doi.org/10.2312/eurova.20151106


[249] Jacques Bertin. Sémiologie graphique: Les diagrammes-Les réseaux-Les cartes. In:

(1973) (cit. on p. 109).

[250] Ben Shneiderman. The Eyes Have It: A Task by Data Type Taxonomy for Information

Visualizations. In: Proceedings of the 1996 IEEE Symposium on Visual Languages, Boulder,
Colorado, USA, September 3-6, 1996. 1996, pp. 336–343. doi: 10.1109/VL.1996.545307
(cit. on pp. 110, 128).

[251] Daniel A. Keim. Information Visualization and Visual Data Mining. In: IEEE Trans.
Vis. Comput. Graph. 8 (2002), pp. 1–8. doi: 10.1109/2945.981847 (cit. on pp. 111,

120).

[252] John Risch, Anne Kao, Steve Poteet, and Yuan-Jye Jason Wu. Text Visualization for

Visual Text Analytics. In: Visual Data Mining - Theory, Techniques and Tools for Visual
Analytics. Vol. 4404. Lecture Notes in Computer Science. Springer, 2008, pp. 154–171.

doi: 10.1007/978-3-540-71080-6\_11 (cit. on p. 113).

[253] Usama M. Fayyad, Gregory Piatetsky-Shapiro, and Padhraic Smyth. From Data

Mining to Knowledge Discovery in Databases. In: AI Mag. 17 (1996), pp. 37–54. doi:

10.1609/aimag.v17i3.1230 (cit. on p. 115).

[254] Bram C. M. Cappers, Paulus N. Meessen, Sandro Etalle, and Jarke J. van Wĳk.

Eventpad: RapidMalware Analysis and Reverse Engineering using Visual Analytics.

In: 15th IEEE Symposium on Visualization for Cyber Security, VizSec 2018, Berlin,
Germany, October 22, 2018. 2018, pp. 1–8. doi: 10.1109/VIZSEC.2018.8709230
(cit. on p. 118).

[255] Yun Sing Koh and Sri Devi Ravana. Unsupervised Rare Pattern Mining: A Survey.

In: ACM Trans. Knowl. Discov. Data 10 (2016), 45:1–45:29. doi: 10.1145/2898359
(cit. on p. 118).

[256] Anindita Borah and Bhabesh Nath. Rare pattern mining: challenges and future

perspectives. In: Complex & Intelligent Systems 5 (2019), pp. 1–23 (cit. on p. 118).

[257] Kai Xu, Simon Attfield, T. J. Jankun-Kelly, Ashley Wheat, Phong H. Nguyen, and

Nallini Selvaraj. Analytic Provenance for Sensemaking: A Research Agenda. In: IEEE
Computer Graphics and Applications 35 (2015), pp. 56–64. doi: 10.1109/MCG.2015.50
(cit. on p. 122).

[258] Alex Endert. Semantic Interaction for Visual Analytics: Inferring Analytical Reason-

ing for Model Steering. Synthesis Lectures on Visualization. Morgan & Claypool

Publishers, 2016 (cit. on p. 122).

[259] Daniel Seebacher, Thomas Polk, Halldor Janetzko, Daniel Keim, Tobias Schreck,

andManuel Stein. Investigating the Sketchplan: A Novel Way of Identifying Tactical

Behavior in Massive Soccer Datasets. In: IEEE Transactions on Visualization and
Computer Graphics (2021) (cit. on p. 127).

[260] Franco Moretti. Style, Inc. Reflections on Seven Thousand Titles (British Novels,

1740–1850). In: Critical Inquiry 36 (2009), pp. 134–158 (cit. on p. 129).

[261] Franco Moretti. Conjectures on world literature. In: New left review 1 (2000), p. 54

(cit. on p. 128).

https://doi.org/10.1109/VL.1996.545307
https://doi.org/10.1109/2945.981847
https://doi.org/10.1007/978-3-540-71080-6\_11
https://doi.org/10.1609/aimag.v17i3.1230
https://doi.org/10.1109/VIZSEC.2018.8709230
https://doi.org/10.1145/2898359
https://doi.org/10.1109/MCG.2015.50


[262] Laurens Van Der Maaten, Eric Postma, and Jaap Van den Herik. Dimensionality

reduction: A comparative review. In: J Mach Learn Res 10 (2009), pp. 66–71 (cit. on

p. 133).

[263] Yalong Yang, Wenyu Xia, Fritz Lekschas, Carolina Nobre, Robert Krüger, and

Hanspeter Pfister. The Pattern is in the Details: An Evaluation of Interaction

Techniques for Locating, Searching, and Contextualizing Details in Multivariate

Matrix Visualizations. In: CoRR abs/2203.05109 (2022) (cit. on p. 134).

[264] Chris North, Remco Chang, Alex Endert, Wenwen Dou, Richard May, Bill Pike, and

Glenn A. Fink. Analytic provenance: process+interaction+insight. In: CHI Extended
Abstracts. 2011, pp. 33–36 (cit. on p. 140).

[265] Frank van Ham and Adam Perer. "Search, Show Context, Expand on Demand":

Supporting Large Graph Exploration with Degree-of-Interest. In: IEEE Trans. Vis.
Comput. Graph. 15 (2009), pp. 953–960. doi: 10.1109/TVCG.2009.108 (cit. on p. 143).

[266] Richard Brath and Ebad Banissi. Using font attributes in knowledge maps and

information retrieval. In: CEUR Workshop Proceedings. Vol. 1311. CEURWorkshop

Proceedings. 2014, pp. 23–30 (cit. on p. 144).

[267] Matt Williams and Tamara Munzner. Steerable, Progressive Multidimensional

Scaling. In: 10th IEEE Symposium on Information Visualization (InfoVis 2004), 10-12
October 2004, Austin, TX, USA. 2004, pp. 57–64. doi: 10.1109/INFVIS.2004.60
(cit. on p. 147).

[268] Emanuel Zgraggen, Alex Galakatos, Andrew Crotty, Jean-Daniel Fekete, and Tim

Kraska. How Progressive Visualizations Affect Exploratory Analysis. In: IEEE Trans.
Vis. Comput. Graph. 23 (2017), pp. 1977–1987. doi: 10.1109/TVCG.2016.2607714
(cit. on p. 147).

[269] Jean-Daniel Fekete and Romain Primet. Progressive Analytics: A Computation

Paradigm for Exploratory Data Analysis. In: CoRR abs/1607.05162 (2016) (cit. on

p. 147).

[270] Jean-Daniel Fekete, Danyel Fisher, Arnab Nandi, andMichael Sedlmair. Progressive

Data Analysis and Visualization (Dagstuhl Seminar 18411). In: Dagstuhl Reports 8
(2018), pp. 1–40. doi: 10.4230/DagRep.8.10.1 (cit. on p. 147).

[271] Cagatay Turkay,Nicola Pezzotti, Carsten Binnig,Hendrik Strobelt, BarbaraHammer,

Daniel A. Keim, Jean-Daniel Fekete, Themis Palpanas, Yunhai Wang, and Florin

Rusu. Progressive Data Science: Potential and Challenges. In: CoRR abs/1812.08032

(2018) (cit. on p. 147).

[272] Vincent Raveneau. Interaction in Progressive Visual Analytics. An application to

progressive sequential pattern mining. (Interaction en Analyse Visuelle Progressive.

Une application à la fouille progressive demotifs séquentiels). PhD thesis. University

of Nantes, France, 2020 (cit. on pp. 147, 148).

[273] Mohammed Javeed Zaki. SPADE: An Efficient Algorithm for Mining Frequent

Sequences. In: Mach. Learn. 42 (2001), pp. 31–60 (cit. on p. 147).

https://doi.org/10.1109/TVCG.2009.108
https://doi.org/10.1109/INFVIS.2004.60
https://doi.org/10.1109/TVCG.2016.2607714
https://doi.org/10.4230/DagRep.8.10.1


[274] Katerina Vrotsou and Aida Nordman. Interactive visual sequence mining based on

pattern-growth. In: 9th IEEE Conference on Visual Analytics Science and Technology,
IEEE VAST 2014, Paris, France, October 25-31, 2014. 2014, pp. 285–286. doi: 10.1109/
VAST.2014.7042532 (cit. on p. 148).

[275] Matthĳs van Leeuwen. Interactive Data Exploration Using Pattern Mining. In:

Interactive Knowledge Discovery and Data Mining in Biomedical Informatics - State-of-the-
Art and Future Challenges. Vol. 8401. Lecture Notes in Computer Science. Springer,

2014, pp. 169–182. doi: 10.1007/978-3-662-43968-5\_9 (cit. on pp. 151, 152).

[276] Mansurul Bhuiyan, SnehasisMukhopadhyay, andMohammadAlHasan. Interactive

patternmining on hidden data: a sampling-based solution. In: 21st ACM International
Conference on Information andKnowledgeManagement, CIKM’12,Maui,HI,USA,October
29 - November 02, 2012. 2012, pp. 95–104. doi: 10.1145/2396761.2396777 (cit. on

p. 151).

[277] VladimirDzyuba,Matthĳs vanLeeuwen, SiegfriedNĳssen, andLucDeRaedt.Active

Preference Learning for Ranking Patterns. In: 25th IEEE International Conference on
Tools with Artificial Intelligence, ICTAI 2013, Herndon, VA, USA, November 4-6, 2013.
2013, pp. 532–539. doi: 10.1109/ICTAI.2013.85 (cit. on pp. 151, 152).

[278] Esther Galbrun and Pauli Miettinen. A case of visual and interactive data analysis:

Geospatial redescription mining. In: Proceedings of the Instant Interactive Data Mining
Workshop at ECML/PKDD 2012, IID’12. 2012, pp. 1–12 (cit. on p. 151).

[279] Mario Boley, Michael Mampaey, Bo Kang, Pavel Tokmakov, and StefanWrobel. One

click mining: interactive local pattern discovery through implicit preference and

performance learning. In: Proceedings of the ACM SIGKDDWorkshop on Interactive
Data Exploration and Analytics, IDEA@KDD 2013, Chicago, Illinois, USA, August 11,
2013. 2013, pp. 27–35. doi: 10.1145/2501511.2501517 (cit. on p. 152).

[280] Tĳl De Bie. An information theoretic framework for data mining. In: Proceedings
of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, San Diego, CA, USA, August 21-24, 2011. 2011, pp. 564–572. doi: 10.1145/
2020408.2020497 (cit. on p. 152).

[281] Tĳl De Bie. Maximum entropymodels and subjective interestingness: an application

to tiles in binary databases. In: Data Min. Knowl. Discov. 23 (2011), pp. 407–446. doi:

10.1007/s10618-010-0209-3 (cit. on p. 152).

[282] Eirini Spyropoulou, Tĳl De Bie, and Mario Boley. Interesting pattern mining in

multi-relational data. In:Data Mining and Knowledge Discovery 28 (2014), pp. 808–849
(cit. on p. 152).

[283] David Gunning, Mark Stefik, Jaesik Choi, Timothy Miller, Simone Stumpf, and

Guang-Zhong Yang. XAI - Explainable artificial intelligence. In: Sci. Robotics 4 (2019).
doi: 10.1126/scirobotics.aay7120 (cit. on p. 154).

[284] Cognitive Biases in Visualizations. Springer, 2018 (cit. on p. 156).

https://doi.org/10.1109/VAST.2014.7042532
https://doi.org/10.1109/VAST.2014.7042532
https://doi.org/10.1007/978-3-662-43968-5\_9
https://doi.org/10.1145/2396761.2396777
https://doi.org/10.1109/ICTAI.2013.85
https://doi.org/10.1145/2501511.2501517
https://doi.org/10.1145/2020408.2020497
https://doi.org/10.1145/2020408.2020497
https://doi.org/10.1007/s10618-010-0209-3
https://doi.org/10.1126/scirobotics.aay7120


[285] John D. Lee and Katrina A. See. Trust in Automation: Designing for Appropriate

Reliance. In:HumanFactors 46 (2004), pp. 50–80.doi: 10.1518/hfes.46.1.50.30392
(cit. on p. 157).

[286] U.S. Department of Agriculture. What We Eat In America (WWEIA) Database. 2022.

url: https://data.nal.usda.gov/dataset/what-we-eat-america-wweia-
database (cit. on p. 164).

[287] U.S. Centers for Disease Control and Prevention. National Health and Nutrition

Examination Survey; 2017-2018 Data Documentation, Codebook, and Frequencies;

Individual Foods, First Day (DR1IFF_J). 2022. url: https://wwwn.cdc.gov/Nchs/
Nhanes/2017-2018/DR1IFF_J.htm (cit. on p. 164).

[288] U.S. Centers for Disease Control and Prevention. National Health and Nutrition

Examination Survey; 2017-2018 Data Documentation, Codebook, and Frequencies;

Body Measures (BMX_J). 2022. url: https://wwwn.cdc.gov/Nchs/Nhanes/2017-
2018/BMX_J.htm (cit. on p. 164).

[289] U.S. Centers for Disease Control and Prevention. National Health and Nutrition

Examination Survey; 2017-2018 Data Documentation, Codebook, and Frequencies;

Demographic Variables and Sample Weights (DEMO_J). 2022. url: https://wwwn.
cdc.gov/Nchs/Nhanes/2017-2018/DEMO_J.htm (cit. on p. 164).

[290] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen.

Hierarchical Text-Conditional Image Generation with CLIP Latents. In: CoRR
abs/2204.06125 (2022). doi: 10.48550/arXiv.2204.06125 (cit. on p. 177).

[291] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Om-

mer. High-Resolution Image Synthesis with Latent Diffusion Models. In: IEEE/CVF
Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA,
USA, June 18-24, 2022. 2022, pp. 10674–10685. doi: 10.1109/CVPR52688.2022.01042
(cit. on p. 177).

[292] OpenAI. ChatGPT: Optimizing Language Models for Dialogue. https://openai.
com/blog/chatgpt/. 2022 (cit. on p. 177).

[293] Benjamin Paaßen, Claudio Gallicchio, Alessio Micheli, and Alessandro Sperduti.

Embeddings and Representation Learning for Structured Data. In: ESANN. 2019

(cit. on p. 177).

[294] Aatif Jamshed, Bhawna Mallick, and Pramod Kumar. Deep learning-based sequen-

tial pattern mining for progressive database. In: Soft Comput. 24 (2020), pp. 17233–

17246. doi: 10.1007/s00500-020-05015-2 (cit. on p. 177).

[295] Wensheng Gan, Jerry Chun-Wei Lin, Philippe Fournier-Viger, Han-Chieh Chao, and

Philip S. Yu. A Survey of Parallel Sequential PatternMining. In:CoRR abs/1805.10515

(2018) (cit. on p. 177).

[296] Catherine Plaisant and Ben Shneiderman. The diversity of data and tasks in event

analytics. In: Proceedings of the IEEE VIS 2016 Workshop on Temporal & Sequential
Event Analysis. 2016 (cit. on p. 177).

https://doi.org/10.1518/hfes.46.1.50.30392
https://data.nal.usda.gov/dataset/what-we-eat-america-wweia-database
https://data.nal.usda.gov/dataset/what-we-eat-america-wweia-database
https://wwwn.cdc.gov/Nchs/Nhanes/2017-2018/DR1IFF_J.htm
https://wwwn.cdc.gov/Nchs/Nhanes/2017-2018/DR1IFF_J.htm
https://wwwn.cdc.gov/Nchs/Nhanes/2017-2018/BMX_J.htm
https://wwwn.cdc.gov/Nchs/Nhanes/2017-2018/BMX_J.htm
https://wwwn.cdc.gov/Nchs/Nhanes/2017-2018/DEMO_J.htm
https://wwwn.cdc.gov/Nchs/Nhanes/2017-2018/DEMO_J.htm
https://doi.org/10.48550/arXiv.2204.06125
https://doi.org/10.1109/CVPR52688.2022.01042
https://openai.com/blog/chatgpt/
https://openai.com/blog/chatgpt/
https://doi.org/10.1007/s00500-020-05015-2


[297] David Gotz. Soft patterns: Moving beyond explicit sequential patterns during visual

analysis of longitudinal event datasets. In: Proceedings of the IEEE VIS 2016 Workshop
on Temporal & Sequential Event Analysis. 2016 (cit. on p. 178).

[298] Charu C. Aggarwal, Yan Li, Jianyong Wang, and Jing Wang. Frequent pattern

mining with uncertain data. In: Proceedings of the 15th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, Paris, France, June 28 - July 1,
2009. 2009, pp. 29–38. doi: 10.1145/1557019.1557030 (cit. on p. 178).

[299] Carson Kai-Sang Leung, Mark Anthony F. Mateo, and Dale A. Brajczuk. A Tree-

Based Approach for Frequent Pattern Mining from Uncertain Data. In: Advances in
Knowledge Discovery andDataMining, 12th Pacific-Asia Conference, PAKDD2008, Osaka,
Japan, May 20-23, 2008 Proceedings. Vol. 5012. 2008, pp. 653–661. doi: 10.1007/978-
3-540-68125-0\_61 (cit. on p. 178).

[300] Jessica Hullman. Why Authors Don’t Visualize Uncertainty. In: IEEE Trans. Vis.
Comput. Graph. 26 (2020), pp. 130–139. doi: 10.1109/TVCG.2019.2934287 (cit. on

p. 178).

[301] Giuliana Dehn. Visual Analytics for the Exploration of Sequential Rules. MA thesis.

University of Konstanz, 2020 (cit. on p. 178).

[302] Fabian Sperrle, Davide Ceneda, and Mennatallah El-Assady. Lotse: A Practical

Framework for Guidance in Visual Analytics. In: CoRR abs/2208.04434 (2022). doi:

10.48550/arXiv.2208.04434 (cit. on p. 178).

[303] Fabian Sperrle, Jürgen Bernard, Michael Sedlmair, Daniel A. Keim, and Menna-

tallah El-Assady. Speculative Execution for Guided Visual Analytics. In: CoRR
abs/1908.02627 (2019) (cit. on p. 178).

https://doi.org/10.1145/1557019.1557030
https://doi.org/10.1007/978-3-540-68125-0\_61
https://doi.org/10.1007/978-3-540-68125-0\_61
https://doi.org/10.1109/TVCG.2019.2934287
https://doi.org/10.48550/arXiv.2208.04434

	Abstract
	Abstract in simple language
	Zusammenfassung
	Zusammenfassung in einfacher Sprache
	Acknowledgement
	Declaration of the usage of AI
	Contents
	List of Figures
	List of Tables
	Introduction
	Contributions and Outline
	Publications

	Pattern Mining
	Definitions
	Search Spaces
	Equivalence Classes
	Curse of Dimensionality

	Interestingness Measures
	Introduction
	A complementary approach
	Taxonomy
	Use cases
	Conclusions

	Visualization Techniques for Structured Data Patterns
	Introduction
	Methodology
	Visualizations and Visual Analytics Techniques
	Comparison
	Discussion and Opportunities for Research
	Conclusions

	Visual Pattern Analytics
	Interactive Visualization
	Linking and Brushing
	Querying
	Visual Information Seeking Mantra
	Progressive Visual Pattern Analytics
	Explainable Artificial Intelligence
	Evaluating Visual Pattern Analytics

	Discussions and Conclusions
	Discussion
	Future Work
	Conclusions

	Bibliography

