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ABSTRACT

In this paper, we present a system for the interactive visualization
and exploration of graphs with many weakly connected compo-
nents. The visualization of large graphs has recently received much
research attention. However, specific systems for visual analysis of
graph data sets consisting of many such components are rare. In
our approach, we rely on graph clustering using an extensive set
of topology descriptors. Specifically, we use the Self-Organizing-
Map algorithm in conjunction with a user-adaptable combination
of graph features for clustering of graphs. It offers insight into
the overall structure of the data set. The clustering output is pre-
sented in a grid containing clusters of the connected components of
the input graph. Interactive feature selection and task-tailored data
views allow the exploration of the whole graph space. The system
provides also tools for assessment and display of cluster quality.
We demonstrate the usefulness of our system by application to a
shareholder structure analysis problem based on a large real-world
data set. While so far our approach is applied to weighted directed
graphs only, it can be used for various graph types.

Index Terms: E.1 [Data Structures]: Graphs and Networks—
[H.3.3]: Information Search and Retrieval—Clustering H.5.2 [User
Interfaces]: Graphical user interfaces (GUI)— [1.3.3]: COM-
PUTER GRAPHICS—Picture/Image Generation

1 INTRODUCTION

Visual exploration of graphs is needed in various application ar-
eas, e.g., corporate governance, supply chain management, net-
works of biologic reactions, cash-flow analysis, etc. The subsets
of entities connected to each other within the whole network cre-
ate many weakly connected components (further referred to also
as connected components or components). For example, in share-
holding network, each component represents one company holding
“structure”. When analyzing the whole economy, often the explo-
ration of the network with regard to distribution of components ac-
cording to various criteria is needed. For example, Are there cor-
porate holdings typical to the studied economy? or are there differ-
ences in the shareholding relationships between different sectors in
a given economy?. Interactive visual exploration systems can help
analyzing such networks.

The visualization of large graphs (with tens of thousands of
nodes or more) has recently received much research attention
[2, 14, 19], and results of it have been applied to visual analysis
of large network data sets from different domains. However, only
few specialized approaches are available for visual exploration of
graphs with multiple components [17, 20]. They usually use pack-
ing algorithms for non-overlapping and space efficient layout of
graph components. These approaches, however, disregard similari-
ties between the components.
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In this paper, we present a novel system for the interactive visu-
alization and exploration of graphs with many connected compo-
nents. Our approach follows Keim’s visual analytics Matra “Anal-
yse First — Show the Important — Zoom, Filter and Analyze Fur-
ther — Details on Demand” [31]. We use clustering of connected
components for gaining overview of the prototype subgraphs in
the network. The Self-Organizing Map (SOM) algorithm is used
as it offers robust clustering and is well suited for visualization.
The SOM cluster analysis is driven by a rich set of topology-based
graph features, which can be interactively selected and combined
by the user. Depending on the feature selection, different insights
into the dataset can be produced. Our system offers exploration
of the graph space by interactive visualization of the clustering re-
sults and clustering quality. Furthermore it offers the possibility of
saving and loading of clustering results using different clustering
parameters and user-defined annotations of the process. It supports
reproducibility of the analysis and insights gained.

The remainder of this paper is structured as follows: Section 2
reviews related work on visualization of large graphs and of discon-
nected graphs. In Section 3, we introduce the overall architecture
of our proposed visual graph analysis system. Section 4 recalls the
SOM clustering procedure, and introduces our set of graph features
we use for clustering. Section 5 describes the main visualization
and interaction concepts proposed for exploration of the discon-
nected graph space. Section 6 discusses an application of the tech-
nique to German shareholder network. Finally, Section 7 concludes
and discusses options for future work.

2 RELATED WORK

The visualization of large graphs is one of the main research areas in
information visualization. In this section, we introduce some of the
layout algorithms for large graphs and then concentrate on visual-
ization of graphs with multiple components. Approaches applying
SOM in connection with graph visualization are also discussed.

In the following we recall several layout algorithms, however
our goal is not to elaborate on the wide variety of approaches. A
general overview of graph visualization techniques can be found
in [24]. For visualization of large general graphs many different
approaches have been used, e.g., [19, 27, 1, 35, 23, 18, 2]. They
often include the assessment of graph topology (by graph features)
for a better layout of the graphs. Large graph visualizations often
use data reduction techniques such as clustering [9, 34], filtering
[37], multi-scaling [3] or edge bundling [25, 14]. Grouping of com-
ponents has been addressed by Cohen and Deschamps [13]. They
use minimal paths between components for finding complete curves
from a set of edge points for image analysis. The visualization of
graphs with multiple components uses “packing”, i.e., it lays out the
components so that they do not overlap and are space efficient. For
example, Dogrusoz [15] compares various two-dimensional pack-
ing algorithms for graphs which use the representation of graphs by
their bounding rectangles. They include strip packing, tiling and
alternate-bisection. The polyomino algorithm [17] of Freivalds et
al. uses polyomino representation of the graph objects which sub-
stantially reduces the unused display space in comparison to rectan-
gular shapes. Goehlsdorf et al. [20] introduce new quality measures
to evaluate a two-dimensional placement which yields more com-
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Figure 1: Architecture model of our system for visual analysis of graphs with multiple components.

pact layouts than the previously mentioned approaches.

The usage of self-organizing maps for graph drawing has been
introduced by Meyer and Bonabeau. Meyer [39] described the
so called ISOM layout, which is an extension of self organization
strategies for drawing undirected graphs. Bonabeau applied SOM
to laying out large graphs in 2D [7] and to multi-dimensional scal-
ing of large graphs [6]. However, all these approaches are primarily
developed for visualizing connected graphs. Prieto et al. [44] use
SOM for the visualization of the evolution of a web-based social
network. According to the authors, owing to the simple graph de-
scription using the graph adjacency matrix, their approach is con-
strained to graphs with a maximum of 500 edges. Their focus is the
visualization of time-variation of the network. SOM-based cluster-
ing for graph matching has been used by Gunter and Bunke [21].
They use edit-based graph distance for the recognition of handwrit-
ing. However, this approach has not been applied to general graphs
and moreover, their work does not include visualization of cluster-
ing results. Neuhaus and Bunke [40] also uses SOM with graph
edit cost for graph matching applying the approach to numerically
labeled graphs.

In comparison to the approaches presented above, we offer a
clustering of connected components according to their topologic
properties and interactively explore the results.

3 INTERACTIVE GRAPH CLUSTERING PROCESS

Clustering is an important data analysis technique. It supports the
examination of large amounts of data by abstraction to a limited
number of data prototypes describing groups of data and providing
overview of the whole dataset. We now present our system for vi-
sual analysis of graphs with multiple connected components using
SOM clustering based on feature description of the components.
The clustering-based graph analysis process (cf. Figure 1) starts
with partitioning the whole input graph into its weakly connected
components. Each extracted component is described by a set of
topologic features creating a feature vector data set (cf. Section
4.2.1). The summary table of the feature data set or the whole fea-
ture vector data set can be explored using various views (e.g., using
multivariate visualization techniques such as parallel coordinates).
The following feature selection step is supported by a user interface
for interactive weight adjustment (cf. Section 4.2.2). The selected

feature set is used as input for calculating similarity between com-
ponents during clustering. After choosing the SOM clustering pa-
rameters, SOM clustering is performed (cf. Section 4.1). The clus-
tering results are shown using interactive visualization techniques
described in Section 5.1. The subsequent assessment of the cluster-
ing quality is supported by interactive exploration of the results as
well as by calculation of the SOM quality measures and their de-
tailed display (cf. Section 5.2). During the whole process, the sys-
tem supports to add user annotations to each analytic step. These
annotations can be used to capture parameter decisions made, or
intermediate analysis results obtained while working with the sys-
tem. The results of the process (input and output data, annotations
and parameters) are stored, supporting reproducibility and compar-
ison of results. The feedback loop allows to change the parameters,
switch between process stages and views and thereby create new
results and insights.

4 GRAPH FEATURES AND GRAPH CLUSTERING

In this section our approach to clustering of large disconnected
graphs is described. As a starting point, graphs with large amounts
of weakly connected components are assumed. Each component
is described by a set of features which are used to determine
the similarity between graphs. We employ the well-known Self-
Organizing-Map algorithm as the clustering technique of choice.
The SOM method is described in Section 4.1, while features used
are introduced in Section 4.2.

4.1 Clustering Approaches and Self-Organizing Maps

To date, many clustering techniques relying, e.g., on centroid or
medoid-based approaches, hierarchical or density-based models,
have been proposed [30, 28, 22]. While they differ in the way the
clusters are obtained, most algorithms rely on an implementation of
a similarity function defined over the set of data elements which are
to be clustered. Transformation-based approaches such as the Edit-
2 Distance for undirected acyclic graphs [48] calculate the distance
between graphs as the sum of costs when efficiently transforming
one graph into the other. Feature-based approaches such as the
graph histogram technique [42] capture important data attributes in
form of a vector or histogram. Consequently, distances between



data elements are calculated using vector-space or histogram dis-
tance functions. In this paper, we employ the latter technique.

The Self-Organizing Map algorithm (SOM) [32] is a neural net-
work learning algorithm with a strong disposition for visualization
[47]. A network of prototype vectors is iteratively trained to repre-
sent a set of input data vectors in linear run time. The network is
often assumed to be a 2-dimensional regular grid. During training,
the algorithm iterates over the input data vectors. For each input
vector, it finds the best matching prototype, and adjusts it as well
as a number of its network neighbors toward the input vector. In
the course of the process, the considered neighborhood size and the
strength of the adjustment process (learning rate) are reduced. The
training results in a set of prototype vectors (or clusters) represent-
ing the input data. In addition, the low-dimensional arrangement
of prototypes on the network yields a topological ordering of the
prototype vectors, approximating the topology of data samples in
original data space.

SOM analysis has previously successfully been applied to many
different data types including documents [26], audio [45], and im-
ages [5]. In this work, we apply SOM cluster analysis based on fea-
ture vector descriptions of the graphs in our data set. In our current
implementation, we use the SOMPAK [33] engine together with
typical rule-of-thumb training parameter settings recommended for
initial SOM clustering [33]. Specifically, we use a 8 * 6 rectangular
SOM lattice with bubble neighborhood kernel. Other SOM lattice
sizes and training parameters can be interactively user-specified.

4.2 Graph Features

For SOM analysis, we describe a graph structure by a set of ap-
propriate graph topology properties (features). The selection of
features, in general, depends on the type of network (directed vs.
undirected, weighted vs. unweighted, with vs. without node labels,
with vs. without node weights etc.) Moreover, the network seman-
tic plays a role when defining the set of graph features to use. For
instance, the sum of all weights on incoming links in shareholder
networks should always sum up to 100% and is therefore not infor-
mative. In contrast, the same measure in flow networks illustrates
the flow strength through the nodes.

4.2.1 Definition of Graph Features

Based on graph topology literature [11, 4, 8, 46, 12, 42] we chose
a set of graph features referred to as important for weighted di-
rected graphs. We categorized our supported features into general
features, degree distribution features, distance features, reciprocity
features, clustering features, and motif-based features. We briefly
introduce each feature set in the following. For detailed definitions
of features in each set, we refer to the above-mentioned literature.

1. General features measure general properties of a network.
Examples include the size of a network (number of nodes),
the degree of completeness (number of links relative to the
number of possible links), the average edge weight.

2. Reciprocity features in a directed network indicate whether
node links are reciprocal, meaning that if there is a link from
nodes A to B, then there exists also a link from nodes B to
A. The set includes (weighted) reciprocity and the correlation
coefficient of the adjacency matrix.

3. Distance features measure lengths of paths between nodes in
a network, e.g., diameter of a graph.

4. Clustering features measure the probability that two nodes
that are neighbors to a third node, also share a link be-
tween each other. Different measures of clustering coeffi-
cients (weighted, in/out-clustering, etc.) can be used.

5. Degree distribution features show the division of nodes ac-
cording to their (in/out)degree. The features include aver-
age/maximum relative node degree, relative number of loops,
relative number of leaves, and relative number of roots. Ad-
ditionally, degree correlation/assortativity can be used.

6. Motif-based features measure structural properties of graphs
by the frequency of certain predefined substructures (motifs)
occurring in the given graph. Analysis of many network struc-
tures, such as biological or company networks, is assisted by
examining the occurrence of certain motifs. In particular, in
shareholder structure analysis, these motifs allow to describe,
e.g., companies with many subsidiaries (out-star motif), or
structures leading to strengthening the voting power in a com-
pany via holding shares in third companies (feed-forward or
caro motifs). Figure 2 shows the set of considered motifs.

The introduced features do not cover all possible graph types and
all graph domains and therefore can be extended according to the
particular graph type and the use case. For example, for labeled
networks, features describing label distribution can also be used, or
in other cases, centrality features may be relevant as well. All the
above-mentioned features have their strengths and weaknesses for
different analysis domains. The particular set will be determined
by the given analysis task and can be selected interactively (see the
following section).

We note that the time complexity of the feature extraction typi-
cally depends on number of connected components, the size of each
component, and the given type of feature. The calculation often can
be accelerated by using parallel processing techniques. As the fea-
ture calculation could be done offline and only once for each graph
and feature, also more expensive features can be considered, given
the available resources.

PR

Figure 2: Selected graph motifs. a) Caro, b) Feedback, c) Feedfor-
ward, d) Bipartite, e) Out-star and f) In-star.

4.2.2 Normalization and Selection of Features

The selection of features, their normalization and weighting influ-
ences the result of the SOM clustering. Depending on the type of
network, use case and user task at hand, an appropriate combination
of graph features needs to be formed. We would not like to offer
a predefined set of selected features (based on our experience), but
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Figure 3: User interface for selection and weighting of features in-
cluding a feature correlation matrix.



K4RL U. GEORG HERMAN.

EoY LTHUMCA’HUNS ¢ DICTANRS SOFTWARE AC COMPECX SYTEMHAVS

N

. .

SCEUE12, OHAN LUDW, $TATEC BAGHUTNTECHR!  FBL0TE UND PARTIER
N
'/r o ot j
1

AN

AN

Figure 4: Visualization of SOM clustering results (center). Each cell contains the nearest neighbor graph, while the background color indicates
the frequency of the cluster elements at each cluster. Along the cluster map, several member views showing a set of nearest cluster members
is shown. The member views allow interactive exploration of graph clusters.

offer the user the possibility to interactively select a suitable feature
set (see the following paragraph) based on a particular use case.

We support interactive selection and weighting of features via
the user interface depicted in Figure 3. A set of sliders allows to
set weights for each implemented feature. The sum of weights is
normalized to 1.0 and changing of a weight of a feature influences
the weights of the other features so that the sum stays constant. This
allows to create variable user-preferred weighting schemes.

The user interface includes a heatmap visualization of the cor-
relation matrix of the respective features, which helps in selecting
features, e.g., the most orthogonal (uncorrelated) ones. The manual
feature selection is assisted by simple tools that assess the feature
relevance and suggest the user to include or exclude them from the
set. The weights of features with zero variance are automatically
preset to zero. The features that are highly correlated with many
other features are proposed to be excluded from the analysis. More
sophisticated semi-automatic feature selections (see [38]) will be
included in the future.

All features are normalized in order to allow an easy proportional
weighting. The normalization is based on graph theoretical aspects.
Each feature score is calculated as a fraction of the actual value of
the feature, relative to the theoretic maximum value. This yields a
[0, 1]-normalization, which generally gives good results in the SOM
clustering according to our observation. Note, another way would
be to use the expected value of each feature in random graphs for
feature normalization (instead of its maximum theoretic value).

5 INTERACTIVE VISUALIZATION

In this section, our approach for the interactive visualization of the
results of SOM clustering is presented. The results are displayed in
a SOM grid and interactive functions allow further exploration of
the data space. The assessment of clustering quality is supported by
interactive views and calculation of quality metrics.

5.1 Visualization of Clustering Results

The SOM algorithm, equipped with discriminative features, usu-
ally provides meaningful results, showing an effective overview of
the types of graphs in the data space. The clustered results are vi-
sualized by showing one representative graph for each cluster on
the SOM grid. The representative is chosen as the nearest neigh-
bor sample graph to the respective SOM prototype vector. Figure
4 (center) illustrates a graph cluster map. The background color of
each SOM grid cell indicates the relative size of the cluster, mea-
sured by the number of sample graphs matched, relative to the max-
imum number of samples at any SOM grid cell. For large SOM
grids, the size of the grid cell can be very small which influences
the readability of the displayed graphs. In this case, either the rep-
resentative graph may be shown on demand in an extra view or
hierarchic SOMs can be used.

In order to explore the members of individual clusters, the cluster
elements are displayed on demand in a so-called member view. Fig-
ure 4 illustrates member views of several graph clusters, arranged
around the cluster map. For clusters with a large number of mem-
bers (hundreds, thousands), it is possible to visualize the distance
distribution or feature distribution of the cluster (see next section)
and explore parts of the clusters on demand. Large clusters can
also be used as an input for subsequent clustering. This allows for
refinement of the clustering results as illustrated in Figure 5.

The visualization of a connected component in the grid employs
node-link diagrams with edge width corresponding to the edge
weight and arrows showing the edge direction (cf. Figure 4). As
the development of a new layout algorithm was not in the focus of
the work, standard layouts provided by JUNG [41] were included
for visualization of the graphs. The choice of the applied layout is
user dependent. It should however support an easy comparison of
graphs in the SOM grid. In our case, this works nicely however it
cannot be generalized.

The visualization of clustering results is additionally supported



T

~

£ 5

el

T Wt |

Frge Bh

Sy

\’\‘i g/ j,r

St
~ RACIEYAS
A A R u-‘.,L,\Ti
~ A B [T

A

Figure 5: Refinement of SOM. The figures on the top show the SOM
grids created by clustering members of the cells in the initial SOM on
the bottom of the picture.

by display of so-called component planes (cf. Figure 6). This view
shows the distribution of the individual features in the resulting
SOM matrix. It shows the values of each feature characterizing
the cluster center across the SOM grid. The values are displayed
as a heatmap. For example, the component plane for the graph size
feature (top left), shows that bigger graphs are concentrated in the
right up corner of the SOM grid and smaller in the left lower cor-
ner. On demand, the values of a selected feature are displayed as
the background color of the SOM grid cells.
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Figure 6: Visualization of component planes.

5.2 Visualization of Clustering Quality

In order to assess the quality of the clustering, several interactive
views on the results and calculation and visualization of cluster-
ing quality measures are provided. The distance distribution view
shows the distribution of distances between cluster elements and
the respective cluster center (cf. Figure 7). In this view, we can see
that the SOM clustering provides very good results, as most of the
graphs assigned to a cluster are very close to the cluster center and
only few outliers with larger distances appear. The outlier graphs
are displayed in a member view, where the background color cor-
responds to the distance to the cluster center. For comparison, the

cluster representative is shown as well (the top left graph).

Figure 7: The distribution of distances between cluster members and
cluster center are displayed in form of a histogram. The cluster out-
liers together with cluster representatives are displayed in a separate
window on demand, by clicking on the respective histogram bar. Dis-
tance to the center is mapped to the background color.

The display of feature distributions for the members of the clus-
ter shows the range and frequency of graph features in a selected
cluster. Together with the graph distance view (cf. Figure 7), it al-
lows to spot outliers in the clusters and assess the overall quality
of the clustering. On demand, an overview of the cluster members
across the feature distribution or parts of the histogram can be dis-
played for detailed analysis of the cluster (cf. Figure 8).
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Figure 8: Feature distribution for a particular cluster. An overview of
the cluster, showing representant graphs from all parts of the distri-
bution, is displayed in a pop-up window.

In addition to the previous views, the system provides the as-
sessment of clustering quality by various measures. The cur-
rently used measures follow proposals from various surveys, e.g.,
[43, 36, 29, 16]. The overview of the measure values together with
the distribution of a selected measure across the SOM grid are dis-
played (cf. Figure 9 for an illustration). This allows for a quantita-
tive assessment of the SOM quality and detailed inspection of the
quality measure values across SOM cells.

6 APPLICATION

We discuss an application of our system on data of the German
corporate shareholding network. Section 6.1 introduces the used
data set. Section 6.2 then demonstrates the effect of selecting dif-
ferent feature sets for clustering. Section 6.3 illustrates a corporate
structure analysis scenario. Note that, in the following analysis, the
chosen SOM grid size is 8 * 6 as it offers reasonable results.
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Figure 9: Visualization of selected SOM quality measure.

6.1 Shareholder Structure Data Set

Shareholding relationships between companies in an economic sys-
tem can be regarded as a directed network with nodes representing
companies, and weighted, directed edges representing the “holds-
shares-in” relationship between corporations. We consider the
Amadeus database [10], which contains financial and ownership
data on German corporations. The shareholding relationships are
provided as tables with lists of companies and private persons hold-
ing shares in a company and their amount. The shareholding graph
extracted from the database contains more than 300,000 entities.
The graph contains one very large connected component with more
than 115,000 nodes (135,000 edges), one graph with more than
20,000 nodes and around 40,000 smaller weakly connected com-
ponents with up to 110 nodes each. For the application, we con-
centrate only on the part of the data without the two largest com-
ponents. These components form two separate clusters and can be
analyzed separately using specialized graph exploration techniques.

6.2 Interactive Data Analysis

Graph visualization using SOM clustering can be applied to the
analysis of structure types formed in an economic system. The
SOM grid (cf. Figure 4) shows that the shareholding structure sizes
in Germany vary from simple 2 node graphs (bottom left corner)
to more complex larger graphs (top right corner). The star-shaped
graphs are the most important corporate structures, having the high-
est frequency and occupying multiple cluster centers (with varying
graph sizes). The member views allow detailed analysis of individ-
ual companies with similar structures.

For the analysis of the data set, we rely on interactive feature se-
lection while using a constant SOM grid size. Changing of feature
sets in combination with SOM clustering leads to various views on
the data set. These views show the distribution of types of compo-
nents. It shows which subgraphs are frequent in the data set and
which are exceptional under the given feature set. In the following
paragraph we describe our findings from the shareholder data set.

Figure 10a shows a SOM produced using only the number of
nodes as a graph descriptor as a first naive approach. From top-left
to bottom-right, graphs of increasing size are arranged on the map.
It already reveals what sizes of shareholder structures there are in
the dataset. Subgraphs with up to 6 nodes are very frequent. Then,
with a gap, larger graphs occur.

Figure 10b shows a map obtained by extending this feature by
the graph completeness. In effect, the initial coarse SOM layout
is refined by accommodating more differentiation regarding a no-
tion of the graphs’ complexity. The result shows that the larger the
company structures are the more complex is the relationship within

them. Small holdings consist mainly of many shareholders of one
company and larger include more interwoven cross-holdings.

Finally, Figure 10c shows the usefulness of the feature control-
ling for number of loops in the graph for extracting extraordinary
examples of companies holding directly shares in themselves. This
phenomena is unexpected. It can be either an outlier, a data qual-
ity problem or an interesting company structure which should be
reflected in the subsequent detailed analysis.

6.3 Sectoral Analysis of Corporate Structures

The presented approach can be used also for comparison of corpo-
rate structures among several geographic regions (e.g., USA, Ger-
many, Italy etc.) or for comparison of industries, types of compa-
nies, etc.. In this paper, we have analyzed the German industries.
In the dataset, each company is categorized into industries accord-
ing to the Statistical Classification of Economic Activities in the
European Community (NACE). We have used the top level of the
classification for the distribution of the company structures into 17
industry categories. In order to compare the types of companies
across German industries, we have applied the SOM clustering and
visualization to the sets of companies in each industry. The results
for the three largest industries using the same set of features are pre-
sented in Figure 11. In general, the structural distribution, although
having variable layout, is similar to the whole economic system (cf.
Fig. 4). Especially, the star-shaped corporate structures appear to
be the most frequent in all subsets. However, it can be seen that ex-
tended star-shaped structures occur only in manufacturing (cf. Fig.
11a). These star-shaped structured are more complex and seem not
to be captured in the other sectors.

7 CONCLUSIONS AND FUTURE WORK

In this paper, we described a novel approach to the visual analy-
sis of graphs with many components. The approach is based on an
effective combination of adaptive graph clustering and rich visual-
interactive facilities for data exploration. Interactive feature selec-
tion for flexible clustering with visual output, and assessment of
clustering quality provide comprehensive visual cluster analysis for
graph data. The reproducibility and comparability of cluster results
is supported by storing analysis parameters and user annotations.

The analysis of large graphs with many weakly connected com-
ponents is essential in various application areas, e.g., corporate gov-
ernance, supply chain management, networks of biologic reactions,
or cash-flow analysis. We have applied our system on a large data
set of German corporate shareholding networks as an example use
case.

In the future, we will extend the system for supporting compari-
son of results using also different clustering methods (e.g., k-means,
hierarchic clustering). We plan to extend the standard SOM algo-
rithm with a hierarchic version, to provide efficient clustering even
in presence of very large data sets and weighting of cluster sizes.
We would like to introduce functionality for comparisons of vari-
ous cluster results and enhance semi-automatic feature selection by
using statistic approaches (see [38]). Our system should also be ex-
tended by features for other graph types, e.g., labeled graphs (for
example biologic reactions). The visualization can be enhanced by
a specialized layout supporting comparison of graphs. The sensi-
tivity of our approach w.r.t. various graph data sets, and input pa-
rameters will be studied.
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