
Visual Cluster Analysis of Trajectory Data With Interactive Kohonen Maps
Tobias Schreck∗

Interactive Graphics Systems Group
TU Darmstadt, Germany

Jürgen Bernard†

Interactive Graphics Systems Group
TU Darmstadt, Germany

Tatiana Tekušová‡

Interactive Graphics Systems Group
TU Darmstadt, Germany

Jörn Kohlhammer§

Fraunhofer Institute for Computer Graphics IGD
Darmstadt, Germany

ABSTRACT

Visual-interactive cluster analysis provides valuable tools for ef-
fectively analyzing large and complex data sets. Due to desirable
properties and an inherent predisposition for visualization, the Ko-
honen Feature Map (or Self-Organizing Map, or SOM) algorithm
is among the most popular and widely used visual clustering tech-
niques. However, the unsupervised nature of the algorithm may
be disadvantageous in certain applications. Depending on initial-
ization and data characteristics, cluster maps (cluster layouts) may
emerge that do not comply with user preferences, expectations, or
the application context.

Considering SOM-based analysis of trajectory data, we propose
a comprehensive visual-interactive monitoring and control frame-
work extending the basic SOM algorithm. The framework imple-
ments the general Visual Analytics idea to effectively combine au-
tomatic data analysis with human expert supervision. It provides
simple, yet effective facilities for visually monitoring and interac-
tively controlling the trajectory clustering process at arbitrary levels
of detail. The approach allows the user to leverage existing do-
main knowledge and user preferences, arriving at improved cluster
maps. We apply the framework on a trajectory clustering prob-
lem, demonstrating its potential in combining both unsupervised
(machine) and supervised (human expert) processing, in producing
appropriate cluster results.

Index Terms: H.4 [Information Systems]: Information Sys-
tems Applications; I.3.6 [Computing Methodologies]: Computer
Graphics—Methodology and Techniques.

1 INTRODUCTION

Cluster analysis is a process for structuring and reducing data sets
by finding groups of similar data elements [7]. It is regarded as one
of the core tools to effectively analyze large data volumes. This
process is usually unsupervised: Up to parameterization, most al-
gorithms work fully automatic and the user has no further means
to determine the clusters. However, only appropriate clusterings
effectively support the user in analyzing large data sets. Visual
cluster analysis is a specialization of general cluster analysis and
relies on the appropriate visualization of clusters. Some of the most
popular approaches perform a spatialization of the cluster centers
to display space, trying to preserve essential relationships among
the clusters, while visualizing additional data properties such as the
number of represented data items or measures of cluster quality. To

∗e-mail: tobias.schreck@gris.informatik.tu-darmstadt.de
†e-mail: juergen.bernard@gris.informatik.tu-darmstadt.de
‡e-mail: tatiana.tekusova@gris.informatik.tu-darmstadt.de
§e-mail: joern.kohlhammer@igd.fraunhofer.de

date, the Self-Organizing Map (SOM) algorithm [14] proposed by
Kohonen is one of the most popular visual cluster algorithms. It ef-
fectively combines clustering and spatialization by learning cluster
prototypes located on a grid structure embedded in low dimensional
space. However, to the best of our knowledge none of the existing
SOM implementations allows the user to monitor and steer the clus-
tering process using visual-interactive means.

In this paper, we focus on trajectory data, which is a ubiqui-
tous type of data important in many applications. For instance,
enabled by tracking technology, it is possible to routinely collect
large amounts of geo-referenced movement data. Also, trajectories
consisting of observation sequences in arbitrary vector spaces, e.g.,
time-dependent observations in 2D diagram space can be regarded.
Visual analysis in the trajectory data domain often faces very large
data sets, which cannot be visualized effectively per se. Trajectory
cluster analysis is a promising option to this end. In previous work
[18], we applied the SOM algorithm to visually analyze sets of tra-
jectories observed in diagram space (cf. Section 3). We observed
that the fully automatic cluster analysis may yield meaningful clus-
ter spatialization. However, we also recognized that there is a need
to more closely integrate the expert user in the clustering process.

Based on these observations, we propose to extend the automatic
(unsupervised) SOM algorithm by a visual-interactive control and
analysis framework. The framework allows the analyst to guide the
otherwise purely automatic Self-Organizing Map algorithm toward
resembling user-defined trajectory cluster maps. Thereby, it allows
the user to factor in domain knowledge, application needs, and user
preferences. The framework allows the user to visually monitor and
understand the otherwise black-box clustering process, and control
it at an arbitrary level. The user can use it to obtain appropriate
cluster maps from the full spectrum of maps generated either com-
pletely unsupervised or completely supervised.

2 RELATED WORK

This work relates to a number of research strands. In general, this
work follows the Visual Analytics idea of integrating automatic
data analysis with human expertise, relying on visual-interactive
means [19, 13]. Cluster analysis is one key data mining technique
of which many automatic approaches exist [12, 11, 7]. Clusters
may be found e.g., by centroid or medoid-based approaches, hier-
archical models, or density-based approaches. Visualization is of-
ten key to understand otherwise possibly abstract clustering results.
While certain clustering approaches implicitly yield visual repre-
sentations (e.g., dendrograms or 2D mappings), for many other
clustering techniques, appropriate visual representations need to be
constructed as a post processing step. Projection-based approaches
are common to this end [8, 5]. The Kohonen Map (SOM) algorithm
[14] is a well-known approach suited for analysis of large volumes
of high-dimensional data. The algorithm basically combines clus-
tering and projection, and it is very amenable to visual analysis
of high-dimensional data [21]. Its effectiveness has been demon-



strated by its application on many different data types [9, 16, 4, 3].
The SOM may also be used in combination with other visual data
analysis approaches. In [6], it has been integrated with several com-
plementary visualizations, allowing the analysis of data showing
high-dimensional as well as spatio-temporal characteristics.

Trajectory data lately has attracted much research interest. Due
to advances in sensor and other techniques, increasingly large
amounts of trajectory data arise, and consequently, techniques for
their analysis are being developed. Trajectory data may be observed
in real-world coordinates on various scales [1, 10]. Also, trajec-
tories may be regarded in more abstract spaces, e.g., 2D diagram
space [18]. Trajectory mining research considers analysis and de-
scription of important properties in trajectory data. Of primary con-
cern are methods to define appropriate similarity functions to query,
compare, and cluster trajectories [2, 17], and support the detection
of interesting patterns [20].

3 SOM-BASED CLUSTERING OF TRAJECTORY DATA

In this section, we discuss the clustering of trajectory data using
Self-Organizing Maps. We briefly recall the basic mechanism of the
unsupervised SOM algorithm in Section 3.1, followed by a sketch
of its application to trajectory data in Section 3.2. In Section 3.3,
we then motivate the need for integrating the user in the clustering
procedure using visual-interactive facilities.

3.1 Self-Organizing Map Algorithm
The SOM algorithm is a neural network type learning algorithm. It
iteratively trains a network of prototype vectors to represent a set
of input data vectors. The network is usually given in the form of
a 2-dimensional regular grid. During training, the algorithm iter-
ates over the input data vectors; finds the best matching prototype
vector; and adjusts the best matching prototype and a number of
its network neighbors toward the input vector. In the course of the
process, the size of the considered neighborhood and the strength
of the adjustment process are reduced.

In practice, two key effects are achieved by this process. Firstly,
a set of prototype vectors (or clusters) is obtained representing the
input data. And secondly, a low-dimensional arrangement (sorting)
of the prototypes is obtained, given by the grid structure. The main
parameterization required by the algorithm includes the initializa-
tion of prototype vectors and the specification of learning param-
eters. The latter include the duration of the training process, the
definition of the neighborhood kernel, and the degree of vector ad-
justment (the learning rate). While a number of rules of thumb exist
for the parameter setting, finding good settings for a given data set
usually requires experimentation and evaluation by the user.

3.2 Simple Trajectory Data Model for SOM Analysis
Application of the SOM algorithm to trajectory data requires a suit-
able vector representation of the trajectory data items. The vector
representation should capture relevant trajectory characteristics and
allow meaningful interpretation of vector distances as a measure for
dissimilarity of the corresponding trajectories. Generally speaking,
a trajectory feature selection problem has to be solved before the
SOM algorithm can be applied. Many different trajectory features
are candidates for a vector representation. For instance, features
such as position, orientation and direction, curvature, and changes
thereof may be considered. Also, sampling and normalization as-
pects are usually an integral part of the feature selection process.

Based on previous work [18], we consider a simple trajectory
vector representation constructed from normalized trajectory sam-
ple points. To obtain the vector representation, we first normalize
each trajectory by scaling it into the unit square [0,1]2, and then
sample n uniformly spaced (x,y) coordinates spanning the trajec-
tory from its start point to its end point. The concatenation of the
sample coordinates in their sequence along the trajectory yields the

Figure 1: Self-Organizing Map of trajectory data, trained in unsu-
pervised mode. Start and end points of trajectories are indicated by
green and red dots, respectively.

vector representation of length 2n. By definition this representation
ignores features, which might be important in certain applications.
For instance, it ignores the trajectories’ absolute positions and scale
in space, and, depending on the number of samples, may loose tra-
jectory details or introduce sampling artifacts. The key advantage
of this representation in context of this work is that it has a direct
geometric interpretation and that it can serve as the basis for visu-
alization of and interaction with cluster prototype vectors produced
by the SOM algorithm. Therefore, it is an integral component of the
framework developed in Section 4. Besides, this vector representa-
tion is simple to obtain and allows a straightforward interpretation
of vector distances.

3.3 Requirement Analysis

As an example following [18], we consider a data set from the fi-
nancial data analysis domain (cf. also Section 5.1). The data set
consists of time-dependent observations of risk and return measure-
ments of financial assets. Specifically, we consider consecutive ob-
servations in this 2-dimensional space as sample points describing
trajectories in an abstract (diagram) space. By taking daily samples
and observing whole trading weeks (Monday through Friday), we
arrive at 5 sample points and 10-dimensional trajectory vector rep-
resentations, describing the movement of asset characteristics over
time in risk×return diagram space. Figure 1 shows the reference
vectors of a 12×9 Self-Organizing Map trained from 5.500 trajec-
tories. Note that this SOM was obtained by standard unsupervised
training.

Generally, the result of the Self-Organizing Map algorithm de-
pends on input data characteristics, initialization of the map refer-
ence vectors, and the set learning parameters. For effective SOM-
based visual trajectory analysis, it is important that the overall clus-
ter map is (a) meaningfully interpretable in terms of the location of
reference trajectories, and (b) is stable with respect to data updates.
It is desirable that the position of the reference trajectories also cor-
responds to specific features and transitions of the underlying tra-
jectories. Thereby, the spatial memory of the human analyst can be
fully utilized, and meaningful interpretation can be supported even
for changing data sets. Also, the presentation of the results is made
easier if the layouts meet the common expectations of the target au-
dience. For example, it might be desirable that the left-hand side of
the SOM holds low values of the start points, while the right-hand
side holds high end values (both in terms of (x,y) coordinates of the
trajectory control points). On the other hand, it could be desirable



(a) Trajectory editor (b) User-assigned trajectories

(c) x1 (d) y1 (e) x2 (f) y2

Figure 2: Supervised initialization of the SOM prototype grid using
the trajectory editor concept. (a) An example trajectory consisting of
two control points (x1,y1) (start point; marked green) and (x2,y2) (end
point; marked red). (b) Two example trajectories specified on a 4×3
SOM grid. (c-f) Interpolated component planes for the x1, y1, x2, and
y2 components. Bright (dark) colors indicate low (high) component
values.

that the four corners of the SOM contain reference trajectories re-
sembling trajectories in diagonal direction. Standard SOM training
usually cannot guarantee this, as it performs the learning process
strictly unsupervised, and often the SOM algorithm is applied in a
“black box” manner. What is required from the user perspective are
efficient means of guiding the otherwise fully automatic learning
process toward the desired trajectory cluster layout.

4 TRAJECTORY CLUSTER MAP LEARNING FRAMEWORK

We propose a comprehensive framework for supervised-interactive
SOM-based clustering of trajectory data. It consists of three main
visual-interactive extensions to the otherwise fully automatic SOM
learning algorithm. The framework was designed to be systematic
with respect to the SOM clustering algorithm, and to incorporate
visual-interactive monitoring and control facilities considered use-
ful in guiding the clustering process.

We point out that we do not expect every single control option
discussed in this section to be required in every data analysis sce-
nario. Rather, depending on the application, an appropriate com-
bination of controls from the framework is best suited to support
achieving a given analysis goal.

4.1 Map Initialization Based on Trajectory Editor

Before the SOM training process can start, the grid of cluster pro-
totypes needs to be initialized. The initialization guides the train-
ing process, and often influences the overall layout of the emerg-
ing cluster map. In the standard approach, two initialization meth-
ods are common: Random initialization, and initialization based on
a Principal Component Analysis of the input data set [14]. Both
methods are unsupervised in nature.

We propose a more user-oriented approach to control the initial-
ization process. We base the approach on the fact that our trajectory
data representation has a straightforward geometric interpretation:
The vectors directly encode the trajectory geometry (the sequence
of trajectory control points), and can therefore be readily visualized
and manipulated interactively. To do so, we provide an interactive
trajectory editor that lets the user draw example trajectories into
chosen SOM grid positions. Reference trajectories may be input at
distinct map locations, thereby specifying a model for the overall
SOM cluster layout desired. Starting from a user-provided set of

Figure 3: Editor-based initialization of a 12× 9 SOM trajectory grid,
using 5 user-defined example trajectories (marked blue) in conjunc-
tion with weighted average interpolation. Component distributions
(x1,y1) to (x5,y5) are shown in the left panel.

example trajectories, we initialize the full grid of SOM trajectory
prototypes as follows:

• For the grid nodes for which the user has provided example
trajectories, we set the initial value of the SOM prototype vec-
tor equal to the vector representation of the drawn trajectory
(simply a sequence of (x,y) coordinates).

• For the unassigned grid nodes, we interpolate between the as-
signed example vectors.

Figure 2 illustrates the trajectory editor concept. Figure 2 (a) shows
a simple trajectory consisting of two control points: one (green)
start and one (red) end point. Figure 2 (b) illustrates a 4× 3
SOM grid, into which two example trajectories have been drawn
by the user. Interpolation of the unassigned nodes takes place on
a component-by-component basis, determined by the assigned val-
ues and an appropriate interpolation function. Figures 2 (c) to (f)
illustrate the resulting distribution of components over the SOM
grid. Consider e.g., Figure 2 (c) showing the distribution of the
x1 component over the SOM grid. The top left cell corresponds
to low value, and the bottom-right cell corresponds to high value
of this component. This is in accordance with the fact that the x1
coordinate (the x coordinate of the start point) of the two entered
trajectories is low for the top left example, and high for the bottom
right example. In this example, nearest neighbor interpolation was
used, but other schemes such as weighted average are possible.

Figure 3 shows an example of the trajectory editor for initial-
ization of the SOM prototype vectors. Five reference trajectories
were assigned by the user, and the remaining prototype vectors were
filled in by weighted average interpolation. With this concept, the
user is able to efficiently initialize a SOM prototype map with a
coarse template of a desired layout.

4.2 Online Visualization and Control of the Map Training
In the standard approach, the SOM clustering is produced by an
unsupervised training process which ends once a fixed number of
iterations has elapsed or the quantization error meets a predefined
threshold [14]. In our approach, we aim to produce SOM cluster
results that are both good with respect to quantization error, and at
the same time reflect user- or application-desired prototype patterns
and layout criteria. We therefore extend the unsupervised training
process (a) by online visualization, and (b) by control functionality.
Visualization of online training and optional user intervention are
coupled. At any time during the training, the user is able to pause
the training, update training parameters, and resume the training.



(a) Step 1 (b) Step 2 (c) Step 3 (d) NN connectors

(e) Colormap

Figure 4: Visualization of the online learning process by color-coding of the quantization error (a-c; brighter is better). Nearest neighbor
connectors (d) are an optional overlay indicating the smoothness of the trajectory pattern transitions over the trajectory map. The connectors
show the nearest neighbor relationships between the reference trajectories (shorter is better).

4.2.1 Visualization of the Training Process
Recall that in our application, the data vectors have an immediate
geometric interpretation. Therefore we are able to visualize the on-
line training process by showing a continuously updated display
of prototype trajectories. Specifically, the user can observe the ef-
fect of the provided trajectory initialization (cf. Section 4.1) on the
subsequent training process. In addition to visualizing the emerg-
ing trajectory patterns within the SOM cells, we optionally super-
impose certain cluster map quality metrics using color-coding and
nearest neighbor connectors (cf. Figure 4):

1. Color-coding of the current quantization error of the emerging
maps: For each prototype vector, we calculate the average
Euclidean distance between the prototype, and the trajectory
data samples it represents.

2. Color-coding of the average Euclidean distance between each
SOM prototype vector and its immediate prototype vector
neighbors on the grid (also known as U-Matrix color coding)
[21]).

3. Nearest-neighbor connectors indicating the nearest neighbor
relations between the SOM prototype vectors. This visual-
ization reflects the smoothness of the pattern transitions over
the map (smoother transiting prototype layouts show shorter
connectors).

By means of these visualizations, the user can observe both the
emerging organization of the pattern layout, as well as the quality
of the representation of the obtained clustering. Figure 4 illustrates
the online training visualization with snapshots of the quantization
error during training of a 12× 9 SOM of trajectories (a-c) and a
zoom into a connector display (d).

4.2.2 Control of the Training Process
The framework supports a set of interaction facilities for control of
the training process. At any time, the user can suspend the training
process and, depending on preferences and experience, exert one or
more of the following controls:

1. Adjust single prototype trajectories by directly editing them
with the trajectory editor.

2. Adjust the map by editing a selection of prototypes and re-
place the remaining prototypes by interpolating between the
selected prototypes.

3. Update the training parameters at global granularity: Adjust
the number of remaining iterations, learning rate, and neigh-
borhood kernel.

4. Manipulate learning parameters at local granularity: Set dif-
ferent learning rate and radius for selected grid cells.

5. Reinforce training of selected patterns.

These controls serve to guide the learning process toward user de-
sired results, if required. Control 4 particularly allows the specifi-
cation of smaller or even zero learning rates for selected patterns.
This allows to explicitly enforce selected patterns on the map. Con-
trol 5 is another option we implemented to smoothly place example
patterns into the map as follows. If this option is set, the system
monitors the evolution of the assigned example patterns during the
training process. Once the Euclidean distance between the proto-
type vector and the user-assigned trajectory grows too high, we re-
peatedly inject (update) the assigned prototype onto the respective
grid position with the current training parameters. This has the ef-
fect that the otherwise freely adapted patterns do not deviate too
strongly from the assigned patterns during training, and that the
map neighborhood smoothly accommodates the assigned pattern.

While options 1 and 2 are basic controls, options 3 to 5 are more
advanced controls of the training process, designed for users requir-
ing fine-grained control of the training. However, we expect that it
should also be possible to wrap the more advanced controls by easy-
to-use high-level commands, such as setting an ‘enforce this pat-
tern’ flag which can be set inside the trajectory editor. Thereby, the
more advanced options can also be easily used by less experienced
users. After updates to the training process have been manually en-
tered, training is resumed and the user can continue to observe the
effects. Usually, experimentation with different parameter settings
is required for optimizing results on a given data set and analysis
task. The experimentation process is supported by an undo opera-
tion, which rewinds the training effect of the most recent update.

Note the idea of fixing selected data vectors to given SOM grid
locations during training is not new per se. For instance, the SOM-
PAK implementation includes an option for doing so [15]. We point
out that our interactive training controls extend beyond a simple fix-
ing of vector assignments. Not only basically any training parame-
ter may be edited at runtime, but also, the reference vectors may be
interactively modified during training using the trajectory editor.

We also point out that, in principle the control framework allows
a user to produce any prototype layout desired, possibly influencing
the reliability of the obtained results. Generally, we expect that
an application- or user-dependent tradeoff will have to be found
between supervised and unsupervised training of the reference map.
Clustering quality visualization is recommended for appropriately
balancing the tradeoff between the precision of the clustering (in
terms of quantization error and nearest neighbor transitioning) on
the one hand, and supervised preassignment of the reference layout
on the other hand.



4.3 Map Postprocessing

Usually, the final trajectory map yielded by the training will be
the basis for subsequent visual analysis of the obtained clustering
and the underlying data. Depending on the nature of the analysis
task, it may be useful to post process the obtained trajectory map.
The framework therefore supports the following trajectory map post
processing interactions:

1. Merging of multiple trajectory prototypes. This allows aggre-
gation of similar prototypes and reduces the size of the map.
The new prototypes are formed by averaging the original pro-
totypes.

2. Expansion of trajectory prototypes. This allows finer grained
visual analysis of prototypes that perform too much aggrega-
tion. The expansion is achieved by training a sub map of re-
fined prototypes based on the data represented by the original
trajectory prototypes.

3. Editing, creation, and deletion of trajectory prototypes. The
user can manually edit existing trajectory prototypes, or add
new prototypes to the map using the trajectory editor. Also,
existing prototypes can be deleted from the map.

4. Swapping of prototypes. The user is allowed to rearrange the
layout of the prototypes by position swap operations.

These operations are optional, yet useful in certain situations. For
instance, manual addition of possibly non-represented, sparse pat-
terns to the map may be very helpful in situations where certain
patterns are important from the analysis perspective, but underrep-
resented in the data set and therefore, were not trained by the SOM
algorithm. Note that like manual control of the online training pro-
cess, an interactive post processing operation may incur a loss of
quantization precision or pattern transition smoothness, compared
to a SOM trained in a completely unsupervised way. Again, refer-
ring to the quality visualizations, it is left to the discretion of the
user to balance this tradeoff.

5 APPLICATION

We apply our supervised Self-Organizing Map framework on a data
set of trajectories. In Section 5.1, we describe how an unsupervised
reference SOM clustering was obtained. In Section 5.2, we then
apply our framework to produce several different target layouts,
demonstrating the functionality of the framework for generating su-
pervised clusterings.

5.1 Data Set and Unsupervised Clustering

We consider the same data set as in [18] (cf. also Section 3.2). An
unsupervised reference SOM was trained from this data set, con-
sisting of a rectangular grid of 12× 9 trajectory prototypes. The
training was done as follows. We first iterated 100 times over the
data set, initially setting the learning rate to 5% and the learning
radius to 15 using a bubble neighborhood kernel. We then refined
the map by a second run, iterating 200 times over the data set, ini-
tially setting the learning rate to 2%, and the neighborhood radius to
5. We considered both random and linear initializations of the pro-
totype vectors, obtaining both times approximately the same end
result, which is shown in Figure 1.

5.2 Supervised Clustering Experiments

We next present a series of experiments applying our framework to
produce user-guided trajectory maps. The series addresses training
runs relying on re-usage of unsupervised prototype trajectories, as
well as training user-defined abstract trajectory patterns.

5.2.1 Adaptation of Unsupervised Trajectory Map
In the first experiment, we show how the framework can be used to
adapt a given trajectory map to reflect the users’ global layout pref-
erences. Assume that the user has inspected the fully unsupervised
map shown in Figure 1. While the user agrees with the obtained
cluster prototypes, another global map layout is desired. The user
proceeds to initialize a new map by a number of example prototypes
taken from the unsupervised map. Figure 5 (a) shows the initializa-
tion: Four example trajectories were selected and assigned to the
corner regions of an initial map; the unassigned prototypes were
filled in using weighted average interpolation. Then, training using
the Self-Organizing Map algorithm takes place. To reinforce the
assigned example trajectories, control 5 described in Section 4.2.2
is applied to the preassigned reference trajectories. Figures 5 (b-
f) show how the map converges toward a stable layout. The map
layout basically represents the patterns contained also in the origi-
nal unsupervised map, but this time, also the user-intended global
cluster map layout is obtained.

5.2.2 Abstract Reference Map
In this experiment, we assume that the user is interested in a couple
of rather different, dissimilar trajectory patterns. The patterns are
assumed to carry an application-specific important meaning, and
therefore need to be reflected in the map. The analyst starts the
training by assigning these patterns. Figure 6 (a) shows the initial-
ization of a cluster map based on six abstract user-defined patterns,
along with nearest neighbor interpolation. A short training interval
consisting of a small number of iterations, in conjunction with re-
inforcement of example patterns, yields the smoothly transitioning
cluster maps shown in Figures 6 (b) and (c). The clusters adapt to
reflect the data distribution, at the same time, keeping up the types
of patterns preassigned, as well as their positions. Figures 6 (d-
f) visualize the emerging smooth transitions between the trajectory
prototypes. Overlaid by color-coding are the normalized average
distances between the prototype vectors (the second SOM metric in
Section 4.2.1).

5.2.3 Circular Flow-Like Map
As a further abstract supervised target layout, we consider a circu-
lar flow-like layout. Figure 7 (a) shows an initialization given by
eight control trajectories in conjunction with weighted average in-
terpolation. Figure 8 compares training of that reference layout on
the data set with and without reinforcement (cf. control 5 described
in Section 4.2.2) of the assigned patterns. We observe that as ex-
pected, reinforcement of the assigned patterns (top row in Figure
8) holds them fixed on the map, and adapts neighboring patterns
accordingly. Without reinforcement of assigned patterns (bottom
row in Figure 8), these too are subject to adaptation by the SOM
training, and evolve together with the overall map of reference tra-
jectories.

6 OBSERVATIONS MADE AND DISCUSSION OF LIMITATIONS

The overall goal of our SOM visualization and control framework
is to guide the otherwise unsupervised algorithm to produce maps
of user-preferred trajectory clusterings. While we did not perform a
formal user study, experience obtained from our experiments indi-
cates that the implemented visual-interactive SOM controls support
quite efficient and effective parameter setting by the user.

Usually, the more the trajectory clustering aimed at by the user
differs from the result achievable by the purely unsupervised algo-
rithm, the less aggressive the training parameters need to be set, to
retain the main characteristics of the predefinition. This is in accor-
dance with practical recommendations for SOM training, suggest-
ing to use moderate training parameters during a fine-tuning phase
after a preceding global organization phase [15] has taken place. In
our system, the global organization phase is replaced by interactive



map initialization using the trajectory editor, and the fine-tuning is
done by application of a number of interactive SOM training itera-
tions.

By controlling the training process, in the extreme case the user
is able to achieve any clustering desired, no matter how precise
(and thereby meaningful) this clustering result may be. Balancing
the tradeoff between optimizing a formal clustering quality metric
(e.g., quantization error) and the user-desired trajectory clustering,
will ultimately be the responsibility of the user. While formally
evaluating this tradeoff is considered to be difficult, we believe
the SOM quality visualization options implemented, including the
nearest neighbor connectors visualization such as illustrated in Fig-
ure 7 (b), support achieving a good tradeoff. More evaluation in
this direction is considered interesting future work.

Regarding the supported data model, our framework is appli-
cable to trajectory data of constant length described in a simple
geometry-based vector representation. Currently not included are
position- and scale-dependent geometric features, features for very
long trajectories, or more abstract and non-geometric trajectory fea-
tures. Some of these features are expected to be easy to incorporate
by an extended vector representation. Other trajectory features are
expected to be more difficult to represent by the vector model, and
also more difficult to visualize and interact with. Generally, the in-
clusion and evaluation of a richer set of trajectory features into our
framework constitutes interesting future work.

7 CONCLUSION

We defined a visual-interactive framework for guiding the other-
wise unsupervised Self-Organizing Map algorithm by a user, cus-
tomized to operate in conjunction with a simple trajectory data
model. The framework enables the user to visually monitor the
clustering process and control the algorithm at an arbitrary level of
detail. A number of interaction facilities were proposed, an integral
part of them being the trajectory editor for interactive initialization
of the clustering process, and interaction facilities to manipulate the
training parameters during runtime. The framework was applied to
a number of trajectory clustering tasks.

The framework is regarded as one step toward better fitting this
popular, yet largely unsupervised clustering algorithm toward user
supervision. A number of options for future work have been iden-
tified, including extension of the simple trajectory data model cur-
rently supported. Based on a flexible set of trajectory features, also
the implementation of a hierarchical SOM algorithm, using differ-
ent trajectory properties to organize the data on different hierarchy
levels, could be realized. To this end, appropriate interaction tech-
niques for specification of the layouts on the different levels will
have to be developed.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for provision of detailed com-
ments that were helpful in improving this work.

REFERENCES

[1] G. Andrienko, N. Andrienko, and S. Wrobel. Visual analytics tools
for analysis of movement data. SIGKDD Explorations, 9(2):38–46,
December 2007.

[2] N. Andrienko and G. Andrienko. Designing visual analytics methods
for massive collections of movement data. Cartographica, 42(2):117–
138, 2007.

[3] B. Bustos, D. A. Keim, C. Panse, and T. Schreck. 2D maps for visual
analysis and retrieval in large multi-feature 3D model databases. In
Proc. IEEE Visualization Conference (VIS), 2004. Poster paper.

[4] G. Deboeck and T. K. (Editors). Visual Explorations in Finance: with
Self-Organizing Maps. Springer, 1998.

[5] I. Dhillon, D. Modha, and W. Spangler. Class visualization of high-
dimensional data with applications. Computational Statistics and
Data Analysis, 4(1):59–90, 2002.

[6] D. Guo, J. Chen, A. M. MacEachren, and K. Liao. A visualization
system for space-time and multivariate patterns (VIS-STAMP). IEEE
Transactions on Visualization and Computer Graphics, 12(6):1461–
1474, 2006.

[7] J. Han and M. Kamber. Data Mining: Concepts and Techniques. Mor-
gan Kauffman, 2nd edition, 2006.

[8] A. Hinneburg, M. Wawryniuk, and D. A. Keim. HD-eye: Visual min-
ing of high-dimensional data. IEEE Computer Graphics & Applica-
tions Journal, 19(5):22–31, September 1999.

[9] T. Honkela, S. Kaski, K. Lagus, and T. Kohonen. WEBSOM—self-
organizing maps of document collections. In Proc. Workshop on Self-
Organizing Maps (WSOM), pages 310–315. Helsinki University of
Technology, 1997.

[10] Y. Ivanov, C. Wren, A. Sorokin, and I. Kaur. Visualizing the history of
living spaces. Transactions on Visualization and Computer Graphics,
13(6):1153–1160, 2007.

[11] A. Jain, M. Murty, and P. Flynn. Data clustering: a review. ACM
Comput. Surv., 31(3):264–323, 1999.

[12] L. Kaufman and P. Rousseeuw. Finding Groups in Data: An Introduc-
tion to Cluster Analysis. Wiley-Interscience, 1990.

[13] D. Keim, F. Mansmann, J. Schneidewind, J. Thomas, and H. Ziegler.
Visual Analytics: Scope and Challenges. Springer, 2008. Lecture
Notes in Computer Science (LNCS).

[14] T. Kohonen. Self-Organizing Maps. Springer, Berlin, 3rd edition,
2001.

[15] T. Kohonen, J. Hynninen, J. Kangas, and J. Laaksonen. Som pak:
The self-organizing map program package. Technical Report A31,
Helsinki University of Technology, 1996.

[16] J. Laaksonen, M. Koskela, S. Laakso, and E. Oja. PicSOM—content-
based image retrieval with self-organizing maps. Pattern Recogn.
Lett., 21(13-14):1199–1207, 2000.

[17] N. Pelekis, I. Kopanakis, G. Marketos, I. Ntoutsi, G. Andrienko, and
Y. Theodoridis. Similarity search in trajectory databases. In Proc. Int.
Symposium on Temporal Representation and Reasoning, 2007.

[18] T. Schreck, T. Tekušová, J. Kohlhammer, and D. Fellner. Trajectory-
based visual analysis of large financial time series data. SIGKDD
Explorations, 9(2):30–37, December 2007.

[19] J. Thomas and K. Cook. Illuminating the Path: The Research and
Development Agenda for Visual Analytics. IEEE Computer Society,
2005.

[20] A. Tietbohl, V. Bogorny, B. Kuijpers, and L. Alvares. A clustering-
based approach for discovering interesting places in trajectories. In
Proc. ACM Symposium on Applied Computing, Advances in Spatial
and Image-Based Information Systems Track, 2008.

[21] J. Vesanto. SOM-based data visualization methods. Intelligent Data
Analysis, 3(2):111–126, 1999.



(a) Initialization (b) 2 iterations (c) 4 iterations

(d) 6 iterations (e) 8 iterations (f) 10 iterations

Figure 5: Generation of a trajectory map based on trajectory patterns re-used from a preceding unsupervised SOM training run (the re-used
trajectory prototypes are marked in red). The layout converges against the desired global layout. In each iteration, each data vector from the
data set was used once to update the cluster map.

(a) Initialization (b) 1 iteration (c) 2 iterations

(d) Initialization (e) 1 iteration (f) 2 iterations

Figure 6: Trajectory map trained from six rather abstract, supervised trajectory patterns. The top row shows the prototype vectors only. The
bottom row also includes color-coding of the vector space distance between neighboring prototype vectors (cf. the second SOM metric from the
list in Section 4.2.1). Note that during training, the sharp differences between the initially assigned reference patterns are reduced in the course
of the training process.



(a) (b)

Figure 7: (a) Initialization of a circular-flow cluster map. (b) Visual inspection of the quality of a trajectory map is optionally supported by the
nearest neighbor connector visualization.

(a) 1 interation (b) 2 interations (c) 3 interations

(d) 1 interation (e) 2 interations (f) 3 interations

Figure 8: Training based on the circular supervised reference layout from Figure 7 (a), using reinforced reference patterns (top row) and free-
floating patterns. Like the bottom row of images in Figure 6, the color-coding indicates the average distance between SOM prototype vectors.
The visualization indicates that several different trajectory regions evolve. The reinforced map shows larger differences between trajectory
regions; specifically, the reinforced patterns produce larger differences to their neighborhood trajectory patterns.


