Visualization-Assisted Development of Deep Learning Models in Offline
Handwriting Recognition

Dominik Sacha’
Siemens Postal, Parcel &
Airport Logistics GmbH,

Konstanz

Martin Schall*
University of Applied
Sciences Konstanz
Siemens Postal, Parcel &
Airport Logistics GmbH,
Konstanz

Matthias O. Franz®
University of Applied
Sciences Konstanz

Manuel Stein*
University of Konstanz

Daniel A. Keim!
University of Konstanz

ABSTRACT

Deep learning is a field of machine learning that has been the focus
of active research and successful applications in recent years. Offline
handwriting recognition is one of the research fields and applica-
tions were deep neural networks have shown high accuracy. Deep
learning models and their training pipeline show a large amount of
hyper-parameters in their data selection, transformation, network
topology and training process that are sometimes interdependent.
This increases the overall difficulty and time necessary for building
and training a model for a specific data set and task at hand. This
work proposes a novel visualization-assisted workflow that guides
the model developer through the hyper-parameter search in order
to identify relevant parameters and modify them in a meaningful
way. This decreases the overall time necessary for building and
training a model. The contributions of this work are a workflow
for hyper-parameter search in offline handwriting recognition and
a heat map based visualization technique for deep neural networks
in multi-line offline handwriting recognition. This work applies
to offline handwriting recognition, but the general workflow can
possibly be adapted to other tasks as well.

Index Terms: Human-centered computing— Visualization—
Visualization techniques—Heat maps; Machine learning—Deep
Learning—Sequence labeling; Machine learning—Deep Learning—
Workflow;

1 INTRODUCTION

Offline handwriting recognition [21,27] is the transcription of natu-
ral text from images. It is an active field of research in deep learn-
ing [3,23], machine learning and document analysis. Connectionist
Temporal Classification [5] in combination with Multi-Dimensional
Long Short Term Memory [6, 10] represent the current state-of-the-
art in offline handwriting recognition for Latin and Arabic languages.
Recent publications [1,20] proposed to use a combined CNN-RNN
model for offline handwriting recognition. Multi-Dimensional Con-
nectionist Classification [22], an alignment and loss function for
training deep neural networks for segmentation-free multi-line of-
fline handwriting recognition was recently proposed.

Experiments and practical application have shown a high accu-
racy when applying deep learning, not only in offline handwriting
recognition, especially when large data sets are available for training.
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Examples for the successful application of deep learning [3,23] are
found in e.g. machine translation [12,30], computer vision [13,29]
and game Al [15,24]. However, understanding why deep neural
networks (DNN5s) can outperform other traditional machine learning
approaches as well as revealing how such complex models operate
is an under-explored research area. To address these problems, re-
searchers have successfully applied information visualization and
visual analytics techniques to make DNNs transparent and “black
box” processes interpretive. Visualization techniques have been pro-
posed [25,31] in order to improve the understanding of DNNs in their
domains. Developers of such complex DNNs leverage loss functions,
quality metrics and visualization techniques to derive actionable in-
sights to improve the model and their results. Adaptions concern
different stages along a typical machine learning workflow, such as
data-preparation, model-development, model-learning, or evaluation.
Such a machine-learning workflow typically covers multiple itera-
tions of tuning hyper-parameters, model structures, or evaluating
outputs of the learning process. Optimizations are typically done
with respect to a loss function that defines the optimization criteria
for the problem, e.g. minimizing the mean squared error on a defined
data set. Hyper-parameters and model structure are parameters of
the model that typically cannot be automatically optimized regarding
a loss function. Techniques for automatic hyper-parameter search
are for example grid search and cross validation. This cannot be
easily applied to offline handwriting recognition since training and
testing of a single model is very time consuming. Furthermore, there
are many hyper-parameters to tune while developing and building a
DNN model and training pipeline. Those hyper-parameters affect the
data loading, transformation, model topology and training process.
In addition to being numerous do these hyper-parameters include
dependencies to other hyper-parameters. Overall this increases the
time necessary for hyper-parameter search and thus the needed time
for building and training a DNN model that solves the task at hand.

In this paper, we address this challenge of finding hyper-
parameters for data-preparation, model-development and model-
learning for offline handwriting recognition by introducing a novel
visual analytics-assisted workflow allowing inspection and inquiries
in order to identify relevant hyper-parameters and adjust them in a
meaningful way. We guide users through the hyper-parameter search
enabling them to make informed decisions on the choice of hyper-
parameters and further data preparation. Our contributed workflow
is designed to proceed towards specific recommendations for actions
by inquiries using statistical measures in combination with visual
evaluations. Our proposed visualization is based on heat map vi-
sualizations and allows inspecting the DNNs output and alignment
for individual samples and characters. This method allows to utilize
expert human knowledge while defining and training deep neural
networks for offline handwriting recognition. Figure 1 shows our
visualization technique applied to a single character of a data sample
as a teaser of the overall technique detailed in Section 6. Our pro-
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Figure 1: Example of our proposed visualization technique to a single
character of a data sample. This visualization allows to quickly com-
pare the expected and actual model prediction in relation to the neural
network input. Please note that the heat map pixel size is different
from the image pixel size because of spatial subsampling applied in
the model.

posed workflow improves model results, reduces the time necessary
for model training and makes data-preparation, model-development
and model-learning more transparent and efficient.

2 POSITIONING OF OUR WORK

Recent work [2] has identified three tasks in explainable Al: under-
standing, debugging and refinement/steering. This work focuses on
both debugging and refinement. Debugging focuses on identifying
parts of the model that are defect and improve on those in order to
achieve a satisfying model accuracy. Refinement or steering is the
process of incorporating expert knowledge into the training process
or improving the training process itself to facilitate faster training or
higher accuracy.

A recent survey [11] provides an overview on how to integrate
visual analytics with deep learning. Our approach can be catego-
rized in this survey framework as follows. Why?: “Debugging &
Improving Models” is the main task of this work, but the presented
visualization can also be used for comparison of models given that
the accuracy of them is similar enough. What?: “Individual Compu-
tational Units” in the output layers fits this work, as well as “Network
Architecture” while testing the chosen hyper-parameters and data
preparation. When? is most likely “After Training” to improve the
next training if possible, but some faults can be improved by pausing
and continuation of the training. Who? is the “Model Developers
& Builders” in this work. How? are “Line Charts for Temporal
Metrics” for general evaluation, e.g. viewing the error rate over
training time. The visualization technique presented in this work is
covered by “Instance-based Analysis & Exploration”. Where? is the
“Application Domains & Models” in this work.

3 DEEP LEARNING MODEL

The task that our deep learning model [22] is designed to solve is
called Segmentation-Free Multi-Line Offline Handwriting Recogni-
tion which is a “super-task” of sequence labeling [4] and generalizes
it from 1-dimensional sequences to n-dimensional problems. Of-
fline handwriting recognition is the transcription of handwritten text
from an image to a machine-processable character sequence. An
example of a well known data set for this task is the [AM Offline
Handwriting DB [14]. Segmentation-free multi-line offline hand-
writing recognition is the task of transcribing multiple text lines at
once without splitting of the input image into smaller parts such
as lines, words or characters. Here, only the resulting transcribed
character sequence explicitly consists of multiple lines. This allows
to correctly transcribe paragraphs of text with overlapping lines and
characters. Overlapping lines are frequently seen in handwritten
texts, as seen in e.g. Figure 3. Our model is a deep neural net-
work that was trained with the Multi-Dimensional Connectionist
Classification (MDCC) [22] loss.

MDCC trains deep neural networks for segmentation-free multi-
line offline handwriting recognition in a semi-supervised fashion.
Only the correct character sequence is available as truth data. Spatial
information such as the location, size or orientation of characters
is not included in the truth data. Truth data only consists of ASCII,
Unicode or otherwise encoded strings. Output of the deep neural

network is a probability distribution with two spatial dimensions
that gives the probabilities of each pixel of the input image being
part of a certain character from the target alphabet. This probability
distribution can later be decoded to obtain the most likely character
sequence [22]. Since the type of the neural network output and truth
data is different, a loss function cannot be directly applied. MDCC
calculates the alignment of the truth character sequence over the
pixel space, which is again the same type of probability distribution
as the neural network but with the correct character sequence en-
forced. The alignment probabilities are, similar to the neural network
prediction, continuous values and not discrete zero/one classifica-
tions. Cross Entropy is now applied as a loss function between the
neural network output and the calculated alignment. Cross entropy
minimizes the uncertainty with respect to the alignment probability
distribution when the probability distribution estimated by the deep
neural network is known. It reaches its minimum of zero in case
both probability distributions are identical. Equation 1 defines the
cross entropy loss for the probabilities estimated by the deep neural
network and the alignment probabilities of any given sample from
the data set. Variables p and ¢ denote the pixel position and character
respectively.

CE(net,align) = fZZalign; x In(net;,) (D
p c

Calculating the alignment requires inference in a general graph-
ical model (undirected and cyclic), which is computationally in-
tractable [16, 18]. MDCC uses Loopy Belief Propagation (LBP) [16]
on a Conditional Random Field (CRF) as an approximate inference
algorithm to achieve practical runtimes. LBP on a CRF is an itera-
tive approximate inference algorithm and thus introduces additional
hyper-parameters to the system.

The overall model and pipeline for our multi-line offline handwrit-
ing recognition system is shown in Figure 2. The input into our deep
learning model is a grayscale image of a block of multiple handwrit-
ten text lines. Several alternating layers of Multi-Dimensional Long
Short Term Memory (MDLSTM) [8, 10], convolutions and spatial
subsampling are applied in order to extract high-level features from
this image. Transcription to characters is achieved by a final feedfor-
ward layer with Softmax activation function that can be decoded to
a character sequence. The decoding mechanism is detailed in [22].
Table 1 outlines the network topology and hyper-parameters of our
model.

Table 1: Topology of sequential layers and hyper-parameters of our
deep neural network. |C| is the number of characters within the target
alphabet.

[ Layer type | Parameters |
Image input 8-bit grayscale, 300dpi
Subsampling | Window 3x3, stride 3x3
MDLSTM 8 cells per direction, tanh activation
Subsampling | Window 2x2, stride 2x2
Feedforward | 64 neurons, no bias, tanh activation
MDLSTM 44 cells per direction, tanh activation
Subsampling | Window 3x3, stride 3x3
Feedforward | 172 neurons, no bias, tanh activation
MDLSTM 80 cells per direction, tanh activation
Feedforward | |C| neurons, with bias, linear activation
Softmax Pixel-wise Softmax activation function

Overall contains our deep learning model and MDCC several
types of hyper-parameters, e.g. number of layers, number of neurons
or convergence criteria for LBP. These hyper-parameters interact
and need to be chosen reasonable in order to obtain a useful and
optimized model for offline handwriting recognition.
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Figure 2: Overall machine learning model and pipeline for multi-line offline handwriting recognition using MDCC. The first rectangular box
designates the deep neural network for which we optimize the hyper-parameters.
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Figure 3: Example handwritten paragraph from the IAM Offline Hand-
writing DB [14] that shows overlapping lines and characters. Red
markers were inserted by the authors to highlight problematic overlap-
ping between characters or lines.

Metric for evaluation of a handwriting recognition system is
the Character Error Rate (CER). CER is the normalized Edit dis-
tance [28] between the transcribed character sequence and the truth
character sequence. Lines are separated by one newline character
for multi-line texts. Equation 2 defines the CER for the two strings.
Note that CER has no upper bound and can be greater than 100.

Edit(transcr, truth)

CER (transcr, truth) = 100 x
| truth |

(@3]

4 ERROR SOURCES IN HANDWRITING RECOGNITION

Section 3 discussed the general task to be solved by our deep learning
model, the model itself and the MDCC target function for training.
The model performance for the given task and thus achieved accu-
racy is dependent on the hyper-parameters chosen by the user as well
as other sources of error such as data preparation. It can be difficult
to choose these hyper-parameters since they affect different proper-
ties of the model and sometimes influence each other. Automatic
optimization of some of those hyper-parameters is possible (e.g. by
cross-validation) in theory, but practically not feasible since one
single training can run days to weeks even with GPU acceleration.
It is thus in the interest of the model developer to make an informed
decision on how to choose these parameters.

The following list gives potential reasons for unsatisfying accu-
racy while training a deep neural network with MDCC in order to
solve the task of segmentation-free multi-line offline handwriting
recognition on a given data set. The list identifies different types of
potential reasons, namely problems with the data, hyper-parameters
of the model, hyper-parameters of the training process and general
errors.

1. Data

(a) Too few data in general.

(b) Too few data for outlier samples.

(c) Truth data has systematic fault.

(d) Truth data has individual samples wrong.

2. Transformation

(a) Resolution of input image too low.
(b) Resolution of input image too high.

3. Network Topology

(a) Network topology not suitable for task.

(b) Network capacity too small.

(c) Subsampling within the network too large.
(d) Subsampling within the network too small.

4. Alignment
(a) LBP has not converged to stable configuration.
5. Training Process

(a) Training is not finished yet.
(b) Overfitting to training data.
(c) Optimizer hyper-parameters are sub-optimal.

6. General

(a) General configuration error.
(b) Implementation bug.

Data: The first item identifies the data used for training and
validation as a source of error. The data set used for training can
be too small in general (“data is king”) or can contain too few
samples for specific outlier/infrequent cases. Note that handwriting
recognition deals with inherently unbalanced data sets since not all
characters of the alphabet occur with the same frequency in any
given natural language. The data set can also be labeled with wrong
“truth data” in a general systematic way (e.g. upper-/lower-case) or
for individual samples (e.g. missing a word).

Transformation: Loading and transformation of the input image,
namely the resolution of the loaded image is a source of error. A too
low input resolution will obscure detail features of the handwritten
text and thus make recognition harder. On the other hand does a too
high resolution introduce further long-range dependencies within
the image (e.g. the dot above a lower letter i) and thus make it more
difficult to train a deep neural network that includes these long-range
dependencies in its model.

Network Topology: The network topology of the deep neural
network can also be a source of error. Its general configuration
can be unsuitable for the task, e.g. a poor choice of non-linear
activation functions. The capacity of the deep neural network can
be too small which will prevent the network from using all features
that are relevant to the task. The network capacity is controlled
by the number of layers and number of neurons, both leading to
more trainable parameters. The deep neural networks used in offline
handwriting recognition use hierarchical subsampling that decreases
the spatial resolution and thus allows learning of high-level feature
representations. This subsampling can be chosen too large which
will decrease the spatial resolution of the output further and a too
low output resolution decreases the alignment possibilities and thus
allows fewer variations (e.g. smaller or wider characters, text lines
shifted left or right) in the handwriting. An extreme case is a output
resolution that is smaller than the length of the text written in the
image which means that it is not possible to calculate the correct
alignment. There must be at least one pixel per character in the text
to calculate a correct alignment and this alignment will not allow for



any variation in the handwriting. Choosing the subsampling too low
will again introduce long-range dependencies that make the training
process harder since features will be moved from the receptive
field of a neuron to the outside of it. MDLSTM networks and its
variants are capable of learning these long-range dependencies [9,10]
but require more training iterations and data for it. Choosing the
subsampling sizes and the resolution of the input image influence
each other and should not be seen as independent parameters.

Alignment: LBP on a CRF is an iterative algorithm for approxi-
mate inference in general graphical models. Convergence to a stable
configuration near the exact solution is not guaranteed, but often
observed [17]. Running LBP for an appropriate number of iterations
is important when training a deep neural network with MDCC since
too few iterations will not lead to convergence to a stable configura-
tion and too many iterations increase the runtime without providing
benefits. This will then increase the overall runtime of the training
process and during production deployment of the model.

Training Process: Further sources of error can be found in the
general training process. It can simply be that the training has not
finished yet and needs to run longer. Overfitting to the training set is
also a rather common problem in machine learning. Overfitting is
the adaptation of the model on the specific samples of the training set
instead of adaption on the general concept of the data and the task at
hand. It can be observed when the network capacity is too large with
respect to the size of the training set. The optimizer used in training
itself or its hyper-parameters can also be chosen sub-optimal, e.g. by
a too high learning rate that leads to divergence of the error rate.

General: The last identified sources of errors in this case are
general configuration errors, e.g. using the wrong target alphabet.
Also possible are implementation bugs.

These identified reasons for an unsatisfying accuracy now need
to be addressed by hyper-parameter search or other effective actions
before or during training. Categories 1 (Data) through 3 (Network
Topology) in general require stopping the current training run, modi-
fications to mitigate the source of error and starting a new training
run from scratch. Categories 4 (Alignment) and 5 (Training Pro-
cess) can often be addressed by pausing the current training run and
continuation after the according changes.

5 WORKFLOW FOR IDENTIFYING EFFECTIVE ACTIONS

Section 4 identified the hyper-parameters and other potential sources
of error during training of a deep neural network for offline handwrit-
ing recognition. The following section presents a novel workflow
that the authors apply for a visual search for effective actions as
outlined in Figure 4 in order to address the identified sources of error.
The workflow is a combination of classical statistical evaluations
and a visualization technique for offline handwriting recognition
that will be detailed later in this paper, see Section 6.

Figure 4 illustrates a decision tree that guides the model developer
through several inquiries in order to identify potential problems in
data preparation or model hyper-parameters. The decision process
starts in the top-left quadrant, which is designed to be performed only
once per training. The remaining decision process in the bottom
and right parts is repeated for several samples from the data set
until the model developer reached a conclusion on how to proceed
with the training. Figure 4 contains different types of nodes: plain
rectangles for questions for inquiry, rectangles with rounded corners
for visualizations and leaf nodes for suggestions for hyper-parameter
modifications or other actions to mitigate errors. A trapezoid node
is included to combine multiple options that are equally reasonable
at this point in the workflow.

The workflow starts with Question A (“Validation CER satisfy-
ing?”) to determine if the current Character Error Rate (CER) on
the validation set is satisfying or not. The model can be used in its
current state or trained further in hopes of even better accuracy, but
modifications of the hyper-parameters are not necessary at this point.

Testing the accuracy on different data sets often involves statistical
tests with visual display, see Figure 5. Question B (“Validation CER
still improving?”) tests if the training process is still improving the
model. In which case the training needs to run longer or maybe a
change of the optimizer hyper-parameter are in order (e.g. slightly
increase the learning rate). Question C (“Training CER lower?”) is
designed to identify overfitting of the model. If the accuracy on the
validation set is not improving (or even worsening) but the accuracy
on the training set is, it indicated over adaption to the training set.
This can be countered by applying regularization methods such as
Dropout [19,26]. Questions A through C can be answered by apply-
ing visualization techniques such as a line chart showing the change
of error rates on the training and validation sets over time, as it is
shown in Figure 5.

Question D (“All samples bad?”) is were the workflow starts to
get specific to offline handwriting recognition. This Question D and
E (“Does it work with CTC?”) are designed to test if the network
topology itself is suitable to solve the task of offline handwriting
recognition for single lines (sequence labeling). If all samples of the
training set are recognized with a bad accuracy, we can now test if the
network topology works when trained with Connectionist Temporal
Classification (CTC) [5,7]. This requires prior segmentation of the
images into individual lines or words, but is a robust way of testing
the network topology. If the network performs equally bad with CTC,
we can assume that either the network topology is unsuitable for the
task or the data set is too small. Changing the network topology in
this case involves most likely changing the layer types, number of
layers or the type of activation function. Making the model larger in
general (e.g. more neurons) is also a valid approach to this problem.
Choosing the general network topology is often a question of the
task at hand, e.g. CNNs for vision tasks and RNNs for machine
translation tasks as well as the personal experience of the model
developer. Increasing the model size is decided by observing the
error convergence, see Figure 5, and increasing the model size if
neither the training nor validation error reduces significantly over
time.

Either way from Questions D or E is it now clear that the training
process and deep neural network model themselves are suitable
to solve the task of offline handwriting recognition. Questions A
through E can also be answered once per training run since they are
designed to test general properties of the model and data at hand.
All further questions of the workflow require testing for individual
samples and should be tested for multiple samples before reaching a
conclusion.

Question F (“All characters bad?”) requires the visualization of
one bad sample from the training set. We propose a visualization
for MDCC in Section 6 for this. Such a visualization must support
answering the following questions:

* Were has the deep neural network predicted which characters?

* Are frequent or infrequent characters affected by problems?

* What is the relation between the input and output resolution of
the model?

« Is the alignment encoding the correct character sequence?

* What is the difference between the prediction and alignment?

We apply this visualization technique to one bad sample in order
to answer Question F. It is of interest if the difference between the
prediction and alignment is only in frequent or infrequent characters
or in both. Question F and I (““Which character affected?”’) answer
this in combination. It is also necessary here to create a statistic of the
characters within the alphabet beforehand. The statistic shows the
frequency of occurrence of each character within the given corpus
and can be visualized by a histogram plot. The frequency analysis
of characters in the alphabet and Question I allow us to determine
if frequent or infrequent characters are missing from the current
sample. Missing frequent characters is likely a result of faults in
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model error in CER. The vertical gray line marks the switch from
pre-training to training on the actual task at hand. See [22] for detailed
information.

the truth data, but only in specific samples. Other questions in the
workflow already determined that the network is capable of solving
the task and only a few samples are showing a low accuracy, leading
to the conclusion that missing frequent characters are caused by the
truth data. Missing infrequent characters on the other hand can be
caused by an unsuitable network topology such as incorrect choices
of the non-linear activation functions. Other causes can be too few
data samples containing the infrequent characters or a poor choice
of the optimizer or its hyper-parameters, e.g. momentum leading to
favoring frequent characters.

Question G (“Alignment resolution too coarse or fine?””) and
H (“Alignment is correct character sequence?”’) are based on the
assumption that it has been shown that the network topology and data
set are suitable for offline handwriting recognition, but all samples
and/or all characters are equally affected by a low accuracy. Both
questions are now asked and answered before coming to a conclusion
on how to proceed with the training. Question G asks how the ratio
between the resolution of the input image and the output prediction
is. A too coarse (“blocky output”) prediction can lead to less allowed
variance and difficult to recognize details in the input image. It is
then suggested to either increase the resolution of the input image or
decrease the total subsampling applied by the deep neural network.
A too fine output on the other hand makes it hard for the deep neural
network to use long-range dependencies within the data. Decreasing
the input resolution or increasing the subsampling is then in order.

Question H (“Alignment is correct character sequence?”) is de-
signed to determine if general problems with the data, model or
implementation are occurring. This question tests if the calculated
alignment represents the correct character sequence. This test can be
done visually by “reading” the characters with the maximal probabil-
ities in a left-right top-down order. If this is not the case, a problem
with the truth data or configuration may be the cause. Convergence
in LBP may be another cause which can be observed when the align-
ment probabilities show the character probabilities in “noisy clouds”
rather than coherent blocks. Running LBP for more iterations per
sample may be the solution in this case. The last possible reason
in this case is an implementation error that prevents the alignment
from working correctly in general.



6 VISUALIZATION FOR MDCC

Sections 4 and 5 discussed which hyper-parameters needs to be
chosen for our deep neural network, potential sources of error and
how to mitigate them by applying effective actions. Section 5 also
discussed that a visualization is recommended for inspection of
individual samples from the data set and the output that the deep
neural network and alignment function produce.

‘We now present a novel application of visualization techniques for
MDCC based on histograms and heat maps that allow us to quickly
perform this inspection of individual samples from the data set. The
first observation while designing the visualization technique is that
the predicted probabilities from the deep neural network and the
alignment probabilities from MDCC can be visualized per-character
as a heat map over the pixel space. The grayscale input image is
plotted in the background for orientation. The foreground heat map
is then only partially plotted for all probabilities at most one standard
deviation from the mean probability. Pixels of the prediction and
alignment probabilities need to be duplicated for partially plotting
over the input image since the resolution of the output is smaller
than the input caused by subsampling in the model. These heat maps
are the main part of our visualization and are shown in Figures 6
and 7.

Inspection of the heat maps allows the user to identify and distin-
guish several different sources of error. Errors in “truth data” can
e.g. be identified by spotting discrepancies between the calculated
alignment and the actual text written on the document. Errors in
hyper-parameters related to the spatial subsampling and loading of
images show in too fine or too coarse resolution of the deep neural
network predictions and alignment. General sources of error or too
low network capacities often result in random noise in the heat maps.

Note that our proposed visualization looks a bit similar to other
methods [25,31] of visualization of DNNSs in the input pixel space.
The referenced methods visualize the neurons receptive fields in the
input space and thus make it possible to see to what type of input the
neuron responds. Our visualization shows the network prediction
partially plotted over the input image. This allows us to observe and
inspect the overall model prediction, but not individual neurons.

The alphabet of a offline handwriting recognition system for Latin
characters and English language consists of roughly 80 different
characters and symbols, see size |C| in Table 1. Showing one or
more (as in Figures 6 and 7) such heat maps per character thus
results in a high number of plots. The author’s own usage showed
that practical application and understanding of this depended on the
experience of the user. We thus propose an ordering and filtering
mechanism to quickly guide the user to the interesting heat maps
within the set of all heat maps for all characters in the alphabet.

We propose to sort the heat maps per-character such that charac-
ters with interesting properties are shown first. There are several sort
orders that can be applied here. Equations 3, 4 and 5 describe the
metrics for these orders. Applying such an order means sorting the
characters within one sample descending by the chosen metric. The
top-n characters are then visually inspected by the user.

Difference as detailed in Equation 3 is based on the Cross Entropy
loss function for training the neural network. It is thus very suit-
able for finding characters within the sample that that show a high
discrepancy between the prediction from the deep neural network
and and alignment function within MDCC. This makes it a suitable
first entry point for inspecting the results that a model produces on a
given data set.

Difference(net, align,c) = — Zalign; x In(net},) 3)
P

Ghosting, see Equation 4, orders characters first for which the
prediction of the deep neural network contains positions of high
probability but not the alignment function. This highlights parts of
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Figure 6: Heat maps of top-5 characters when using Difference as
the sort criterion. Difference sort criterion is useful for quickly spotting
the characters with the largest disparity between the network output
and alignment. It is thus suitable for finding general improvements
in hyper-parameters. Left column shows the predicted probabilities,
right column the alignment probabilities.

the sample were the model mistakenly detects not existing characters.
Ghosting is similar to false-positives in normal classification tasks.

Ghosting(net, align,c) = Z
P

{netf, if alignj, < & @)

0 else

Missing, see Equation 5, is identical to Ghosting but with the
neural network prediction and alignment function switched. It thus
highlights positions were the alignment function expects this charac-
ter, but the model did not detect it. Missing is thus false-negatives in
classification.

lign®  if net
Missing(net, align,c) = Z {a igny, if net;, < € s

> 0 else

The combination of heat map visualizations and ordering of the
characters within one sample allows now to guide the user to in-
teresting characters within the inspected sample. Figure 6 show
this visualization of one sample using the top-5 characters by the
Difference sort order. Figure 7 shows the same sample but with top-5
characters according to the Ghosting sort order. These heat map
plots are the main part of this proposed visualization technique.

Figure 6 prioritizes characters with a high difference between the
network prediction and the alignment. This can be seen at character
“c” and “a”which are only partly predicted or character “1”’which is
weakly (with low probability) predicted.

Figure 7 shows characters “d”, “r’and “u”first, which are weakly
predicted by the deep neural network but not at all occurring in the
handwritten text. Characters “i”and “e”show one additional position
each in which the character is not actually existing.

Ordering the characters within a sample and visualizing only
top-n of them necessarily leads to many characters that will not be
shown under this choice of subset. It is thus of interest for the user
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Figure 7: Heat maps of top-5 characters when using Ghosting as the
sort criterion. Ghosting sort criterion shows “false-positive” characters
first, which occurs e.g. at truth data errors. Left column shows the
predicted probabilities, right column the alignment probabilities.

if the top-n characters include all relevant characters or if the size n
should be increased. We propose to visualize this in a second plot.
This second plot is a histogram of all characters within the sample
and their absolute value according to the chosen sort criterion. The
histogram bars of the top-n characters are shown in another color
than the not visualized characters. Figure 8 shows such a histogram
plot. In this example we have used Difference as the sort order and
visualized the top-5 characters. We can see that the top-5 characters
include the relevant ones since there is a sharp drop from the 5th
(’m”) to the 6th (”0”) character in this order.

We propose the following workflow: First let the user choose
(with reasonable default values) the sort criterion and top-n size for
the visualization. Afterwards, show the histogram as in Figure 8
to verify that these top-n characters are the interesting ones and
change the size n if necessary. The last step is to inspect the heat
map plots (Figure 6) in order to understand the output of the deep
neural network and the alignment function of MDCC.

This visualization technique can be integrated with the workflow
as described in Section 5 and Figure 4 to inspect individual samples
from the data set.

7 DiIsSCuUsSION

We have presented a novel visualization-assisted workflow for build-
ing models using Multi-Dimensional Connectionist Classification
(MDCC). The workflow allows the user to perform a guided and
visual hyper-parameter search while making informed decisions on
possible sources of errors and actions as countermeasures. It is de-
signed to be executed after the training process or during the training
process and its goal is to improve the model and its hyper-parameters
for the next training run.

Part of the workflow is the visualization and visual inspection
of individual samples and the prediction that the model produces
for these samples. We have proposed an application of heat maps
partially superimposed on the input image as a visualization tech-
nique for MDCC. This allows to visually inspect the prediction of
individual characters as well as testing general hyper-parameters of
the model.

The workflow presented in this work is specific to MDCC, but
the approach can possibly be generalized to other tasks as well. It is
designed to identify typical machine learning problems during data
preparation and training and provide suggestions for improvement.
We leverage statistical techniques for identification of general ma-
chine learning problems and visual techniques for problems specific
to MDCC. Suggestions for improvement are then provides in both
case.

We can see the next steps for this line of work in three directions:
generalization, integration with the training loop and integration
with other visualization techniques. It is possible to generalize the
proposed visualization-assisted workflow to other deep learning ap-
plications with multi-dimensional input since many error types, e.g.
network topology, model size, data preparation or truth data, occur in
both applications. It is then necessary to include other visualization
techniques that are appropriate for the task at hand. A tight integra-
tion with the training loop further reduces the time necessary for
inspection of the model. This increases the insight into the training
process and increases the effectiveness of the training since hyper-
parameters can be adapted quickly in this case. Integration with
other visualization methods for DNNs, such as [25,31], would allow
to further refine the proposed workflow to provide improved sugges-
tions for hyper-parameter refinements. As an example, visualizing
the receptive field of the neurons of the last layer provides insight
if character miss-classifications are caused by a too small model
capacity or by wrong subsampling sizes. This allows the model
developer to act accordingly on basis of the provided information.

Finally the authors would like to note that although this work is
missing an user study for evaluation of our approach, it has been very
helpful for us while working on models for offline handwriting recog-
nition in the past. Our experience with this visualization-assisted
workflow is that it reduced the time necessary for data preparation
and transformation. It also further reduced the training time for
models on new data since the workflow allows to quickly determine
if a training run is “worth” continuing and if not, which parameters
should be adjusted for the next run. This is crucial since a training
run for a model that applies to offline handwriting recognition is in
the time range of days to weeks even when utilizing fast multi-core
processors and GPUs. We also at first tried visualizing all charac-
ters of a sample at once using the heat map based technique but
without filtering. This was not very suitable for long term use since
only experienced users could quickly discover interesting characters
and thus the overall usage of the workflow and visualization took
longer. This problem is mitigated by applying a sorting and filtering
mechanism as detailed in Section 6.
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