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ABSTRACT
Adverse reactions to drugs are a major public health care
issue. Currently, the Food and Drug Administration (FDA)
publishes quarterly reports that typically contain on the or-
der of 200,000 adverse incidents. In such numerous incidents,
low frequency events that are clinically highly significant of-
ten remain undetected. In this paper, we introduce a visual
analytics system to solve this problem using (1) high scalable
interfaces for analyzing correlations between a number of
complex variables (e.g., drug and reaction); (2) enhanced
statistical computations and interactive relevance filters to
quickly identify significant events including those with a low
frequency; and (3) a tight integration of expert knowledge
for detecting and validating adverse drug events. We applied
these techniques to the FDA Adverse Event Reporting Sys-
tem and were able to identify important adverse drug events,
such as the known association of the drug Avandia with
myocardial infarction and Seroquel with diabetes mellitus,
as well as low frequency events such as the association of
Boniva with femur fracture. In our evaluation, we found over
90% of the adverse drug events that were published in the
Institute for Safe Medication Practices (ISMP) reports from
2009 to 2012. In addition, our domain expert was able to
identify some previously unknown adverse drug events.

Categories and Subject Descriptors
H.5.m. [Information Interfaces and Presentation (e.g.
visual analytics)]: Miscellaneous

General Terms
Design
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1. INTRODUCTION
An Adverse Drug Event (ADE) is defined by the Institute

of Medicine as “an injury event resulting from medical in-
tervention related to a drug” [16]. Each year, about 98,000
drug-related deaths are reported in the USA. Even after a
successful clinical trial in which a drug has been cleared for
marketing to the medical community, unsuspected ADEs are
occasionally detected. This is due to the fact that the trials
are usually limited to short time periods and include only a
small number of patients. Also, the frequency of the adverse
drug events may be so low that they are not detected in the
clinical trials. For example, femur fracture (see Figure 1)
was not recognized as an adverse reaction to Boniva until
after the drug was prescribed to thousands of patients [23].

There exist several sophisticated approaches and tools for
detecting significant adverse events; however, most current
tools are primarily capable of detecting events with frequen-
cies above predefined thresholds. Thus, low frequency events
are often overlooked. The decision of significance in about
whether an event with a close-to-noise frequency is clinically
significant cannot be done by automatic systems alone. An-
other type of problem is confounding by indication. For
example, insulin is administered for diabetes. Myocardial
infarction is a common disease for patients with diabetes and
thus, detecting the event myocardial infarction for insulin is a
false positive (“confounding effect”). For automatic systems,
this domain knowledge has either to be manually included or
automatically extracted from appropriate data. The manual
approach will increase the accuracy of results. However, it
will require significant effort from both, domain experts and
data analysts. These issues (low-frequency, automatic com-
pensation for confounding effects) make this domain problem
a challenging research problem.

Our Contribution: We propose to use visual analytics
for this domain problem. The goal of this paper is to illustrate
an expert system and a means for domain experts to detect
low frequent, but significant unexpected data features in large
heterogeneous databases. In contrast to existing techniques,
we introduce a novel solution to identify and validate impor-
tant adverse drug events just above the noise level with a



Figure 1: A non-overlapping x-y pixel interface for
detecting adverse drug events (x-axis: drug name, y-
axis: adverse reaction, color: outcome, white: signal
strength). Each pixel represents one adverse drug-
reaction event, whose color encodes the outcome in
the AERS database in 2011 (3rd quarter). The vi-
sualization shows a number of known and some pre-
viously unknown adverse drug events: The known
association of the drug Avandia with myocardial in-
farction [19] occurred 1,723 times with 280 associ-
ated deaths. The association of Actos with bladder
cancer shows a high signal (white circle), which was
described in the ISMP report in 2012 [14]. Boniva
has a low frequency association with femur fracture
(41 adverse events) and 42 associated deaths [12], an
adverse drug event which has been detected by our
technique. Also, it has been recently discovered that
Pradaxa causes gastrointestinal hemorrhages result-
ing in death and hospitalization [13].

tightly integrated domain expert. We claim the following con-
tributions: 1) A visual analytics approach to access massive
volumes of events by interactive relevance filtering; 2) Detec-
tion and validation of low frequency events by enhanced sta-
tistical computations and interactive analysis; 3) Elimination
of confounding effects by using discriminative heuristics.

2. RELATED WORK
The ability to detect ADEs in patient records is essen-

tial in healthcare. Numerous detection techniques of ADEs
have been developed over the past years, such as Bayesian
classification, decision trees, category association, and data
visualization. Some of these techniques are closely related to
our work. They can be classified into two categories: data
mining and visual analytics.

Data Mining Methods: Algorithms for finding drug-
event associations typically rely on first detecting frequent
item sets in the data. Association rule-finding algorithms
have been heavily discussed in the database literature in
the past 15 years. Since 1998, the FDA [21] has been ex-
ploring automated Bayesian data mining methods using the
Multi-Item Gamma Poisson Shrinker (MGPS) program that
computes signal scores for any combination of drugs and reac-

tions that are significantly more frequent than their previous
pair-wise associations. In 2003, a review of software packages
for data mining was published by Haughton et al. [10], which
showed that SAS Enterprise Miner has the best coverage of
statistical methods.

In France, Chazard et al. [7] began to use decision trees
with associations between ADEs and potential ADE to iden-
tify adverse drug events. In 2011, Chazard et al. [6] used
a common data model including diagnoses, drug adminis-
trations, laboratory results, and text records to generate
association rules to automatically detect adverse drug events.
Chazard’s decision tree generates useful rules for physicians
to follow. In a study of 115,447 complete past hospital stays
extracted from 6 French, Danish and Bulgarian hospitals,
236 ADE-detection rules were generated and validated by a
committee of experts.

Visual Analytics: In 2003, Atherton [1] used event
charts to summarize individual patient data and to display
clinically significant changes over time. Different from tra-
ditional histograms, bar charts and plots, Chazard et al. [8]
began to use treemaps [20] to represent medical data.

The Export Explore [2] is a tool designed by Idea Adver-
tising to validate the clinical cases and the assessment of the
decision rules to detect adverse drug events. It uses tables
and charts to display diagnoses, drugs, and lab results. In
2011, Marcilly et al. [17] designed novel adverse drug-event
scorecards to provide hospitals with summary information
about adverse drug events on the web. The data used in the
Scorecards is routinely updated and report ADEs detected
by data mining processes. This work is an ongoing project
in the Department of Public Health in France.

Wongsuphasawat and Shneiderman [25] introduced Simi-
lan, an interactive tool that facilitates similarity searching
and visualization for temporal categorical data. Their plot
panel and generalized scatter plot [15] provide an overall dis-
tribution of search results to help users quickly find similar
records from temporal categorical data. They designed a new
LifeFlow system [24] to support an interactive visualization
for retrieving event sequences based on similarity for hospital
physicians to observe interesting events.

In 2012, Miselbauer et al. employed the Smart Super
Views [18], which use fuzzy logic rule visualization techniques
to enable clinicians to analyze different spatial regions in
medical images based on their domain knowledge. Miselbauer
uses a relevance driven user interface to arrange the generated
views, which is similar to our technique to determine relevant
drug-reaction pairs from huge amounts of FDA events. The
key difference is that Miselbauer selects relevant medical
images based on image recognition and we select important
relevant drug-reaction pairs according to their significance.

While existing data mining methods and visualizations
have produced useful results, they are limited by their ability
to detect signals that are well above the background noise
level and may suffer under false positive associations that
occur by chance or are due to confounding. Our method
allows a detection of ADE, which are much closer to but
above the noise level and reduces confounding effects.

3. EVENT DETECTION ALGORITHM & VI-
SUAL INTERFACES

In order to create a visual analytics system for the needs
of medical investigators, we incorporated domain experts



iteratively into the research and development process. The
two domain experts were not affiliated with the drug indus-
try, but familiar with the clinical use of drugs. They are
also familiar with ADE detection as part of post-marketing
drug surveillance, the FDA’s efforts to monitor ADEs and
traditional epidemiological studies of ADEs.

The authors and domain experts were located in different
countries and therefore, video conferences were the basis for
collaboration. Weekly one hour meetings were set up for
two months. In the first phase of our study, we discovered
the available data source and the domain problem of de-
tecting low frequency but relevant ADE. We researched the
current literature and state-of-the-art tools of the domain
and further discussed with the experts where they see po-
tential gaps and improvements. On this basis, we started
to implement fast alternative solutions with state-of-the-art
visual analysis tools to demonstrate the effectiveness of “non-
standard” visualization techniques on the domain problem.
These solutions helped in the discussions to discover con-
crete tasks and requirements and also to narrow down the
solution space. Paper mock-ups were designed to meet these
requirements and discussed with the experts. The finalized
designs were implemented in an iterative process, in which
the domain experts were weekly updated with new features
and findings. Presentations, findings, and prototypes were
carefully prepared, such that the experts could analyze and
validate findings during the meetings. In this way, we felt
that the domain experts were convinced of the tool and gave
concrete feedback. We also discovered tasks that were not
clear in beginning. The feedback from the domain experts
were carefully analyzed to enhance the system. For the final
evaluation, they were invited to test the system.

3.1 Problem Characterization and Abstraction
The FDA Adverse Event Reporting System (AERS) data

source publishes numerous adverse drug event reports in each
quarter. These reports contain demographic information
about the patient (age, gender etc.), the drug that was
used during the therapy (e.g., Avandia) and the patient
reaction (e.g., myocardial infarction). The drug-reaction pair
is considered an adverse drug event. The indication (why
the drug has been administered) and the outcome (such as
hospitalization or death) are also recorded. In each quarter
hundreds of thousands of reports are published. The large
multivariate data set is a valuable source of information
and the domain applies sophisticated automatic methods to
detect adverse drug events. However, our experts describe
that these methods often overlook low frequency events.

On the basis of the FDA data, our domain experts were
able to define concrete analysis tasks: 1) Explore relevant
adverse events of drugs and signals for “unexpected” ad-
verse reactions. 2) Explore gender and age distribution for
ADE. 3) Summarize demographic information. 4) Manual
validation of signals.

To abstract the domain problem, we see that the experts
are faced with a large multidimensional data set, where auto-
matic methods overlook low frequent correlations. Further,
correlations may lack causality or are false positives. There-
fore, the solution requires an expert validation of results. We
identified the requirements of the solution as follows: 1) In-
teractive filtering of relevant information must be supported
by automatic methods. 2) Low frequency events must be
detected by automatic methods. 3) Visual interfaces and

Figure 2: Visual Analytics process for detecting low
frequency adverse drug events.

analysis techniques must highlight relevant candidates and
compensate for the bias of inconsistencies and false positives
(confounding effects). 4) Enable manual validation of events
by providing the full record of events in the database.

3.2 Concept and Idea
Based on the given tasks, requirements, and the assump-

tion that automatic methods are outperformed by human
experts, we decided to integrate the analyst as soon as possi-
ble in the analysis process. The complexity of the task has
to be reduced into several steps (as illustrated in Figure 2):
First, the entry point for the analysis is to be found and
relevant information is extracted from the database. Our sys-
tem enables exploratory (without hypothesis) and hypothesis
driven approaches where an initial set of target drugs is se-
lected. Relevant drug-reaction events are carefully separated
from the noise level in order to reduce complexity. In the
second step, statistical measures and heuristics are applied
to identify significant adverse drug events. All drug-reaction
events are then visualized in an x-y plane interface, where
significant events are highlighted. The pixel-based interface
enables the user to filter and drill down interactively in order
to validate events or to form new hypothesis and thus, the
user may start the process again.

3.3 Filtering of Relevant Events
In order to exclude confounding effects and to identify

significant adverse events, the selected drugs should ideally
be administered for the same indication. This can be done by
querying for the most frequent co-occurring indications for
drugs and vice versa from the AERS data base. The results
are represented to the user for further refinement. Thus,
drugs can be selected by: 1) Drug class: defined by domain
experts; 2) indication: drugs that are administered for
the same indication are determined automatically (querying
for the drugs that co-occur frequently with the selected
indication); 3) specific drug: the indication of the drug
is determined automatically by querying for the most co-
occurring indication (and then proceed as in 2).

For example, in Figure 3 the user is interested in the
adverse events of the drug Avandia. In Figure 3 (B), the
system suggests the most frequent co-occurring indications
with Avandia, which is diabetes. In Figure 3 (C), the system
queries the database for the most co-occurring drugs for
diabetes in order to find the drugs for the same treatment to
exclude confounding effects. The user selects a meaningful
subset or searches for other drugs, since aspirin and lisinopril
are not used to treat diabetes. The selection is used for



Figure 3: Semi-automatic approach to select relevant drugs for the discriminative signal generator.

signal generation and visualization to detect adverse drug
events (see Figure 5).

In addition, we provide an exploratory approach, which
is based on an overview of the whole dataset and allows
the user to search and filter for patterns and anomalies
in order to generate hypotheses for further investigation.
Figure 4 (A) visualizes all reports in 2011 in a scatter plot
where interesting age and temporal patterns become visible,
and (B) shows the report frequency and patient outcome for
the 100 most frequently reported drugs in a treemap overview,
where Avandia shows a high association to severe patient
outcomes that indicates the need for further investigation.
The user can interactively select interesting drugs in the
overview interfaces and initiate the visual analytics process
as shown in Figure 3.

Separating relevant reactions from irrelevant is a critical
step in our approach, because it may also remove relevant
low frequency events. Our algorithm queries the database
for all drug (d) - reaction (r) co-occurrences and measures
their frequencies f(d, r). Then it calculates the relevance
R(d, r) = f(d, r)/n(d) with the frequency f(d, r) divided by
the number of records n(d) containing drug d.

If the relevance is below a user defined threshold t, the
drug-reaction pair will be removed. A threshold of t = 0.01
removes all adverse events that occur in less than 1% of
reports associated with a drug and thus, are considered as
noise. The user can select a different sensitivity interactively.
All relevant reactions of the currently selected drugs form
the set of reactions that are further analyzed and visualized.

3.4 Signal Generation
Many related automatic systems are based on methods

that scan the database and generate signals [21]. A signal
is an event (drug-reaction pair), whose frequency in a pa-
tient population is higher than expected. There are two
disadvantages to this strategy: First, low frequency events
may be lower than some thresholds and never generate a
signal. Second, confounding effects may lead to highlighting
candidates that are expected because of the intended medical
use of the drug. These events are usually of high frequency
and thus, may mask unknown events with a lower frequency.

In order to avoid these issues, we follow a higher than
expected approach by significance ordering, which highlights
the n most significant events for each drug (these candidates
are called signals from now on) and informs the domain
expert of potential (even low frequency) events.

A well established general statistic for determining the
significance of categorical data is the chi-square statistic. It

will generate a signal if the co-occurrence of X and Y is
higher or lower than expected. Since it also creates signals
for co-occurrence of events less frequent than expected, chi-
square is not suitable for our task. Odds ratio “have become
widely used in medical reports. They are primarily used for
estimating the relationship between two binary variables” [4].
We are using the contingency table of our drug-reaction pairs
to apply our significance statistics, which is based on odds
ratio (1). The intuition behind the formula is: if reaction
Y co-occurs with drug X more frequently than with other
drugs, then a and d will be high and b and c will be low.
Note, that in the formula we add one to b and c to avoid a
division by zero. We also increased the influence of a, since it
represents the co-occurrence of the drug-reaction pair. The
reaction can now be ordered according to their odds. The
drug-reaction pairs with the highest odds are highlighted in
the visual interface in order to steer the analyst’s attention
to these potentially valid and unknown ADEs for validation.

odds(x, y) =
a2 · d

(b + 1) · (c + 1)
(1)

Reaction Y Other Reactions
Drug X a b

Other Drugs c d

Table 1: Contingency table (e.g., a := co-occurrence
of X and Y).

The “other” (in Table 1) could be defined as all drugs in the
database (global). Another way is to only include a certain
group of drugs (local) by indications or drug classes. For
example, if a member of the “hypoglycemic” drug class is
compared to the entire database, it is known that these drugs
are significantly associated with heart problems (e.g., myocar-
dial infarction) compared to other drugs. Thus, detecting
myocardial infarction is a confounding effect. However, if
only the drugs in a class are considered as “others”, these
confounding effects will be compensated. Applying the sig-
nificance measure (1) in this way reveals, for example, that
myocardial infarction is only significant for Avandia (a hy-
poglycemic drug). This ADE was identified by the FDA in
2007. In summary, our significance measure works the best
if drugs are grouped together with those are supposed to
have similar reactions. Thus, our adapted odds ratio can
be interpreted as a discriminative heuristic. Note, that we
interpret the heuristic as an updateable module, which may
be replaced by other means of significance ordering.



Figure 4: Overview of the whole data set of 2011 4th quarter. (A) Shows an interactive scatter plot (x-
axis: age; y-axis: event month; color: outcome) Many reports are associated with middle aged patients in
January and from August to November, which might be due to the cold season. The user is enabled to select
interesting regions in the scatter plot. The selected drugs are then visualized in a treemap overview as in (B)
and can be used as entry points for the analysis process. (B) Treemap overview of the 100 most reported
drugs in this quarter or in the selection (size: frequency; color: outcome). Humira is mentioned in many
reports but Pradaxa, Dianeal, and Avandia show higher frequency with death associations.

4. VISUAL REPRESENTATION & DESIGN
DECISIONS

In order to meet the requirements, the system must provide
the drugs under investigation, the co-occurring reactions, the
frequency of the drug-reaction pair, and also the severity of
each event. However, drug-reaction pairs are not the only
interesting variables in the data set for experts to identify
and validate adverse drug events. For example, timestamps
and demographic information are also important variables to
consider in identifying target populations in which ADEs oc-
cur. The system is intended for non-visual-analytics experts
and thus, there is a need for intuitive and easy to use visual
interfaces that are flexible enough to visualize different data
types while maintaining the same look and feel.

In an exploratory approach, there are lots of possible and
relevant drug-reaction candidates for further investigation,
and it may happen, that the smallest of thousand drug-
reaction pairs are the most interesting ones. Due to these
requirements, there is a clear need for highly scalable visual-
izations techniques that also allow the perception of small
emergent data properties.

4.1 Visual Analysis and Validation of Events
Scatter plots are flexible enough to represent all combi-

nations of variables and data types (categorical, ordinal,
and continuous data), and to show data in different views
and maintain the format of representation. However, both
x- and y- axes can be categorical and there are multiple
drug-reaction data points with the same x-y coordinates in
a patient population. The pixels will highly overlap and
an estimation of the number of events will not be possible.
To avoid this, Keim et. al. [15] introduced repositioning of
pixels to generate a high scalable and overlap-free represen-
tation. If there is more than one event with the same x-y
coordinates, the system will use a circular pixel placement
algorithm. It sorts the overlapping events according to their
third dimension (e.g., outcome mapped to color) and places
them around the center (x,y) coordinate in concentric rings.

The area of each ring is proportional to the number of events
with the particular outcome. For example, in Figure 1 Avan-
dia has 1723 co-incidents with myocardial infarction that
would overlap without pixel replacements. The remaining
empty space in the categorical version is used to place labels
at significant adverse events.

This technique allows visualizing large amounts of data.
For example, more than 80,000 reports can be visualized on
one display (Figure 4 (A)) and each individual report can
be selected and queried on demand (Figure 5(A)). Patterns
and anomalies can be easily recognized, such as the temporal
and age patterns in Figure 4 (A). Drugs and reactions can
be grouped by similarity in the categorical plot (see below).
Thus, the domain experts can detect and eliminate the ef-
fects of inconsistencies and confounding effects. Another
advantage is that this technique offers the ability to encode a
third dimension with color, such as the severity of the event.

Interactive Analysis and Drill Down: The interactive
analysis and drill down functionalities are illustrated and
explained in Figure 5. (A) Shows the overview of the events
for drugs in the ISMP report of the 1st quarter of 2011 (see
also Table 2). Since all records are visualized as pixels on
the display, the user can demand details about every single
event by mouse over (here: within 1024 reports for Reglan
co-occurring with tardive dyskinesia; the selected patient
at the age of 68 was sent to hospital). Pradaxa shows a
high frequency of associated patient deaths and signals for
hemorrhage. The user is able to select and zoom into this
point of interest (B). The user drills down to gastrointestinal
hemorrhage to visualize detailed demographic information
about the patients in (C) in order to identify potential target
groups (x-axis: age, y-axis: gender). The user is able to select
again a meaningful subset, (D) revealing that 82 incidents
with 14 deaths are associated to male patients in the 74-
85 year range. (E) shows the low frequency signals for
levothyroxine, which can be detected in addition to the
dominant drugs in (A).

Ordering and clustering of drugs and reactions:
Drugs and reactions have to be ordered to create effective



Figure 5: Interactive exploration and validation of events.

adverse drug event visualizations. This can be done by
generating a feature vector for each drug that consists of
drug-reaction pair frequencies. These vectors and their di-
mensions can be ordered by similarity based on a hierarchical
single-linkage clustering. In this way, similar drugs and re-
actions are grouped together. In case name inconsistencies
result in multiple instances of the same drug, it is likely
that those instances will have similar appearances in the
visualization. Also drug classes as well as subclasses become
visible and can be further analyzed or combined.

4.2 Data Overviews and Visual Comparison
of Ratios

In the design process, we discovered that the overview
functionality of the scatter plot is not enough to meet the
requirements of our domain experts. For the exploratory
approach the overview has to visualize the number of reports
about certain drugs and the ratio of the patient outcomes at
one glance such that interesting ratios can be perceived. The
scatter plot will suffer under huge over-plotting with large
categorical data and is not suitable for this task. Therefore,
we proposed standard techniques such as bar charts, pie
charts and glyph representations. We, however, excluded
pie charts and glyphs due to the lack of accuracy and intu-
itiveness. Bar charts are very accurate, however, with six
categorical outcomes and hundreds of drugs this results in
an overloaded display. Further, comparing the number of
reports over different drugs requires cognitive aggregation
of all outcome categories. Stacked bar charts and treemaps
are well suited for this task. Both techniques scale well
and allow the comparison of ratios. Since treemaps have
already found their way into the medical community [8], we
propose squarified treemaps as a space filling technique for
the overview that allows accurate ratio comparison [5]. We
use size to visualize the frequency of events. The hierarchy

encodes drugs on the first level and corresponding outcomes
on the second level (see Figure 4). This enables the analyst
to compare efficiently the number of reports for the drugs
and also their associated outcomes. The main drawback
of the technique is that absolute values cannot be encoded,
which we solve with interaction (mouse over) and tooltips.

4.3 Visual Encoding
After the categorical drug-reaction information, the “out-

come” is the most important dimension to reveal the severity
of an adverse drug event, which scales from common medical
investigation to the death of patients. The data type of this
variable can be interpreted as ordinal rather than categorical
since the outcomes can be ordered according to the severity
of the event. We see different constraints for an appropriate
color mapping. 1) The data is ordered from low to high
severity of ADE, which is usually coded by an uniform scale
or multi-hue scale with linear increasing lightness or satura-
tion [3]. This would highlight saturated or bright ADE in
the visualization and attract the analyst’s attention towards
more severe events. 2) However, steering of attention can be
harmful in our particular task, since the system must treat
each ADE equal in the visualization, because the impact of
real significant but unexpected ADE can only be estimated
by the expert and not by the system. Therefore, saturation
and lightness should not be used for the encoding.

Categorical color scales have the disadvantage that the
natural ordering of hues varies widely from subject to subject.
Semantics and the use of metaphors, however, can ensure
correct ordering. Our choice is the temperature metaphor and
thus, we vary from cold colors (violet, blue, cyan) to warm
colors (yellow, orange, red). This also concerns the western
culture that associates severe events with red. Studies have
shown that humans are more attracted to warm colors than
they are to cold colors, which suppresses cold color that



Table 2: Evaluation of the signal generation (AERS database: 1st quarter of 2011). Left: the drug, its
medical use and its major adverse drug effect that has been discussed in the ISMP report [13]. Right: The
top 5 signals that our system generates without user interaction and domain knowledge (green events are
approved by ISMP reports).

are spatially close to warm colors [22]. Hence, we must
decrease the effect by ordering the records in the circular
layouting algorithm by decreasing severity from inner to
outer radius. Thus, the inner (severe) records are more
perceptually striking, but do not cover larger parts of the
visualization, which reduces the bias for the analyst.

Due to the limitations of human color perception [11], it
is most effective if only few qualitative or diverging colors
are used to represent a categorical or ordinal variable [9].
We adapted our colors from a categorical scale of Brewer et
al. [9], because in terms of attention and separation, they
fulfill the second constraint. We selected a set of three cold
colors in the hue range from 180◦ to 270◦ and four warm
colors from 0◦ to 60◦.

4.4 Highlighting
To show the statistical significance of each adverse drug

event, we use white highlighting circles. This has two reasons:
First, this increases the size and thus, the visual importance
of the highlighted events in the visualization, which enhances
the visibility of low frequency events. Second, we are able
to encode the level of significance of the adverse event with
different shades of gray. We are aware of the potential
bias that the outer ring can have on the other categorical
“outcome” colors. However, since we are only using seven
colors that can be clearly separated, we consider the risk as
acceptable. For further highlighting, we place labels next to
the significant events.

5. APPLICATION & EVALUATION OF RE-
SULTS

In order to demonstrate the effectiveness of our system,
we evaluated our automatic signal generation on the AERS
database of the years 2009-2012. This allowed us to validate
the generated signals and findings since the ISMP (Institute
for Safe Medication Practices) reports of known adverse drug
events were available. Further, we illustrate a use case with
one dependent domain expert.

Table 2 and Figure 5 show the drugs that are mentioned
in the ISMP report for the first quarter of 2011. The table

reveals their medical use and validated major ADEs. We
examined each drug in the corresponding quarter’s database
by using it as starting point for our system as shown in Fig-
ure 3. Our system was configured to automatically determine
the indication from the database and thus, determined ten
drugs for the discriminative heuristic in order to eliminate
confounding effects. We excluded events that occur less than
1% for each drug by a relevance threshold t = 0.01 (see
Section 3.3). We configured the system to generate signals
for the five most significant reactions of each drug, such as
hemorrhage for Pradaxa or tardive dyskinesia for Reglan (see
Figure 5 (A)). Even the low frequency suicide events were
detected for acetominophen and levothyroxine, for which
only 313 reports existed in the whole database (with only
six suicidal events). Expressing the complete results with
precision-recall measures, our system detected all the major
adverse drug events in the ISMP report of 2012 with a preci-
sion of 40%. We found that this performance (recall > 90%
and precision > 40%) holds for all the reports from 2009 to
2012. Since a domain expert is filtering the signals during
the analysis process, a high recall is far more important than
a high precision.

For the use case, one domain expert was given the task to
detect and validate “unknown” adverse drug events in the
AERS data. In the 3rd quarter of 2011 the FDA reported
198,777 adverse drug events from over 28,000 drugs that
caused over 9,000 different reactions. The domain expert
was involved in the design process and was already familiar
with the interfaces and the visual analytics process. However,
the ISMP reports mentioned below were not published when
the expert performed the task and therefore, the expert was
considered independent of the reports’ insights.

The expert found several unexpected adverse drug events
summarized in Figure 1. For example, the expert found
that Actos, which is used to treat diabetes, has a significant
association with bladder cancer (reported in 2012 by the
ISMP [14]). Also the expert identified a low frequency asso-
ciation between Cymbalta and serious withdrawal symptoms.
This finding was later described in the ISMP report of the
1st quarter of 2012 [14]. The expert reported that our system



and analysis strategy is very useful to detect low frequency
adverse drug events and that there is a significant potential
for visual analytics interfaces in post-marketing surveillance.

6. CONCLUSION
In this paper, we presented a visual analytics approach to

access a massive volume of events by enhanced statistical
computations and advanced interfaces to incorporate expert
knowledge for validating the individual event by interactive
relevance filtering. We demonstrated that experts are able to
detect relevant low frequency events from massive volumes
of adverse drug events, such as bladder cancer for Actos,
hemorrhage for Pradaxa, and femur fracture for Boniva. Our
next step is to continue our visual analytics work on drug -
drug interactions and drug usage over time. These tasks pose
new challenges to the analysis and will likely need different
measures and additional visual interfaces.
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