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Abstract: The technical progress in the last decades makes photo and video recording devices
omnipresent. This change has a significant impact, among others, on police work. It is no longer
unusual that a myriad of digital data accumulates after a criminal act, which must be reviewed by
criminal investigators to collect evidence or solve the crime. This paper presents the VICTORIA
Interactive 4D Scene Reconstruction and Analysis Framework (“ISRA-4D” 1.0), an approach for
the visual consolidation of heterogeneous video and image data in a 3D reconstruction of the
corresponding environment. First, by reconstructing the environment in which the materials were
created, a shared spatial context of all available materials is established. Second, all footage is spatially
and temporally registered within this 3D reconstruction. Third, a visualization of the hereby created
4D reconstruction (3D scene + time) is provided, which can be analyzed interactively. Additional
information on video and image content is also extracted and displayed and can be analyzed with
supporting visualizations. The presented approach facilitates the process of filtering, annotating,
analyzing, and getting an overview of large amounts of multimedia material. The framework
is evaluated using four case studies which demonstrate its broad applicability. Furthermore,
the framework allows the user to immerse themselves in the analysis by entering the scenario in
virtual reality. This feature is qualitatively evaluated by means of interviews of criminal investigators
and outlines potential benefits such as improved spatial understanding and the initiation of new fields
of application.

Keywords: 4D reconstruction; visual exploration; computer vision; machine learning; forensics;
virtual reality; surveillance systems

1. Introduction

Image and video footage is becoming increasingly important for criminal investigation, as more
and more sensors, from security cameras to mobile phones, are easily available and in use. This has
an impact on the accumulation of data that needs to be thoroughly investigated, which is often done
manually and thus time-consuming and cost-intensive. The German police expects approximately 8 h
of investigation time for one hour of video material [1]. In cases where the police ask citizens to upload
video or image data for an incident, it is expected that several images will be uploaded, capturing the
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same content from different perspectives. Famous examples are the Boston Marathon Bombing and
New Year’s Eve at Cologne Cathedral [2]. Investigators determine the relevance for the data provided
and note whether the supplied video records the scene of interest at the time of interest. A second step
is spatial localization, which is used to determine the location of the camera sensor and its field of
view. The third step is temporal localization, which establishes a temporal relationship between the
other available video data. Finally, a detailed analysis of the video and image content is performed to
identify objects, persons, and scenes of interest necessary for the particular case.

Our proposed visual analytics approach (ISRA-4D 1.0) supports the user in all these tasks.
It automates processes to a great extent, while still allowing the user to intervene and optimize
during all steps. The processed scene is composed of a 4D scene that combines multiple video
sources synchronized on a single timeline. Users can explore this 4D scene in our interactive 4D scene
investigator, tracking objects across various video feeds, annotating scenes, and exploring the scene
in virtual reality, which significantly improves the perception of distances, angles, and details of the
scene. In the long-running VICTORIA project (https://www.victoria-project.eu/), numerous internal
and external stakeholders underlined the importance and necessity of such an approach for their daily
work. Furthermore, additional use cases could be identified.

When massive amounts of data are available, for instance, through upload platforms asking the
public to upload videos of an incident, the police is often confronted with a lot of irrelevant material.
Our scene reconstruction approach can automatically determine whether specific images and videos
where taken of a specific scene. Therefore, the police needs to reconstruct a static scene where the
incident took place. Afterward, the reconstruction algorithms can determine whether the additionally
uploaded video material fits into the scene or not. This approach is robust, as for videos multiple
frames are available and thus more evidence can be gathered.

The primary use case is, however, crime scene reconstruction, where image material can be
collected from witnesses in combination with image material recorded by the police after the incident.
The constructed 4D scene can then be further annotated and explored using ordinary desktop
computers and virtual reality with available consumer hardware. This allows persons involved
in the case to better understand and orient themselves at the crime scene, even if they may not have
seen it in reality. Additionally, such scenes can be digitally archived and also used in court.

Besides, the framework can be deployed for efficient monitoring of critical infrastructures and
public places, such as airports, train stations, or industrial areas. The state-of-the-art uses arrays
of monitors showing the live streams of cameras. Such an array of monitors is difficult to oversee,
and important events can easily be overlooked. In addition, it requires a constant cognitive workload to
recognize and remember position and orientation of each camera, which makes it increasingly difficult
to trace moving objects. Our approach allows the embedding of cameras into the 4D scene, whereby
the images can be projected into the scene in real-time. Additionally, the proposed concept can be used
for mission planning and training for special forces in which virtual reality is an essential component.
It allows users to spot a scene using drones, video glasses, or other imaging sources and receive a 3D
scene that can be virtually inspected to plan the mission. Especially, the collaborative virtual reality
and mixed interactions with desktop access that provide an overview are considered useful.

This work is a direct extension of an earlier publication [3] in which the predecessor framework is
presented in less detail. In the line with this work, this publication contributes (1) a modular pipeline
approach for the reconstruction of static 3D and dynamic 4D scenes, (2) a visual interface concept for
the interactive and immersive exploration of such scenes, and (3) four use cases demonstrating
the manifold applicability of our approach. The 4D scene reconstruction pipeline is carefully
constructed to increase its robustness, extensibility, and user handling. The final reconstructed scene
can be investigated on desktop computers, providing a good overview of the progression of events.
Additionally, virtual reality allows the operator to immerse into the scene where distances, angles and
orientation are perceived as in reality. The scene can be further annotated and investigated using
various tools for spatial and temporal analysis to find interesting locations and times within the scene
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and timeline. Furthermore, our approach allows the operator to always intuitively access the original
material that has been used to reconstruct the scene as well as the dynamic material that is blended
into the scene.

2. Related Work

In this section, first, an overview of existing approaches and techniques is provided which can
be used to create a 3D reconstruction of dynamic and static environments, as well as methods to
analyze the content of videos. Subsequently, current state-of-the-art multi-video surveillance systems
are presented. Finally, the use of visual and immersive analytics approaches in different domains
is outlined.

2.1. 3D Scene Reconstruction

The reconstruction of dynamic objects or static scenes with state-of-the-art approaches like
Simultaneous Localization and Mapping (SLAM) [4] or Structure from Motion (SfM) [5] is
challenging. The quality of the reconstruction depends significantly on the quality of the footage.
Zhong et al. presented the “Detect-SLAM” framework, which combines an object detection approach
with a reconstruction technique for a more robust 3D reconstruction of dynamic objects [6]. By initially
segmenting the scene material, their framework improves the reconstruction quality and detection rate
even from disadvantageous viewpoints and potential occlusion. Similarly, Bullinger et al. integrated
algorithms and segmentation techniques based on optical flow to compute object-specific motion
cues and corresponding points [7]. The combination of SfM and triangulation enables 3D scene
reconstruction and simultaneous tracking of static and dynamic entities in a scene. However, a typical
limitation of such an approach is the availability of binocular footage. Besides the reconstruction of 3D
objects, the extraction of a three-dimensional scene from 2D images is another challenging research
area that deals with the restoration of dynamic 3D scenes. This endeavor requires elaborate routines to
mitigate the negative effects of inaccuracy and uncertainty in dynamic scenarios.

Mustafa et al. presented an approach to improve an initially sparse 3D scene reconstruction
using traditional reconstruction techniques with a joint optimization framework [8]. Their approach
is applicable to scenarios with moving cameras without prior knowledge of the scene structure,
whereas earlier techniques were often limited to fixed camera positions in the scene. They take
into account data, contrast, smoothness, and temporal characteristics to narrow the solution space
and achieve a clean depth restoration for multiple synchronized and unsynchronized input videos.
In contrast, Ji et al. presented a method for the 3D reconstruction of dynamic scene objects based
on video synchronization that exploits locally rigid patches without the need for segmentation [9].
However, these approaches are limited to a few large, moving foreground objects in a scene. Therefore,
they cannot always be applied to real-world scenarios that might contain diverse, dynamic objects,
such as crowds of people or cars.

In the current work, especially for the reconstruction of dynamic scenes, several different
approaches are realized and compared. The most visually appealing approach was selected and
implemented as a module of the preprocessing pipeline.

2.2. Video Content Synthesis: Object Detection and Re-Identification

The generation of data about image content, such as the detection of objects in images and videos,
is a common task used in numerous domains. One area that receives a lot of attention is research on
real-time object detection. For example, YOLO, introduced by Redmon et al., is a framework based on
neural networks enabling the detection of objects within images with little computational effort [10].
In later years, gradual improvements of the YOLO framework were presented: YOLOv2 [11] and
YOLOv3 [12]. Besides, many alternative approaches for real-time object detection in videos were
established, such as SSD [13] and R-FCN [14].
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In addition to the mere object detection within an image, it is also essential to identify the
same object during a video or in different footage. The so-called object re-identification task is a
very challenging and error-prone task, e.g., due to context-related problems like occlusion, noise,
varying illumination, moving background objects, and ambiguity [15,16]. Li and Loy presented an
approach that allows the re-identification of objects in successive frames, even if an object could not be
identified in the frames in between [17]. Their segmentation-based approach allows visual tracking of
objects that even change in scale and rotation. While this approach focuses on object re-identification
in a single camera, others specialize in object tracking through multi-camera systems. For example,
Bialkowski et al. [18] presented a database for the re-identification of persons with videos that record the
same environment from different angles and under different lighting conditions. They demonstrated
the dataset using a simple re-identification system that compares detected objects between different
cameras. The presented approach requires overlapping viewports of the cameras. Other approaches
are even more sophisticated and support the tracking of objects through non-overlapping camera
networks [19,20]. Beyond the extraction of movement trajectories, several approaches aim to analyze
the movement of detected persons further. For example, Devanne et al. analyzed the trajectories
of skeletons and focused on the recognition and classification of actions within the movement of a
person [21]. Goffredo et al. dealt with gait analysis in surveillance videos [22]. The way a person walks
is very individual, making it possible to use gait characteristics for person re-identification.

Depending on the choice of the object detection and re-identification approach, the run times
and results vary. Thanks to the modular design of the current approach, new improvements of
such models can easily be implemented in the pipeline. In the current version of the presented
framework, a pretrained YOLO v3 module [12] was used in combination with a state-of-the-art
re-identification approach.

2.3. Multi-Video Surveillance Systems

Another research focus is on the optimization of multi-camera surveillance systems. Here,
the dominant goal is to contextualize heterogeneous video sources with different viewports, light
and color differences, and structurally different parameters (e.g., camera intrinsics). For example,
Collins et al. presented a framework for the seamless tracking of moving objects through a network
of surveillance cameras [23]. A site model of the monitored environment and calibrated cameras are
required to calculate the trajectories of objects. There are alternative approaches that do not require a
spatial model of the environment with calibrated cameras, but rather estimate relative camera locations
and their intrinsic parameters on the fly. For example, Javed et al. presented a large-scale surveillance
system that automatically calculates the spatial relation between the cameras [24]. The system detects
and tracks objects and persons across multiple cameras. First, the tracks of objects are computed for
each camera. Then, a match between the views of the same object by multiple cameras is calculated.
This makes it possible to find relationships between the field of view lines of different cameras without
explicit camera calibration. Several approaches in literature (see, e.g., in [25,26]) follow a similar
principle for scenarios where it cannot be assumed that there is sufficient visual overlap occurs which
would allow a purely visual camera correspondence estimation.

Other work deals with the quantification of camera constellations, calibrations, and image content.
For instance, Zaho and Cheung presented a technique for optimizing the camera placement in a
multi-camera system by measuring and comparing the performance of different camera constellations
for object and face detection tasks [27]. Lim et al. suggested an approach for automatic, image-based
calibration of stationary cameras [28], i.e., the automatic configuration of pan, zoom, and tilt parameters
of cameras in multi-camera systems to optimize the system’s overall performance. Beyond that,
Shen et al. proposed an approach to quantify the content of surveillance cameras to prioritize the views
of specific cameras in multi-camera surveillance systems [29].

The current framework comprises publicly available, state-of-the-art approaches for object
detection and re-identification. The output of these models is used to improve dynamic point cloud
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generation processes and to simultaneously display high-level information from multiple videos in a
shared 3D environment. With the modular design of the introduced framework, it is possible to adapt
to further advances in this area by exchanging individual modules in the preprocessing pipeline and
adapting their output to the required format.

2.4. Visual and Immersive Analytics

Visual analytics has proven to be a valuable tool for explorative and confirmatory analysis
tasks [30–33]. With the help of visualizations, hidden information in the data can be spotted without a
concrete definition of a hypothesis. In contrast to merely statistical evaluations, this makes it possible
to keep users up to date during interactive data analysis procedures. Various visual analytics solutions
have also been developed in the field of police and law enforcement. For example, Malik et al. presented
an instrument for police resource allocation and predictive analytics [34]. Various other works also
deal with the identification of criminal hotspots and use visual analytics procedures to facilitate the
process [35,36]. Sacha et al. introduced a tool for the interactive analysis of spatio-temporal metadata
of crime reports using abstract data visualizations such as correlation matrices and scatterplots [37].
Similarly, Jentner et al. analyzed crime reports, but focused on the analysis of patterns to provide
insights on a large bulk of data and to find clusters of similar crimes [38].

Virtual reality has been frequently used for simulation [39], training [40], and educational [41]
purposes due to its ability to immerse users in virtual environments. Virtual content can be observed
more naturally, conveying the impression to experience a real situation. Immersive analytics [42] is a
relatively new field in which visual analysis procedures are performed in immersive environments
such as augmented or virtual reality environments. Previous research has identified several benefits
associated with induced immersion. For example, Probst et al. used VR to explore large chemical
spaces in which molecules are depicted as volume visualizations [43]. They concluded that VR
provides a more intuitive exploration process, which is particularly useful for educational and training
purposes. Zhang et al. found a benefit of VR in terms of understanding geometric structures in VR
and attribute this effect to the natural inspection of 3D objects, which is similar to the inspection of
physical objects in the real world [44]. Similar effects were also reported regarding more abstract data
visualizations. For instance, Donalek et al. reported a better perception of the datascape geometry in
graph visualizations when participants were immersed in VR [45]. Further benefits have been identified
in terms of data validation [46], collaboration [45], increased task performance on specific data
exploration tasks [47,48], and memorability [49]. Etemadpour et al. found that especially surface-based
visual encodings profited from a stereoscopic perception in VR [50].

The use of visualizations for the analysis and extraction of knowledge from data has proven itself
in the past. Therefore, visualizations are used in the current framework to facilitate the analysis process
of mass video data. Recent developments in immersive analytics research could demonstrate various
advantages of using virtual reality in the visualization context. The current framework allows users to
observe 4D scene reconstructions in VR in order to exploit these benefits.

3. Crime Scene Analysis Framework: Processing Pipeline

In order to explore heterogeneous data sources in a shared 3D reconstruction, the underlying data
needs to be preprocessed. In this section, a detailed overview of the used preprocessing pipeline is
provided (see Figure 1). First, all supported input data types and data-specific terms are introduced.
Subsequently, the approaches used for static and dynamic scene reconstructions as well as metadata
extraction (high-level scene analysis) are explained. The section concludes with the description of the
module for temporal synchronization.
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Figure 1. Processing pipeline of the crime scene analysis framework. Multimedia input data are
processed in three main steps: First, a static reconstruction of the crime scene is created using a
structure-from-motion approach. Second, dynamic elements are extracted as dynamic point clouds.
Third, tracks of persons and objects are extracted using machine learning models.

3.1. Input Data

The crime scene analysis framework presented is optimized for the rapid analysis of large
amounts of image and video data from a certain incident. For example, after a shooting in a city
center, sources could be recordings from surveillance cameras as well as photos and videos taken
by eyewitnesses with their mobile phones. Therefore, the resulting set of data sources can be very
unstructured and difficult to analyze. The two main sources are static cameras that do not move
and maintain their perspective (static camera), and moving cameras that record different locations
throughout the incident (dynamic camera). To further enhance the context, image and video material
from the time before or after an incident can also be integrated into the framework by registering it
solely in space, without considering time. These sources are time-independent, as they are not registered
to a certain point in time of the progression of events to be analyzed.

Besides video data, image data such as individual photos, panoramas, and photo spheres can
also included in the analysis. By default, such footage is currently treated as time-independent and
is only registered in space. This could, for example, comprise images and photo spheres taken from
the place of interest after the incident in the forensic analysis and help investigators to compare the
environment at the time of the incident with the environment shortly after the incident.

3.2. Reconstruction of the Static Scene

The 4D reconstruction pipeline is divided into a static scene reconstruction and a dynamic scene
reconstruction. In the latter, all dynamic objects are reconstructed for each frame and mapped into the
previously created static surface reconstruction (see Section 3.3). In order to support the investigator
in navigating through a large multimedia database of an event, our approach first reconstructs the
static scene. The goal is to provide the user with a 3D surface model and a cadastre of all cameras in
the scene. This approach spatially structures the data and provides the user with a big picture of the
scene, which means that a scene no longer needs to be investigated on basis of video files. This enables
investigators to directly understand the geometric relationships of camera locations and their viewing
direction as well as objects within the scene.

As depicted in Figure 1, the static scene reconstruction pipeline starts with a dynamic object
segmentation step. Moving objects like cars or persons can lead to inconsistent 3D reconstructions
because feature points of these objects change their 3D position over time. Therefore, binary masks are
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created for each image to indicate whether a pixel is static or not. MaskRCNN is a neural network
that creates such instance boundary segmentations for individual objects in the scene such as persons,
cars, or bicycles [51]. For this task, we used a publicly available pretrained model that was trained
using the mscoco dataset [52]. All other classes are considered static. It is important to note that
these binary masks may not always be perfect, for example, a person displayed on an advertising
board is actually a static image, but is still identified as a person by the network. However, the masks
are only used to filter out areas that most likely contain dynamic content to allow for a high-quality
static reconstruction.

Subsequently, the locations of all cameras and a sparse static point cloud are restored using a
Structure-from-Motion (SfM) approach. Previously calculated masks are used to exclude dynamic
elements in images from this procedure. The current approach integrates COLMAP, a state-of-the-art
SfM pipeline [5]. SfM is a technique which first attempts to identify correspondences between all
images by means of image feature point detection and matching, such as SIFT [5]. From the set of
all possible 2D-2D correspondences, the camera locations as well as a sparse point cloud of valid
correspondences are restored and globally optimized using Bundle Adjustment (BA) [53]. Cameras that
could not be spatially registered can be manually positioned.

Once the sparse reconstruction is completed, a dense reconstruction is started. In this phase,
a multi-view stereo (MVS) reconstruction is performed by employing OpenMVS, resulting in a textured
surface model of the scene [54]. The surface model and camera locations resulting from the SfM and
MVS pipeline are usually not metrically scaled or georegistered. However, in order to be able to
measure the distances between individual points in the scene or to obtain the geolocation of a selected
3D point, absolute scaling or georegistration must be performed (see Figure 2).

Figure 2. 3D reconstruction after being manually geo-registered into satellite imagery based map data.

In case GPS metadata is available, georegistration can be performed automatically as long as there
is sufficient valid GPS metadata. When the respective options are enabled, images from smartphones
usually contain a geo-tag. However, videos usually do not contain GPS metadata, unless they were
captured by specialized drones that create separate GPS logs. The reason for that is that it would
require a GPS tag per frame which does not fit in the standardized EXIF metadata field. Therefore,
the prototype contains a manual georegistration approach, which enables users to manually align
the reconstructed scene using a satellite map with elevation data on a 3D globe, similar to Google
Maps. This makes it possible to add several separate, non-overlapping reconstructions which may be
relevant to a case, but are physically located at different locations. In case map data is not available
due to indoor footage, the reconstruction has to be scaled metrically by specifying a measure of a
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known object like the height of a door or the size of a tile on the floor. However, geo-information is
still missing and one can only interact with the model in a local metrically scaled coordinate space.

3.3. Reconstruction of the Dynamic Scene

3.3.1. Classical Stereo Depth Estimation

The reconstruction of a dynamic scene, i.e., a sequence of video frames with dynamic content,
is a challenging task. In the past, point clouds were typically reconstructed from calibrated and
synchronized stereo image pairs or multi-view setups. Disparity maps were computed by exploiting
the epipolar stereo geometry. There are different block matching approaches that assign each pixel of
the left image to the best matching pixel of the right image along its epipolar line by comparing local
image blocks with correlation-based block matching approaches [55,56]. These classical approaches
allow an efficient reconstruction of any image structure without having to rely on high-level
information of scene content. An example result of a point cloud that has been reconstructed using
stereo block matching is shown on the left in Figure 3. The drawback, however, is its inherent
dependency on synchronized image pairs from at least two different cameras that overlap. In practice,
stereo cameras are not available in most video security applications and cameras are preferably installed
in different viewing directions to reduce the total number of cameras and thus hardware costs.

Figure 3. (Left) Point cloud reconstructed from a stereo camera using classical stereo block matching.
(Right) Point cloud reconstructed with our geometrically based monocular depth reconstruction.

3.3.2. Neural Network-Based Monocular Depth Estimation

Different approaches are worth to be considered to deal with non-synchronized heterogeneous
monocular image data. We focused on approaches that are frame-based and capable of obtaining
a depth map, point cloud, or other high-level representation for each frame independently of other
frames. This enables high parallelization and thus fast processing. In recent years, monocular
depth estimation using neural networks grew in popularity. Several methods like Monodepth2 [57],
monoResMatch [58], and a self-monitored monocular depth estimation approach by Hermann [59]
were considered. An exemplary result of Monodepth2 with a pretrained model based on the KITTI
dataset [60] is shown in the bottom line of Figure 4. While the results of these approaches look
impressive from a scientific point of view, these point clouds did not meet the requirements for the
application, as they were still too noisy or stretched. These artifacts become particularly visible when
the perspective of the observing camera on the point cloud is changed. Even the slightest variation in
depth on the surface of a human body makes it difficult to identify the person in the scene. This does
not mean, however, that these approaches are not suitable in general. Recent work that explicitly dealt
with monocular depth estimation, for instance, with focus on videos with humans [61] or for obstacle
detection in autonomous cars [62], showed that monocular depth estimation from neural networks
could be a promising technique in the future.
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Figure 4. (Top left) Input image. (Top right) Result of our method, in which people are segmented and
placed upright on the ground.(Bottom left) Resulting depth map using Monodepth2. (Bottom right)
Embedded point cloud generated using Monodepth2.

3.3.3. Object Detector-Based Dynamic Object Placement

To avoid the previously mentioned noisy artifacts in the final scene, it is possible to focus only
on detected dynamic elements in the scene. This monocular reconstruction approach is limited
to detected objects (e.g., persons and cars) and positions them in the already reconstructed static
scene geometry. A generic object bounding box detector can be used for the detection of multiple
classes such as pedestrians, bicycles, cars, and trucks. The 3D object location of each object can be
calculated by intersecting the bottom edge of the bounding box with the surface mesh of the static
scene reconstruction. The image patches of the detected objects are then placed individually in the
scene, similar to billboards, so that the objects are upright. A result of such an embedded dynamic
reconstruction is shown at the top of Figure 5.

3.3.4. Orthogonal Depth Estimation Approach

In the current framework, an orthogonal depth estimation approach is used (see Figure 1) as
an improvement of the previously presented approach with bounding box detectors. The proposed
prototype integrates MaskRCNN, an instance segmentation approach based on neural networks that
can segment individual objects [51]. As shown in Figure 6 (left) as a red silhouette, the segmentation
is capable of cutting out objects in more detail. Similar to the previous approach, the 3D location of
segments is then calculated with the aid of the underlying static 3D reconstruction. The resulting
depth map can be superimposed over the static mesh, preserving all pixels of the original input image
(see Figure 5, center).

A skeleton extraction module increases the stability of the procedure for detected persons.
The neural network-based approach OpenPose allows to obtain 2D key point locations of a person [63].
These key points include body parts such as feet, shoulders, elbows, hands, head, nose, and ears,
as shown in Figure 6. An advantage of this approach is that it is possible to obtain high-level
information about a person’s body, even if the person is partly occluded, e.g., by another person or
object. A person’s skeleton information is used to improve the depth estimation for the corresponding
image segment. The framework assumes that a person is on average 1.70 meters tall and that the feet
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always touch the ground. Handstands, jumps, or other artistic postures are currently not supported
by our approach. However, in most cases of visual surveillance this is not a major limitation. The 3D
location of a person is calculated by casting a ray that intersects the pixel position of the foot with the
3D surface model, provided that the camera position and the intrinsic camera parameters are known.
In case the location of the foot could not be restored, other known key point locations are used and an
estimated offset is added. Thus, if the segmentation algorithm only returns, for example, the upper
body of a person due to occlusion, the extracted skeleton key points indicate this circumstance. The 3D
location of the segment is then calculated taking into account that the entire person is actually larger
than the extracted segment, resulting in a more accurate 3D position.

Figure 5. Dynamic objects can be displayed differently in the static 3D reconstruction. (Top) Detected
bounding boxes of persons are embedded upright. (Center) Complete depth map of the segmented
image is superimposed. (Bottom) People reconstructed with PIFuHD are embedded.
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Figure 6. (Left) OpenPose annotation key points. The red silhouette represents the segmented
instance boundary when using MaskRCNN. (Top right) Exemplary OpenPose result on an image with
several persons and partial occlusions. (Bottom right) Neural network-based automatic foreground
segmentation of people. This foreground is the dynamic part of the image that has to be placed in the
scene as dynamic content.

3.3.5. Neural Network-Based Full Body Reconstruction

Recent developments in artificial intelligence also enable the reconstruction of the complete 3D
body shape of a clothed person from monocular image data [64]. This means that even if only the front
of a person is visible, the back can be estimated from the network. The results of this approach are
shown in Figure 7. In addition to the reconstruction of the body shape, the entire body texture can
be reconstructed from a single monocular image or even with multiple views [65]. By reconstructing
each person individually for each frame, these models can be inserted into the scene and give the
impression of actually animated people walking through the scene (see Figure 5, bottom). In the scope
of this work, we experimented with a pretrained model provided by the PIFuHD authors that was
trained using a synthetic dataset.

The different approaches described in this section can be selected according to the needs of users.
In some cases, where the user prefers to rely on fast processing methods such as the display of image
snippets in the static scene, fast analysis capabilities are especially important. In other cases, a more
detailed and accurate 4D reconstruction is important. While some approaches retain all information
from the input material at the price of artifact-afflicted representations (e.g., superimposition of the
entire depth map), others rely on object detection algorithms and may withheld information during
the visual exploration (e.g., 3D models of persons). The choice of the most appropriate approach is
always a compromise and must be considered for each individual application.
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Figure 7. 3D models of different persons reconstructed from single images using PiFuHD. The
reconstruction time was approximately 10 seconds per person. The size of the image patches varied
between 260 × 330 and 440 × 960 pixels. Most models were successfully reconstructed from all sides.
Only the kneeing man opening a suitcase (lowest resolution) could not be reconstructed from the back.

3.4. High-Level Scene Analysis

After starting the main application, the system checks whether feature preprocessing has been
performed beforehand. If not, the preprocessing sequence will be started and each time-dependent video
is processed in an object detection pipeline. The pipeline for the high level scene analysis (see Figure 1)
has a modular structure. This way, the entire pipeline or parts of it can be replaced by other modules
that deliver an output using the same format. Figure 8 shows a frame from the feature extraction
preprocessing step. During preprocessing, the video is played back and all recognized objects and
persons are highlighted by colored rectangles, including their respective path of movement.

Figure 8. Frame taken from feature detection preprocessing procedure. During processing, the original
video is played back while detected objects are highlighted.
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3.4.1. Object Processing in Camera Space

Most of the feature extraction pipeline takes place in camera space. The position of detected
objects is described in pixel coordinates, based on the frame in which they were detected. All further
steps of feature processing (e.g., skeleton extraction and re-identification) are image feature-based and
therefore do not make use of the position itself. In a subsequent step, which is described in the next
paragraph, these pixel coordinates are mapped to world coordinates using the estimated camera pose
from the reconstruction.

As a first step in the feature extraction pipeline, each video from the input pool is processed
in an object detection module (convolutional neural network (CNN)) that extracts all detected
entities (persons and objects) for each frame of the video. In the present case, the YOLO v3 library
(https://pjreddie.com/darknet/yolo/) is applied. The network was used pretrained on the mscoco
dataset [52]. The result is a set of independent Detections for each frame, each containing information
about its location in the image space (bounding box), a confidence score, and a classification of the
object type (e.g., car, person, and backpack). In a second feature extraction step, each detection
classified as “person” is processed in a skeleton extraction module by using the mentioned bounding
box coordinates of the detection as input parameter. The current status of the proposed framework
includes the OpenPose skeleton extraction library (https://github.com/CMU-Perceptual-Comput
ing-Lab/openpose). Similar to the YOLO module, the OpenPose network was used pretrained on
the mscoco dataset [52]. With that, each detection of the class “person” is enriched with skeleton
information representing the key points of the detected skeleton. Figure 9 depicts a skeleton (right) as
shown later in the exploration framework for the detection of a person (left). Subsequently, for each
video, all detections are processed in a re-identification module, comparing the detections from
different frames and identifying all detections that belong to the same entity (Track). The current
implementation exploits DeepSort (https://github.com/Qidian213/deep_sort_yolov3), which reuses
features from the object detection module (YOLO v3). As a result, a set of tracks is available for each
video, each of which containing detections from the same entity (e.g., person and car) that describes its
spatial movement over time. For each track, a representative detection is selected in which the entity is
optimally represented (Best Shot). Currently, the detection with the highest confidence (YOLO output)
is selected as best shot. Last, a global re-identification module is used to find relations between tracks
of different videos. The detection features from the object detection module are used to compare the
tracks of different videos and form sets of tracks that belong to the same entity.

Figure 9. For each person recognized in a video frame (Left), OpenPose is applied for skeleton
extraction. The extracted skeletons can later be displayed in the scene as connected points (right).

3.4.2. Position Mapping to World Space

After each video is passed through the object detection pipeline, the position information of the
detections remains in camera space (frame coordinates in the pixel space). To locate the detection

https://pjreddie.com/darknet/yolo/
https://github.com/CMU-Perceptual-Computing-Lab/openpose
https://github.com/CMU-Perceptual-Computing-Lab/openpose
https://github.com/Qidian213/deep_sort_yolov3


Sensors 2020, 20, 5426 14 of 38

positions in the 3D scene, the corresponding 3D coordinates are computed based on the extrinsic and
intrinsic parameters of the respective camera. These parameters are available due to the preceding scene
reconstruction, pose estimation process, and camera characteristics. Depending on the information
available, there are two different approaches for calculating the 3D coordinates.

The first strategy requires the availability of depth images containing the depth for each pixel
of the respective camera frames. If this depth information is available, the detections’ 3D position
can be retrieved based on their bounding box position in the respective frames. This required depth
information is available natively for binocular cameras that can capture 3D images [16]. For mono
cameras, the depth information can be estimated as described in Section 3.3. This means that in our
case, depth maps exist for all videos that were processed in the dynamic scene reconstruction module.

As depth maps may be noisy and thus lead to faulty 3D localizations of detections, we provide an
alternative strategy based on the 3D mesh created in the scene reconstruction step (see Section 3.2).
Raycasting is applied to calculate the 3D position of a detection. As shown in Figure 10, originating
from the estimated camera coordinates (Section 3.2), a ray (red line) is emitted through the bottom
center of the detection in the image. The intersection point of the line with the geo-registered mesh
is then used as the 3D position of the detection. To determine the angle of the ray, the estimated
camera intrinsic properties (focal length and lens distortion) are used in combination with the camera
space pixel coordinates of the detection. This approach is based on the assumption that objects
must reside at the ground. With objects that are not at the ground, this strategy is, of course, prone
to errors. For instance, if a person jumps, then this approach would calculate a wrong position for
the time span during the jump, which is farther away from the camera than it is actually the case.
To mitigate such inaccuracies in the future, it might be helpful to consider the position and direction of
object shadows [66]. Unfortunately, such shadow algorithms depend heavily on lighting conditions.
The consideration of shadow effects will therefore probably not eliminate all existing problems of this
position extraction task.

Figure 10. Its extrinsic parameters define the world coordinates of a camera in a 3D scene (camera icon).
Based on intrinsic parameters, the pixel coordinate position of an object can be transformed into its
respective world position through raycasting. A ray (red line) is emitted through the image at the lower
edge of the bounding box of a detection (red rectangle in the camera frame). The intersection of the ray
with the mesh provides the related 3D world coordinate.

Another promising approach builds on the availability of multiple cameras which capture the
same detection from different angles. It would be possible to perform a triangulation of emitted
rays from several cameras to detect the position of an object in the 3D world space [67]. Overall,
the simultaneous application of different positioning strategies allows for modularity by prioritizing
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more accurate procedures. In the future, this modularity allows to extend the available methods,
for example, by camera triangulation and shadow position estimation approaches. Eventually,
the proposed prototype enables analysts to view the original footage, which is crucial for confirmatory
analysis and critical decision-making processes.

3.5. Temporal Footage Synchronization

Another factor why a detailed analysis of video footage is time-consuming and costly is the
inaccurate temporal synchronization of several cameras that usually originate from heterogeneous
sources. Available video footage must be temporally synchronized so that analysts can get an overview
of an incident. This temporal synchronization accuracy also affects the resulting quality of feature
extraction methods that require multiple cameras (see Section 3.4). The available footage is often not
temporally appropriately synchronized, resulting in poor analysis results, which may even lead to
false assumptions that impede accurate decision-making. Therefore, it is crucial to identify the correct
temporal synchronization before the information is used in further analysis steps. Even minimal time
differences may have a significant impact on critical decision-making processes.

The most basic strategy for performing time synchronization is to use the meta-data of a video to
determine its start time. However, the information stored in video files is often incorrect. The system
time in cameras may be inaccurate due to manual settings, or the stored creation time is overwritten
when the video files are converted or copied. For small adjustments, analysts can manually manipulate
the time offsets by to use appropriate values and adjust these offsets for each camera separately.
However, this method is tedious, time-consuming, and error-prone, especially as the amount of the
video material increases. Therefore, it is advisable to use available auditory or visual features that
appear in the video content. For example, analyzing the cameras’ soundtracks to extract distinctive
audio features such as shots, shouts, or other significant noises could enable (semi-)automatic temporal
synchronization to reduce the manual effort of the analyst. Additionally, it may be helpful to consider
the visual features of video frames to identify similarities of events and synchronize the video material
based on such anomaly conditions. For instance, the appearance of outstanding visual elements,
such as a red bus driving through the scene at a specific time, could be used to match different videos
temporally. Moreover, the trajectories of detected objects or persons could be compared and used for
temporal synchronization. Enabling analysts to inspect the automatic temporal synchronization is
essential for verification. For example, providing a time-aligned list of all videos enables the user to
see and compare aligned frames.

So far, the proposed system only supports the first hands-on approach, which is feasible for
scenarios with few cameras. As discussed, this approach does not scale for large numbers of videos,
which would require the implementation of automatic algorithms that can be monitored by analysts.
However, in line with the modular approach of the entire framework, we plan to integrate additional
temporal synchronization modules, which can be selected in the preprocessing step depending on the
available information.

3.6. Preprocessing Run Times

Preprocessing times vary and are highly dependent on the current constellation of modules,
their configuration, the input data, and the underlying hardware infrastructure. The proposed
pipeline comprises standalone modules that were benchmarked individually by their respective
authors. Nevertheless, in the following, we provide a rough overview of preprocessing times for the
previously presented constellation of modules on a conventional consumer desktop PC (GeForce GTX
1080Ti, 32 GB RAM, SSD, Intel i7-6700K). The considered data set consists of one handheld camera
video (2 min, 1080 p) and three static camera videos from surveillance cameras recording a scene
(1.5 min each, 1080 p). For the static 3D scene reconstruction, mainly frames from the moving camera
are taken into account (two-minute video). A sparse reconstruction can be created within 10 min.
The following dense reconstruction requires approximately 90 min to complete. It is noteworthy
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that this step only has to be completed once and is not affected by additional static cameras that are
embedded in the scene. The given example data set comprises three time-dependent videos which
are reconstructed as a dynamic scene. The dynamic object detection and segmentation, as well as
the monocular depth estimation, requires about 250 ms per frame. For the given example data set,
this results in about 27 min for 6480 frames. This process can be sped up by only reconstructing
keyframes. In particular preprocessing times of the high-level analysis are highly dependent on the
content of videos, i.e., if many objects appear in the scene, the time increases, and vice versa. Object
detection, re-identification, skeleton extraction, and 3D pose calculation require roughly 500 ms per
frame. For the given example dataset, this results in an overall run time of 54 min. In the current
configuration, the modules were opted for high-quality results. By tweaking parameters, for instance,
by disabling multi-resolution object identification in the YOLO module, processing times can be sped
up significantly.

In summary, the preprocessing pipeline required approximately 181 min to process the example
data set and display the result in an enriched 4D scene, which can be explored interactively. To allow
for fast analysis procedures, all individual modules can be tweaked at the price of lowering the quality
of results. Additionally, thanks to the modularity of the pipeline and highly parallelizable modules,
preprocessing computation can be outsourced to more powerful GPU clusters, shrinking preprocessing
times to a fraction of the ones described above.

4. Visual Exploration of 4D Reconstruction

After completing the preprocessing pipeline, analysts can inspect and examine the reconstructed
scene using an interactive application. Figure 11 depicts the main building blocks of the analysis
application. On the left is the 3D reconstruction, including a static mesh of the given environment and
spatially registered time-independent materials such as photos and panoramas. This environment
can be spatially explored and enriched with annotations, even if no time-dependent materials were
added to the analysis. On the right are all time-dependent materials, such as cameras with estimated
locations in space per timestamp, dynamic point clouds, and extracted meta information. We provide
a video to demonstrate an exemplary visual exploration of a 4D reconstruction (https://www.youtub
e.com/watch?v=bcDrLCaI2RI). In the following, most examples are taken from a 4D reconstruction
based on the dataset provided by Pollok [68]. The dataset includes several scenes in which several
persons, cars, suitcases, etc. are visible and actors reenact different scenarios (e.g., kidnapping and
dropping suitcases). It contains video material from three static surveillance cameras as well as footage
from handheld devices monitoring the reenacted incident.
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Figure 11. Main elements of the analysis application.
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Figure 12 gives a first impression of the benefit of the presented approach. The static 3D
reconstruction serves as a base visualization in which all input sources can be placed within a shared
context. Static elements such as photos (green) and panoramic images (teal), which provide additional
contextual information about the environment, can be spatially registered. Their positions are indicated
as camera icons or spheres. Video sources are also spatially registered and visualized as camera
icons (orange, blue, and red). This visualization gives the user a good overview of all available
input sources and their spatial distribution. It allows the user to relate sources to each other and,
for example, find all cameras directed to a certain point of interest. Last but not least, the video
footage is temporally synchronized and automatically extracted meta information from all sources
can be displayed simultaneously. Blue and yellow dashed lines mark skeletons of detected persons,
which were found in different videos. In the following, the building blocks of the demonstrator are
described in more detail.

Figure 12. Multiple data sources are bundled and displayed simultaneously in a shared context. On the
left side, three frames from static surveillance cameras are displayed. Their locations are indicated by
small camera icons in the 3D scene (orange, blue, and red). Detections from all cameras are displayed
simultaneously in the scene (dashed lines) as well as static material, such as photos (light green) and
panoramic images (teal).

4.1. GUI

The ISRA-4D interface for the visual exploration of the 4D reconstruction comprises four main
parts. As shown in Figure 13, the view of the reconstruction (center) is surrounded by three panels:
a menu bar at the top, a mini-map in the top right corner, and a timeline panel at the bottom.

4.1.1. Menu Bar

The menu bar at the top (see Figure 13) allows the user to configure the appearance of the
inspected scene and provides options for additional user interactions. A time slider at the top left
corner with a play/pause button is followed five menu panels. The first panel (Layer Options) allows
the user to switch visual layers, such as static and dynamic point clouds, the static mesh, or camera
icons in the main scene. The second tab (Custom Annotations) provides functions for adding, loading,
saving, and changing manual annotations. The third tab (Real Data) contains three interaction options
for entering or retrieving original photo/video footage into or from the scene. Next to it, there is
a panel (Detections) for configuring the appearance of automatically extracted content, i.e., detected
persons and objects. For instance, users can determine whether bounding boxes should be displayed
or skeletons should be drawn into the scene. The last tab (Advanced) contains additional functionalities
for manually editing and saving automatically extracted detections as well as options for configuring
the VR interface.
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Figure 13. The graphical user interface of the presented demonstrator consists of four main parts:
a menu at the top, a minimap at the top right, a bottom panel, and the main window as a view of the
inspected scene.

4.1.2. Minimap

To keep an overview while inspecting the scene, a minimap at the top right provides a birds eye
view of the environment (see Figure 14). The current position and viewing direction of the observer is
indicated by a red dot and a frustum of pyramid. The minimap’s size can be arbitrarily changed by
using drag and drop on the small icon at the bottom left. If cameras are active at the currently selected
time, their icons can also be displayed in the minimap, giving the observer an overview of all sources
that were monitoring the scene at the selected time. Selecting a camera in the minimap changes the
viewport of the main window to that of the selected camera, allowing the user to inspect the scene
from the perspective of the source and, if desired, view the original video footage.

Figure 14. Minimap depicting a top-down view of the reconstructed environment. The locations of the
cameras recording the investigated incident are displayed as small camera icons (3 static cameras: blue,
green, and magenta; 2 moving cameras: red and yellow). The current location of the user is shown as a
small dot, with a red frustum indicating the viewing direction (center) and field of view.

4.1.3. Bottom Panel

The bottom panel represents a timeline that covers the period from all time-dependent contents
(see Figure 13, bottom). By default, it is collapsed, but it unfolds when the mouse cursor is moved
over it, revealing frame previews and additional visualizations about the class distribution and the
duration of detections in the scene. See Section 4.4 for more information on the visual elements in the
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bottom panel. A transparent yellow slider indicates the current temporal position. By clicking on the
timeline, the analyst can choose to view a specific point in time manually.

4.2. Reconstruction (3D) & Spatial Navigation

Time-independent elements comprise a static 3D reconstruction of the environment, including
photos and panoramas that are temporally not registered, and manual annotations (see Figure 11, left).
All these elements are static and can be explored independently of temporal navigation. The static 3D
reconstruction of the environment serves as a base visualization. Figure 15 shows an exemplary 3D
reconstruction. The user can navigate through the scene using standard input modalities (mouse and
keyboard). The virtual camera can be moved with the keyboard and rotated with the mouse.

Figure 15. 3D scene that can be inspected by flying around in it, which interactively changes the perspective.

4.2.1. Photospheres and Time-Independent Materials

Additional materials collected for the respective environment can be embedded into the scene,
including forensic evidence photos of a crime scene, panoramic shots, and photospheres. These expand
the context provided in the analysis, or the analyst can employ them for pre-post comparisons.
Figure 16 shows how a panoramic image (left) is displayed within the 3D scene as a textured sphere
(center). Once the user clicks on the sphere, the virtual camera is moved to the location of the sphere
and the panorama is blended over the 3D reconstruction (right). The user can then “look around” in
the 3D scene by similarly using the mouse as before. Photos, photospheres, and panoramas can also be
inserted live during the entire analysis process. For example, if the automatic positioning of panoramas
is not correct or if new sources became available after the reconstruction was completed. For that to
happen, the user can press the corresponding button in the top menu (see Figure 13, “Real Data”),
position the new sphere, and select the image from the hard drive to be inserted.

Figure 16. Panoramas (Left) are displayed as spheres in the scene (center). By opening a sphere,
the user “enters” the photosphere to inspect it (right).
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4.2.2. Annotations

Users can further enrich the scene by manually adding static annotations (see Figure 17).
The respective interaction for adding a new annotation can be selected in the top menu bar. The user
then defines the position of the annotation in two steps. First, a horizontal plane must be selected,
which determines the height of the annotation. Second, users can select a position on the plane,
allowing them to pick the desired 3D location on the 2D screen. After setting the location, width,
height, and depth, additional information of the annotation can be altered. For example, the user can
specify a custom logo, enter an annotation label, and type notes.

Figure 17. Static user annotations can be manually added to the scene.

4.3. Dynamic Content

Time-dependent elements include temporally registered cameras (static and moving), dynamic
point clouds, detections from video footage, and animated user annotations (see Figure 11, right).
All these elements are registered on the global timeline and can be explored by temporal navigation.

4.3.1. Temporal Navigation & Timeline

For easy access, the timeline is displayed twice—at the top left corner and, in large, in the
bottom panel (see Figure 13). The currently selected time is indicated by slider bars in the respective
timelines and numbers in the upper left-hand corner. The time range is automatically extracted from
time-dependent sources as the time span from the global minimum time to the global maximum time.
To navigate through time, the user can drag the timeline handles or click anywhere on the timeline.
With the play button in the upper left corner, the time can be automatically increased continuously,
analogous to the real-time progression. Once clicked, the button turns into a pause button that can be
used to stop the automatic increment in time.

4.3.2. Camera Positions

All time-dependent video sources are registered in the timeline, and their location is indicated
by a small camera icon that can be made visible if required in the scene and the minimap, separately.
Camera icons are only visible if they provide footage for the currently selected time on the time slider.
As shown in Figure 18, different types of frustums can be displayed, highlighting the area in the
3D reconstruction that is covered by the video material of the respective camera. On the left side,
a semi-transparent frustum is inserted into the scene, clearly showing a cut through the scene where
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the viewport ends. On the right are two alternative frustum options that work with illumination.
At the top right, the camera projects a colored light into the scene that illuminates everything seen by
the camera. At the bottom right, a subtractive approach is shown, which hides everything that the
camera cannot see.

Camera icons in the scene and on the minimap can be clicked to take a look at the scene from the
perspective of the selected camera. Once a camera is selected, it is possible to view its original video
material. Additionally, the user can select interactions from the menu bar option “Real Data” to jump
to the nearest camera to discover original footage for a potentially interesting perspective. The user
can also select a point on the 3D reconstruction to retrieve all cameras with the chosen point within
their field of view at the currently selected time on the time slider.

Figure 18. The camera frustums displayed in the scene and minimap can be customized: either as
semi-transparent objects (Left) or using additive (top right) or subtractive (bottom right) lighting.

Moving cameras change their location in the scene over time. Therefore, a camera icon is created
for each frame, as shown in Figure 19. The camera position at the currently selected time is highlighted
with a red halo around the respective camera icon. This view helps to get an overview of where a
camera has moved to and which areas are generally covered. The user can configure the display of
moving camera frustums to reduce clutter. The user can set for how long after and before the currently
selected time dynamic frustums should be displayed. This makes it possible to show only one frustum
that changes its location over time or to show the current one with any number of preceding and
succeeding camera icons. Transparency is used to encode temporal distance.

Figure 19. The user can configure the display of moving cameras in the scene. The location of the
camera at the currently selected time is highlighted with a red halo. In this example, the camera
locations of the last four time steps are also shown with increasing opacity.

4.3.3. Detections

Each time-dependent video is preprocessed in a feature extraction pipeline (see Section 3.4).
The generated information can be visualized in the 4D reconstruction. Using the top menu bar, the user
can configure how detections are displayed. As shown in Figure 20, a detection can be represented
as (a) an abstract minimum bounding box with a title; (b) the best shot of its track; (c) the snippet of
the minimum bounding box from the original video, as (d) a combination of a, b, and c; or, in case
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the detection belongs to the class “person”, (e) a skeleton. Detections are displayed with regard to the
currently selected time on the time slider. This means that all detections found in different sources
at the selected time are displayed. The user can select the sources (cameras) from which detections
should be displayed. Additionally, it is possible to filter detections according to their class, so that only
detections of certain classes, such as suitcases and bikes, are displayed.

Figure 20. (a) A detection can be displayed as a bounding box, (b) the best shot of its track, (c) the
corresponding snippet from its frame, (d) a combination of bounding box and best shot or frame
snippet, or, if available, (e) its skeleton.

By clicking on a detection in the scene, a context menu appears on the left side (see Figure 21).
This menu allows the user to change its label and add notes. Once a detection has been selected, its track
trajectory is visualized in the 3D scene, depicting its spatial progression over time (see Figure 21).
Black arrows on the trajectory indicate the direction of movement.

Figure 21. The trajectory of a selected detection is visualized as a directed path within the scene.
A menu allows to change the displayed title of a detection and to leave notes.

The demonstrator comprises tools to manually refine and adjust automatically extracted
information in case the automatic approach did not work as desired. If, for example, two persons who
look similar cross in front of a camera, their tracks may get mixed up, and the information displayed
is incorrect. The user can solve such issues by splitting the respective tracks and then merging the
related tracks.

Identities can be anonymized to protect the privacy of persons in the 4D reconstruction.
For instance, if the tool is deployed for an investigation at a public place, faces of bypassers who are
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not subject to the investigation itself can be pixelated, making them unrecognizable. As displayed
in Figure 22, a face detection algorithm detects bounding boxes of faces, and the respective area is
pixelated. Throughout the analysis, investigators can reveal the faces of persons that are relevant to
the case. A right management system could be deployed to regulate face revelations and define who
can use this function.

Figure 22. Faces of displayed persons within the 4D reconstruction can be anonymized for privacy
reasons. A face detection algorithm detects the bounding boxes of faces (center) which are subsequently
blurred in the displayed content throughout the visual analysis (right).

4.3.4. Dynamic Point Clouds

For each time-dependent camera in the scene, a dynamic point cloud is extracted in the
preprocessing step. During the inspection of the scene, the 3D point clouds of all cameras recorded
at the currently selected time can be displayed simultaneously. In this way, it is possible to perceive
the content of several videos at the same time and in a mutual spatial context without much mental
effort. While playing, the observer can fly through the scene and observe the progression of events
from different perspectives.

Of course, it is possible to select which cameras are to be displayed as 3D point
clouds. The advantage of this technique is that, unlike automatically extracted meta-information
(e.g., detections), the original video footage is completely mapped into the 3D scene. Due to detection
or classification errors, certain people or objects may not be detected in a frame and, therefore, not be
displayed in case the option to show all detections in the scene is selected. However, if the point cloud
of the respective frame is visualized in the scene, each pixel of the input frame is also displayed.

If the point cloud is viewed from the camera location, it resembles the original video footage.
Figure 23 shows an example of the dynamic point cloud visualization in the reconstructed environment.
In the current perspective, point clouds are displayed as shown on the left. However, when navigating
through space and observing, for instance, a person from different perspectives, different point clouds
can be observed from cameras monitoring the scene from respective directions (e.g., (1) from the
orange and (2) from the blue viewing angle).
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Figure 23. Dynamic point clouds displayed in the static scene from the current perspective (Left).
If one navigates through space, the perspective changes and point clouds generated from different
cameras can be perceived. For example, (1) the (top right) point cloud snippet can be seen from the
direction indicated by (1) the orange camera and (2) the (bottom right) one from the direction indicated
by the blue camera.

4.3.5. Animated Annotations

Static annotations can be animated and thus integrated into the global timeline along with videos
and detections. To do this, the user can select the annotation to animate and select the option to add
a waypoint. This action creates a waypoint for the annotation’s current location, and another can
be set interactively, similar to the location selection of annotations (see Section 4.2). When adding
waypoints, the bottom panel view is automatically changed to a waypoint timeline view (see Figure 24).
Each annotation is displayed in a list, and all corresponding waypoints are lined up for each annotation.
The user can shift waypoints in time to define the location of the annotation at a specific time. If two
waypoints are at different locations, the annotation position is interpolated depending on the time
between the two waypoints. In this way, the user can, for example, reconstruct a course of events
described by eyewitnesses or plan the progression of an intervention.

Figure 24. To animate annotations, waypoints can be set and arranged on a timeline that temporarily
replaces the bottom panel. Waypoints determine the location of an annotation at a particular time.
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4.4. Visual Analysis

The bottom panel can be expanded by hovering over it with the mouse, as depicted in Figure 25.
Optionally, it can be pinned to stay open and reveal the underlying visualizations while navigating
through the environment. When it is enlarged, three visualization elements appear. At the top,
all time-dependent video frames are aligned in a scrollable and filterable list that indicates the start
and endpoint of each video on the global timeline and provides a first glance at the original video
footage. The visibility of the frames is supported by a fisheye effect induced by hovering over the
frames. Dependent visualizations accordingly scale while hovering.

Figure 25. The bottom panel consists of three elements: At the top is a frame preview of all selected
cameras. In the center, the class distributions of the detections are visualized as horizon charts. At the
bottom is a chart depicting the appearances of all detections as lines.

The other two elements (center, bottom) are visualizations of automatically extracted detections.
A horizon chart visualization shows the distribution of a particular class of detections over the entire
time axis in the center. The user can select classes and combinations thereof to be displayed as
individual horizon charts. For each selection, a horizon chart is displayed, showing the total number
of detections of the selected class(es) at each time. In the example (see Figure 25), one horizon chart
was created for all detections of the “suitcase” class and another for the “person” class. With the
given visualization, it is easy to identify at what times a particular object type was detected to
jump to it quickly. Besides, this visualization allows the user to identify periods when nothing was
detected, which in surveillance use cases, for example, helps to sight large amounts of video material
more quickly.

The last visualization element (bottom) shows the time spans of detected tracks. Each row belongs
to a single object and is filled with color when it was detected in the original footage. The line’s color
represents a visual link to the corresponding video in which the track was detected (colored camera
icons in scene and minimap). The sources of the detections visualized in the bottom panel can be
filtered as desired to analyze only one video or a subset of videos.

Additionally, the current selection of detections (after filtering by classes and video sources) can
be displayed as a heatmap projected onto the reconstruction (see Figure 26). Once the user selects the
respective option in the top menu bar (Figure 13, “Detections”), a 2D heatmap with the locations of all
selected detections is created in the background. A grid of 10 × 10 cm tiles with the environment’s
size is used to create the heatmap. Each tile counts how many detections are in its corresponding area.
The resulting n × m grid is smoothed with a Gaussian kernel, normalized, and finally saved as an
image in which the corresponding tile value determines each pixel on a user-defined color gradient
(from transparent to yellow to red). The generated image is then projected orthogonally onto the mesh.

With the heatmap visualization, the user can quickly identify which areas of the environment
contain most occurrences of persons and objects and which areas were uneventful. For example,
by filtering for all detections of the class “suitcase” and displaying the heatmap for it, the user can
quickly see where a suitcase was detected to find all video sources which monitored the respective
areas. Especially in combination with horizon chart visualizations, it is easy to find all videos in which
and the corresponding times at which suitcases were spotted.
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Figure 26. A heatmap visualization of selected detections can be projected onto the environment
providing an overview of where objects or persons were detected in the analyzed scene.

Throughout the analysis, the user can insert images or spatial and time-dependent annotations.
Additionally, the user can activate a measuring tool in the top menu (Figure 13, “Measure Distance”).
Once activated, measuring points can be created by clicking on the environment (see Figure 27).
Intermediate segments are labeled with their distance in meters, and the total length is displayed in
the top menu.

Figure 27. Interactive tool for measuring distances and object sizes in the reconstruction.

4.5. VR Exploration

Besides exploring the 4D reconstruction on a monitor screen, it is possible to enter the scene in
virtual reality (“VR”). When a VR headset is connected to the PC, it is automatically recognized and
configured for usage. In the current example, we use a Valve Index VR head-mounted display [69].
The environment is scaled to metric space, which means that the environment is represented as a
life-size model. Distances and dimensions of objects can be viewed as in the real world. Figure 28 shows
an example scene as it can be observed in VR. All visualization elements like detections, heatmaps,
camera positions, and annotations can also be inspected in VR. The user can navigate through space by
walking (if the available physical space allows it) or virtual teleportation. The user can press and hold
the touchpad on the right controller to select a target location to teleport. When released, the user’s
location is set to the respective position.
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Figure 28. (Left) View of an exemplary scene in VR. (Right) Set-up with immersed investigator.

For further interactions, the user can open a menu by placing the thumb on the right joystick
(see Figure 29, left). The joystick can be moved around and released at the desired option to select an
item on the radial menu. The selected menu opens and is attached to the left controller. Options can
then be selected by pointing the laser on the right controller at them and pressing the right trigger
button. In this way, it is possible to modify the appearance of the scene (“Layer Options”), the display
of detections (“Detections”), and the annotation of the scene (“Annotation Options”). The user can
either drag the slider attached to the left controller or use the left joystick to scroll forward and
backward to navigate in time.

Figure 29. (Left) A radial menu can be opened on the right controller to open various menus that are
displayed on the left controller to configure the visualized scene. (Right) A minimap and a distance
measuring tool can be activated on demand.

A minimap of the environment can be toggled using the “B” button on the left controller (Figure 29,
right). The user can click in the minimap to teleport to the selected location. Furthermore, the “B”
button on the right controller can be used to toggle a measuring tool. After activation, the laser
emitted from the right controller measures the distance to the surface that it hits and displays it above
the controller.

Similar to interaction possibilities on the screen, the user can select detections and annotations
in VR by pointing at them and pressing the trigger button. When selected, the respective menu is
displayed and attached to the left controller. As traditional text input in VR is quite cumbersome,
a speech-to-text module allows to change labels or add textual notes to annotations and detections
via voice commands. For this, the user can select an input field, hold down the left trigger button,
and record spoken input. Afterward, it is converted to text and inserted into the chosen input field.
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Our exploration tool allows the simultaneous usage on a screen and in VR. While one collaborator
observes the scene in VR, the other can interact as usual on the monitor while seeing the VR user as
an avatar walking through the scene (see Figure 30, left). If two monitors are connected to the PC,
one depicts the scene’s regular interface and the other the observer’s view in VR (Figure 30). The VR
user can activate a laser pointer on the right controller by pressing the right trigger button to point at
something for improved communication.

Figure 30. Collaborative setup with multiple monitors connected to the system. One monitor shows the
usual view of the 4D reconstruction (Left) and the other one, a view from the simultaneous observer’s
perspective in VR (right). An avatar of the VR observer is displayed in the desktop interface (Left).

In a initial qualitative assessment, law enforcement officers who had the opportunity to test
our demonstrator provided feedback. Eleven criminal investigators of the German Federal Police
(Bundespolizei) evaluated the presented demonstrator. Overall, they were convinced of the added
value of virtual reality in the given context. The main argument was that it was advantageous to
inspect the scene “from within”, as one could perceive the environment in its natural size and explore
it by walking around in it. This made it easier for them to estimate distances between detected entities
and get a better spatial sense of the scenario. Another potential benefit mentioned was that such virtual
tours in VR could be used to inspect crime scenes from a distance without visiting their actual physical
location, or to use them at court to illustrate a sequence of events in a criminal incident graphically.

5. Use Cases

In the following, four use cases demonstrate the potential of the proposed approach.

5.1. Mass Data Analysis & Preparation of Evidence

After major criminal incidents, such as terrorist attacks in a city, law enforcement agencies
collect large amounts of evidence. These usually consist, among other things, of surveillance
videos and recordings of eyewitnesses (photos and videos). In the case of unusually large incidents,
law enforcement agencies even tend to set up platforms for the civil population to upload witness
photos and video recordings. In total, the amount of digital information collected can easily exceed
thousands of gigabytes of data and months of non-stop video recording. In practice, the review of
evidence materials is still primarily done by hand. Criminal investigators go through all photos
and videos, assess their relevance, and try to relate them to other materials, e.g., by annotating time,
location, and meta information.

However, to cope with such an amount of data and facilitate the preparation of evidence for use
at court, automatic mechanisms could be used. Our demonstrator could filter spatially and temporally
relevant sources, place them in a shared context, and extract valuable meta information. To achieve
this, the region of interest would first have to be specified and reconstructed as a 3D model. To return
to the example of a terrorist attack in a city, videos of all affected areas could be employed to create
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a reconstruction. This can either be videos and photos from the time after the incident (filming the
area with handheld cameras or drones) or video footage from the incident, which can be assigned
with certainty to the area of interest (e.g., surveillance cameras with known locations). Subsequently,
the entire pool of videos and images of the incident is fed into the reconstruction pipeline, trying
to find matching points with the original reconstruction. Materials that do not overlap with the
reconstruction are filtered out and may be subject to manual inspection. However, for all videos and
images that can be registered at the site of the event, their location can be estimated and positioned in
the reconstruction. After a semiautomatic temporal synchronization step, footage from before or after
the incident can also be filtered out. All remaining evidence can be aligned on a shared time axis.

The 4D reconstruction can then be inspected, providing an overview of the environment,
all available video and photo sources and their locations, and the time during which each location
was monitored. This approach could drastically reduce the materials that need to be viewed manually.
In addition, the approach facilitates the process of bringing recordings of the same area from different
angles into a mutual spatial context without much mental effort. Moreover, the automatic approach
could assist investigators in the analysis of meta information. For example, it would be possible to
track an object or person through a single video or complete footage. In the graphical exploration,
an entity’s spatial progression would be displayed as a single continuous path, regardless of the
recording’s source.

Besides providing a quick first overview of the evidence, it can be used as a starting point for
further adjustments, such as the manual insertion of footage that could not automatically be registered
correctly. When all relevant information is in one place and can be located precisely in space and time,
it is much easier to keep track of large amounts of evidence.

5.2. Crime Scene Investigation

Crime scenes, such as a murder scene, are carefully documented during criminal investigations.
After the incident, the police collects forensic footage to record evidence and store as much information
as possible about what the location looked like shortly after the crime was discovered. If available,
information at the time of the incident is also considered, such as nearby surveillance cameras,
witness reports, or even videos and witnesses’ photos.

A 3D model of the crime scene can be reconstructed with the presented demonstrator, showing the
crime scene as it was found before clean-up. All available sources are registered in the reconstruction.
In this way, the highly unstructured mass of digital information is spatially organized, so that,
for example, all sources recording a certain point in space can be easily identified. The 3D model could
help criminal investigators organize the available information and put it into a spatial context without
much mental effort. It also allows remote inspecting of the crime scene without physical presence and
at a later time. For example, as pointed out by interviewed criminal investigators, the reconstruction
could be used as an interactive, graphic basis for conveying information at court hearings.

Besides providing a permanent image of the crime scene, footage of the incident itself, if available,
can be interlaced. Similar to the previous use case, footage from surveillance cameras and eyewitnesses
can be displayed in the reconstruction. Meta information such as person and object detections and
their tracks could be automatically extracted and displayed. As the forensic material provides much
information about the scene after the incident, pre–post comparisons with the footage could easily
be made. For example, suppose a specific point of interest was recorded with a surveillance camera.
In that case, this point can be selected in the 3D scene to reveal all original footage sources which
contain the same location.

The 3D reconstruction could also be incredibly helpful in reconstructing the sequence of events
that led to the crime and a possible later course of events. If, for example, witness reports are available,
criminal investigators can resort to animated annotations and try to visually model the described
occurrences—possibly together with the witnesses themselves. Having a graphic representation of the
environment in front of them could help them remember the course of events more accurately.
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5.3. Real-Time Surveillance Scenario

The approach presented could also be used for real-time surveillance tasks. A monitored complex,
such as an airport site, can be reconstructed as a 3D model—either with the previously presented
method using large amounts of images or with alternative approaches, such as native 3D modeling
(e.g., with a floor plan of the building), or 3D laser scanning. All available surveillance cameras
are then spatially registered within the model, and their video streams are fed into the system
(see Figure 31). Their video streams are processed in real-time in a pipeline for object and person
detection. The extracted meta information is continuously displayed within the 3D scene. Security
staff can then interactively monitor a single representation of the entire complex, rather than a wall of
monitors, showing the footage from a single surveillance camera. Besides, the model would provide a
good overview of the distribution of cameras in the complex, making it easier to follow suspicious
persons walking past different cameras, even if the cameras’ original video recording is monitored.
Especially in use cases like this one, however, it must be critically reflected from a data protection
and ethical point of view to what extent technical possibilities should be employed. For example,
the tracing and re-identification of a person could already constitute a massive encroachment on a
person’s rights.

Figure 31. Reconstruction of airport in which multiple surveillance cameras are spatially registered.
Video streams of the cameras are fed into the system and automatically extracted detections are depicted
in the 3D reconstruction in real-time.

5.4. Mission Planning and Training

Another use case for the presented demonstrator would be applying 3D reconstructions for
mission planning and training scenarios. For example, in the case of a hostage situation in a
university, the available video and photo footage of its complex could be used to create a reconstruction.
Additional material collected during recon missions by robots or drones can be used to improve the
3D model. Special police forces could then use this reconstruction to get a picture of the surroundings
and plan strategies. For example, animated annotations can be used to sketch possible ways to enter
the building and free the hostages (see Figure 32).

Furthermore, police forces could use models of past missions or create new 3D models of training
environments to train their personal. Employing VR could be of particular benefit in such training
scenarios, as trainees can enter the given surrounding and perceive them more realistically. Previous
research points to advantages of virtual reality in terms of memorability [49], spatial navigation [70],
orientation [71], learning performance on 3D models [41], and the understanding of complex
geometries [44], which could also lead to an overall better training effect in the given context.
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Figure 32. Exemplary reconstruction of the environment for strategy planning in police operations.
The demonstrator creates a static mesh from drone recordings. The planned movement of police forces
can be sketched in it.

6. Discussion

6.1. Limitations

The current version of the demonstrator has different limitations. Like other state-of-the-art
3D scene reconstruction algorithms, the current algorithm is sensitive to low-quality input material.
For example, differences in illumination in images taken from the same location may mean that no
commonalities may be found between the two sources, leading to the inability to identify spatial
links. The image quality is also of great importance. Artifacts caused by motion blur in videos or
low image quality, e.g., due to poor illumination during night shots, have a significant impact on the
reconstruction quality and can make it impossible to register cameras. Therefore, it is not guaranteed
that all videos that record a specific location are also registered in space and thus revealed in the
visual analysis process. Additionally, cameras may be incorrectly registered due to a confusion of
crucial points. Both cases pose a threat to a possible decision-making process during visual analysis.
Therefore, it is essential to verify automatically calculated and extracted information and consult the
original data for the final decision making. Although the current framework provides links to original
data, the convenience provided may discourage additional verification steps.

In the current approach, the reconstruction can be recognized as a non-realistic estimation of the
environment. However, with improving reconstruction algorithms, the environment’s quality and level
of realism might align more and more with real-world experiences. Like this, errors in the reconstruction
might be accepted without further verification. Therefore, the currently already provided functionalities
to quickly open original video and image footage will be important in the future.

We presented our tool’s functionality for navigation through a 4D reconstruction in VR. Although
this offers several advantages, it also has drawbacks. Some users are prone to simulator sickness and
become nauseous after a short time of immersion, limiting the target group of potential end users.
Moreover, even though the illusory reality looks spacious, the physical interaction space is usually
limited, resulting in a small area where users can actually walk naturally. Movement-compensating
techniques such as virtual teleportation must be used to cover greater distances in VR, but can
negatively influence the perceived presence and orientation [71].

Beyond that, the demonstrator presented is intended to convey the underlying concepts and
not represent a ready-to-use prototype. Therefore, it cannot currently scale to hundreds of input
videos. The preprocessing should be outsourced to a GPU cluster, enabling highly parallel processing
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to process more massive amounts of input data. This would lead to an almost linear reduction in
computation time since most high computing power steps can indeed be parallelized.

6.2. Ethical Considerations and Legal Aspects

Naudts and Vogiatzoglou state in “The VICTORIA Ethical and Legal Management Toolkit”
that every application of new technology should consider several general ethical principles [72].
The proposed approach requires readily available imaging data. Of course, this data needs to be
gathered in a lawful and ethical way. For example, this could include locations such as airports,
train stations, or other public places where CCTV cameras are already deployed. To create a proper
reconstruction, additional imaging material from a moving camera sensor is necessary. It is best
to achieve a high-quality reconstruction if no persons or other moving objects obstruct the view.
Thus, no personal data is required for the reconstruction.

The following list of general ethical principles [72] need to be discussed that concern the proposed
demonstrator. Beneficence is a principle stating that new technology should improve the individual
and collective well-being. Our approach is designed to improve the way users can access 4D imaging
data from multiple camera sensors in a more intuitive manner. In general, this measurement can
improve the overview of complex scenes, such as an airport, enabling security personnel to detect
important events such as an imminent threat and eventually respond faster. In the case of a crime
scene reconstruction, a 4D scene may enable criminal investigators and legal experts to improve
the decision-making, and the trial process as the specific spatial properties of a crime scene can be
investigated exploratory and immersively using virtual reality. This is also relevant in the principle
of the right to a fair trial. The same argument is also valid for our use case of mission planning and
training, potentially saving lives.

On the contrary, the principle of non-maleficence states that new technology may not be exploited
to harm human beings. Our most significant concern here is that our approach may lead to an increase
in surveillance, as it allows humans to maintain the overview of a scene even if more camera sensors
are being added. On the other hand, deploying CCTV cameras must be aligned to the law and is
heavily regulated in many countries.

Justice and fairness are heavily discussed topics in scientific communities [73] and politics [74].
This topic is related to non-discriminatory AI. Both topics are notably complex, and no general
solution seems to be available. Naudts describes how this is also reflected in regulations as they are
complex and multilayered [75]. The modular system employed in the presented demonstrator also
includes the detection of objects and persons. The demonstrator merely receives a class, bounding
box, and the respective frame plus additional metadata such as uncertainty values. Our tool displays
all available data and does not filter, for example, by uncertainty values to mitigate the problem of
fairness. However, the problem that certain aspects of a scene may remain undetected persists, but it
is more unlikely the more cameras and frames are available containing the object. Another optional
module is the re-identification if this is enabled, it allows the user to track objects through the scene;
for example, by visualizing the paths and lifelines. Such modules may require the use of biometric
data such as detecting persons by their faces. Therefore, the lawful applicability must be ensured.
However, as Kindt argues, clearer rules regarding the use of biometric data are required [76]. This is
also heavily affected by GDPR. Our approach is robust to deal with, for example, with blurred faces.
The data must be prepared before it is loaded into our tool.

The principle of autonomy states that humans must remain in control over important decisions
affecting themselves and others. In the research field of visual analytics, this is also known as the
human being, the ultimate decision-maker. In a criminal investigation, interactions with a tool relevant
for decision-making must be tracked and presented at court in combination with the findings [38].
We envision our approach and tool as an alternative view for 4D scenes. It does not automatically
make decisions except for the reconstruction itself. The tool furthermore always allows the operator to
access and view the original data and relevant metadata. This measurement also complies with the
principle of explicability and eventually increases the operator’s trust in the system.



Sensors 2020, 20, 5426 33 of 38

6.3. Future Work

New techniques and approaches are continually being developed, which are improvements
of current steps in our preprocessing pipeline. For example, new, faster, and more accurate ways
are developed to detect objects and persons in videos, re-identify them in other frames or videos,
and extract metadata from them. The presented demonstrator is based on a modular design that allows
the continuous adaptation to technological progress.

In the future, outsourcing the preprocessing pipeline to a GPU cluster should increase processing
speed and facilitate the analysis of large amounts of videos. We also plan to improve various steps in
the preprocessing procedure, such as the extraction of meta information. Although skeletal data can be
easily extracted from detected persons, they are not yet classified for further analysis. Another next step
would be to apply behavior classification networks to the skeletal data. As a result, the skeletons would
be labeled with tags describing their current state within a particular frame, such as “walking” or
“sitting”. We also plan to improve the inter-video re-identification of detections to calculate 3D locations
of detections, merge 3D point clouds of the same detection, and create 3D avatars for detected persons.

Currently, the reconstruction of the static 3D environment and the cameras’ spatial localization
are computed in a single step. It would be advantageous if sources could be added incrementally to an
existing 3D reconstruction. In this way it might even be possible to register a moving camera on-the-fly
in the static reconstruction and enable image-based position tracking.

Furthermore, we plan to extend the applicability of the tools for collaborative investigations.
Currently, only one person at a time can enter the virtual environment. In the future, however,
the remote collaboration of several users in virtual reality should be supported. The option to enter
the same virtual environment and explore the 4D reconstruction interactively could improve the
dialogue between remotely located participants due to the improved communication basis [77,78].
Future research should assess the possible benefits of remotely co-located collaboration in this context.

In addition to a quantitative evaluation of immersive analytics for the interactive analysis of
4D scene reconstructions, we also plan to systematically evaluate the overall system by assessing its
performance for various analysis tasks and comparing it with alternative approaches. For selected
databases, users will try to solve specific tasks and extract high-level information from the data. Tasks
could range from basic questions such as “How many different people are visible in all videos?”
or “Who drops a suitcase when and where?” to more complex analysis tasks such as “Find the person
who threw a bottle, trace back where he/she came from, and extract a frontal image of the person’s
face”. Besides performance and task completion times, additional measures such as usability and
workload will be taken into account.

7. Conclusions

This work introduces a framework for the interactive, visual analysis of mass image and video
data. The framework consists of a modular preprocessing pipeline that prepares a highly unstructured
and heterogeneous bulk of digital footage for later display. Besides the temporal and spatial registration
of the sources in a static 3D reconstruction of the corresponding environment, meta-information is
extracted for each video. Therefore, the user can spatially and temporally explore the data while
maintaining an overview of all materials. The main advantage of this approach is that all information
is presented in a shared visual context, which reduces users’ mental effort to link different sources.
Besides, the framework enables immersive exploration of the data space in VR, allowing the analyst
to “enter” the 4D reconstruction and search it more naturally. To illustrate the versatile applicability
of the framework, four use cases for different application areas such as crime scene investigation,
real-time surveillance, mission planing, and training scenarios were presented. Initial qualitative
assessments by criminal investigators underline the potential of using virtual reality for the exploration
of 4D reconstructions, as it fosters spatial understanding, allows more intuitive ways of collaboration,
and enables remote inspection of crime scenes in a natural way.
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