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Abstract

We develop an efficient point cloud visualization framework. For
efficient navigation in the visualization, we introduce a spline-based
technique for the smooth approximation of discrete distance field
data. Implemented on the GPU, the approximation technique al-
lows for efficient visualizations and smooth zooming in and out of
the distance field data. Combined with a template set of prede-
fined, automatically or interactively adjustable transfer functions,
the smooth distance field representation allows for an effective vi-
sualization of point cloud data at random abstraction levels. Using
the presented technique, sets of point clouds can be effectively an-
alyzed for intra- and inter-point cloud distribution characteristics.
The effectiveness and usefulness of our approach is demonstrated
by application on various point cloud visualization problems.

Keywords: spline approximation; point cloud visualization; hard-
ware acceleration; transfer function

1 Introduction

The visualization of 2D point clouds is one of the most basic yet
one of the most important tasks in many data analysis applications.
Point clouds are an ubiquitous type of data arising in many data
analysis tasks. For example, point clouds may be obtained by plot-
ting pairs of selected attributes of a multivariate data set against
each other, obtaining scatter plots which are useful for analysis
of correlations, clusters, and outliers. As another example, high-
dimensional data sets can be visually inspected by obtaining pro-
jections to low-dimensional display space, e.g., by using Principal
Component Analysis or Multidimensional Scaling techniques. Ad-
dtionally, the visualization of geospatial data often has to deal with
sets of points representing certain locations. Typical analysis tasks
on point cloud data include assessing the overall structure and dis-
tribution of the data, assessing spatial relationships between data
elements, and identification of clusters and outliers.

Standard point-based visualization methods do not scale well with
respect to the data set size. More specifically, as the number of data
points and data classes increases, the display usually gets crowded
quickly. Then, it is very difficult for the user to distinguish different
point clouds from each other, or to correctly perceive their shape.
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Also, effective point cloud visualizations should give appropriate
visual clues on the density of the point cloud throughout the point
cloud domain. Distance Fields are an appropriate point cloud repre-
sentation to this end, as they allow visualizations indicating both the
notion of proximity to points, and the distribution of points. While
different definitions are possible, a distance field defines for each
location in the display plane a scalar value, usually the Euclidean
distance to its nearest neighbor point.

We first develop a scheme for smooth approximation of distance
fields based on discretely sampled distance data. Relying on a
GPU implementation, our scheme of low total degree allows the
smooth and efficient approximation of distance field data at arbi-
trary resolutions and zooming levels. Based on this approxima-
tion approach, we describe our point cloud visualization system,
discussing important aspects of generating visualizations from dis-
tance fields. We demonstrate the suitability of the technique for
the effective visualization of point cloud data. Specifically, in con-
junction with appropriately designed transfer functions, important
point cloud characteristics can be visually analyzed on different ab-
straction levels. Also, we show that multiple distance fields can be
effectively blended, by application of the technique on a data set
from the geo-analytics domain.

The remainder of this paper is structured as follows. In Section 2,
we briefly introduce related work. Sect. 3 gives the details on our
spline-based approximation scheme, while our GPU-based imple-
mentation thereof is described in Sect. 4. After sketching options
for interactive and data-dependent specification of transfer func-
tions in Sect. 5, in Sect. 6 we apply our solution on different data
sets, where the effectiveness of our technique is demonstrated. Fi-
nally, Sect. 7 concludes and outlines future work in the area.

2 Related Work

We discuss visualization and representation of the point cloud data
type. We also briefly recall visualization of higher order primitives.

2.1 Point Cloud Visualization and Representation

In many important application areas, point clouds need to be visu-
alized for analysis. Point-based data is obtained, for example, by
projecting high-dimensional input data to display space for visual
analysis. Principal Components Analysis (PCA) [Jolliffe 2002] or
Multidimensional Scaling (MDS) [Cox and Cox 2001] are promi-
nent techniques for mapping high-dimensional vector data to dis-
play space. Projection-based point cloud visualization has been ap-
plied in many fields, examples including financial data [Dwyer and
Gallagher 2004], and database exploration [Pu et al. 2007]. Other
applications often relying on point cloud data visualization include
the analysis of geo-spatial [Panse et al. 2006; Herrmann and Keim
1998] and bivariate data [Rousseeuw et al. 1999]. Multivariate data
can be visualized by so-called scatter plot matrices [Wilkinson et al.
2005]. On the efficiency side, the visualization of massive point



cloud data sets may be accelerated by appropriate data structures as
presented in [Hopf and Ertl 2003]. Point clouds may be visualized
by representing the point clouds with solid shapes, using various
geometric constructs. In [Schreck and Panse 2007], the use of min-
imum bounding discs, boxes, and convex hulls for visual analysis of
many point clouds simultaneously was explored. In [Schreck et al.
2008], an algorithm for construction of compact, enclosing shapes
for effective point cloud visualization is introduced.

Distance fields are an important data structure with many interest-
ing theoretical and practical properties. According to practical def-
inition, a distance field is a field of scalars representing at each field
position the distance between the respective field position and a
given surface, or the nearest point of a cloud of points. Distance
fields allow representation of surfaces and point sets, and often
are the key to elegant and intelligent analysis and transformation
approaches [Jones et al. 2006]. For example, distance fields are
prominently used for the extraction of skeletons from 2D and 3D
shapes, which in turn are useful for shape manipulation, analysis or
compression [Cornea et al. 2005]. In our work, we rely on distance
field representations, as it elegantly captures the notion of proximity
to clouds of points. In conjunction with appropriate visualization,
in our approach the distance field representation allows the smooth
formation of visual areas from points. Specifically, we will rely on
appropriately chosen transfer functions [Preim and Bartz 2007] for
visualization of sets of distance fields.

2.2 Visualization of Higher Order Primitives

Our approach is based on bivariate splines defined w.r.t. triangula-
tions of a planar domain. Splines of this type have been studied in
the approximation theory literature of the recent years [Chui 1989;
Nürnberger et al. 2004; Lai and Schumaker 2007] and rely on the
Bernstein-Bézier-form (BB-form) [Farin 1986; de Boor 1987] of the
polynomial pieces. GPU-based visualizations of bivariate polyno-
mials in BB-form via raycasting have been described in the work
of Reis [Reis 2005]. This approach was later extended to terrain
rendering with bivariate cubic and quartic splines [Reis et al. ].

GPU-implementations of visualizations with piecewise quadratic
polynomials in three variables have been described in the work of
[Sigg et al. 2006] and [Stoll et al. 2006]. While [Loop and Blinn
2006] use the BB-form of the polynomial pieces, [Kalbe and Zeil-
felder 2008] extend this approach to the visualization of trivariate
splines, first taking their complex structure into account.

3 Piecewise Quadratic Approximation in
Bernstein-Bézier–Form

Our visualization scheme for signed distance field data is based on a
quasi-interpolating quadratic C1 scheme first described by Sorokina
& Zeilfelder [Sorokina and Zeilfelder 2005]. In this section, we
present the relevant concepts of the technique. We consider bi-
variate splines on type-2 triangulations4, also referred to as four-
directional meshes. Given is a set of (n + 1)× (m + 1) discrete
points V := {vi j = (ih, jh) ∈ R2, i = 0, . . . ,n, j = 0, . . . ,m} in the
rectangular domain Ω = [0,nh]× [0,mh] with h > 0 and associ-
ated values fi j ∈ R. The collection of squares Qi j = [ih,(i+1)h]×
[ jh,( j +1)h], where i = 0, . . . ,n−1, j = 0, . . . ,m−1, forms a rect-
angular partition ♦ of Ω. The triangulation 4 is then obtained by
subdividing each Qi j into eight triangles, where we use the two di-
agonals connecting the points vi j,vi+1, j+1 and vi, j+1,vi+1, j (dotted
lines in Fig. 1, left), the horizontal edges formed by (vi j +vi, j+1)/2
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Figure 1: Left: type-2 triangulation defined on Ω. The black dots correspond to
vertices vi j along with their associated values fi j . Right: detail view of a square
Qi j . The colored dots correspond to the coefficients from the determining set.

and (vi+1, j + vi+1, j+1)/2, as well as the vertical edges given by
(vi j +vi+1, j)/2 and (vi, j+1 +vi+1, j+1)/2 (dashed lines).

Bivariate splines s defined on 4 are piecewise polynomials in two
variables x,y of (total) degree q, and should be at least continuous,
i.e. for all triangles T ∈ 4, the spline is defined as the polynomial
pT := s|T ∈Pq := span{xα yβ : α,β ≥ 0,α +β ≤ q}, and for any
two triangles T1,T2 sharing a common edge E = T1 ∩T2 6= Ø, we
assume that pT1 |E = pT2 |E .

For every triangle T = [v0,v1,v2], the spline s is given in its piece-
wise Bernstein-Bézier-form (BB-form) [Farin 1986]

s|T = ∑
α+β+γ=q

bαβγ Bαβγ , T ∈4, α,β ,γ ∈ N+,

with the BB-coefficients bαβγ ∈R and the bivariate Bernstein poly-

nomials Bαβγ = q!/(α!β !γ!)λ α
0 λ

β

1 λ
γ

2 ∈Pq. In case of quadratic
polynomials used in this paper, α +β + γ = 2. The barycentric co-
ordinates λν ∈P1 are determined by λν (vµ ) = δν ,µ , where δν ,µ
is the Kronecker symbol. The BB-coefficients bαβγ are associated
with the 6 domain points ξαβγ = (αv0,βv1,γv2)/2 at the vertices
and the center points on each edge of T .

A characteristic property of this scheme is that the quasi-
interpolating spline pieces are given in BB-form and can be ob-
tained directly from the data by simple formulae. A subset of
the BB-coefficients is associated with the determining set [Lai and
Schumaker 2007] of each Qi j. Only the coefficients from this set
need to be computed from the values fi j. Considering the values
fi j on a regular lattice, and expanding terms of the corresponding
scheme from [Sorokina and Zeilfelder 2005], we arrive at the fol-
lowing formulae for the coefficients of the determining set on Qi j,
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Figure 2: The remaining BB-coefficients for each Q are given by simple aver-
aging formulae following from smoothness conditions.

(red dots in Fig. 1, right), and
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(blue dots in Fig. 1, right), where the superscript l stands for left,
r for right, b means bottom and t is top. The remaining BB-
coefficients are then determined by the C1 smoothness conditions
on two neighboring triangles T1 and T2, T1∩T2 6= Ø, and are given
by simple averaging formulae (see Fig. 2, right).

We set v0 = (vi j + vi+1, j+1)/2 for each of the triangles Tσ ∈
Qi j,σ = 0,1, . . . ,7. The remaining vertices for each Tσ are then
determined in an anti-clockwise fashion, starting from v0. From
this it follows that for each Tσ , there is a one-to-one correspon-
dence between the coefficients cαβγ from the determining set
and the BB-coefficients bαβγ on Tσ . For example, with T0 =

(v0,(vi j +vi, j+1)/2,vi j), we set b011 = c[lb]
011 and b101 = c[bl]

101. b110
is given by the “green” coefficient associated with (v0 +v1)/2 and
b200,b020,b002 correspond to the “magenta”, “yellow” and “cyan”
coefficients at the vertices v0,v1 and v2, respectively (see Fig. 2).
The BB-coefficients on the remaining triangles follow from sym-
metry and rotation.

4 Hardware-Accelerated Visualization

In this section, we describe the implementation details on our real-
time visualization algorithm with smooth quadratic splines defined
on triangulations ∆. We make use of a combination of textures and
vertex buffers to represent the data plus the geometry on the GPU.
The actual visualization is finally handled in the graphics pipeline
by a set of vertex and fragment programs.

4.1 Organization of Data

Prior to the actual visualization, the data need to be organized in
a way that allows for efficient access on the GPU. To do this, the
data values fi j are loaded into a two-dimensional, single-channeled
floating-point texture of size (n + 1)× (m + 1) and transferred to
the GPU. The geometry is encoded as a quadrangular mesh of size

n×m, where the squares correspond to the Qi j. On each vertex of a
square, additional information is given as texture coordinates: For
the evaluation of the polynomial pieces s on the GPU (see Sect. 4.3),
we need the appropriate barycentric coordinates on s. We can arrive
at those if we store the values ν ,µ for each of the vertices vi+ν , j+µ ,
ν ,µ ∈ {0,1} on Qi j. For efficiency, this mesh is stored as a vertex
buffer object and also transferred to the GPU (once).

For the later determination of the fragment’s color, we store a dis-
cretized version of the transfer function (see Sect. 5), in addition.
The transfer function is represented as a one-dimensional RGBA-
texture and is also transferred to the GPU.

4.2 Vertex Shader Details

The purpose of our vertex program is to provide all the informa-
tion which is necessary to evaluate the polynomial pieces s|Tα

on
each Qi j in the fragment shader. To do this, we draw the mesh as
described in Subsect. 4.1. For each resulting vertex of Qi j, the cor-
responding values have to be read from the texture storing the data
values fi j. Since texture coordinates are usually normalized and
centered, the two-dimensional coordinates for a value fi j within
the texture are given as ((i+0.5)/(n+1),( j +0.5)/(m+1)). Note
that, according to the formulae (1) and (2), for each Qi j the value
fi j along with 15 additional neighboring values need to be known.
Reasonable values at the borders, i.e. when i < 0 or i > n + 1 (re-
spectively j < 0 or j > m + 1), are obtained by setting the texture
wrapping mode to CLAMP. This means that the first and last values
on each line (column) are repeated beyond the borders.

The coefficients from the determining set can now be calculated us-
ing (1) and (2), and the remaining coefficients are obtained by ap-
plying the averaging formulae from Fig. 2. We make the resulting
25 coefficients available in the fragment shader by assigning them
to varying slots, which are usually used for (automatic) linear inter-
polation across the primitive. Since the coefficients are the same for
each of the four vertices of Qi j, no linear interpolation takes place
at this point.

The values ν ,µ are also assigned to varying slots. Since ν ,µ differ
on each vertex, they are linearly interpolated across the quad in the
rasterization. Finally, the screen-space coordinates for each vertex
are determined by transforming with the current modelview and
projection matrices.

4.3 Fragment Shader Details

The rasterizer provides the fragment shader with all the necessary
information to determine the final color of the current fragment.
To do this, we first have to identify in which of the triangles Tσ ,
σ = 0,1, . . . ,7, the fragment is situated. The fragment’s quadrant
can be easily determined by a simple comparison of coordinates: if
ν < 0.5, we are in one of the left quadrants, else we are on the right
side. The same holds true for µ and the lower and upper quadrants,
respectively. A third comparison gives us the proper triangle within
a quadrant. For instance, if we are in the lower left quadrant and ν <
µ , the fragment belongs to the triangle T0 (see Sect. 3). Otherwise,
it has to be the next triangle, which is T1 in this case.

For each Tσ , there exists a unique mapping from ν ,µ into the
barycentric coordinates λ0,λ1,λ2. As an example, the barycen-
tric coordinates for T0 are given as λ0 = 2ν , λ1 = 2(µ − ν), and
λ2 = 1− λ0− λ1 = 1− 2µ . We proceed by collecting the corre-
sponding BB-coefficients bαβγ for Tσ from the data provided by



the vertex shader in order to evaluate the polynomial s|Tσ
at the cur-

rent fragment. The value of s at the current fragment is calculated
from the bilinear product

(λ0,λ1,λ2)

(
b200 b110 b101
b110 b020 b011
b101 b011 b002

)(
λ0
λ1
λ2

)
.

This accounts for a vector-matrix product, followed by a scalar
product, both being native instructions on the GPU. Finally, we
need to determine the color of the fragment. To do this, the value
of s is normalized and used as an index into our current transfer
function RGBA-texture (see Subsect. 4.1).

4.4 Discussion and Analysis

Alternatively to the approach described above, we can think of dif-
ferent strategies for the spline visualizations. For example, the
mesh geometry can be represented directly as triangle meshes. As a
consequence, the fragment program complexity is significantly re-
duced since the determination of the triangle the fragment belongs
to can be ommited. At the same time, the costs for the calculations
and texture accesses in the vertex shader increase, since we have
to process at least 10 vertices (using triangle fans) for each Qi j in-
stead of four when we use quads. Geometry processing, which is
often a bottleneck in GPU algorithms, also increases. Using geom-
etry shaders, which are introduced as a new stage in the graphics
pipeline, we can represent the geometry as a set of points vi j. For
each point, the BB-coefficients are calculated in the vertex shader
and in the following, the geometry stage generates the respective
triangles. A significant disadvantage of this approach is that pro-
cessing units for geometry programs compete with the other stages
(vertex and fragment), since the total number of processing units
on the graphics board is limited. This suggests that our first ap-
proach takes the best advantage of the graphics pipeline in most of
the common cases.

For comparison reasons, we also implemented a simple bilinear
interpolation technique. Here, we draw a single quad of size
(n+1)×(m+1), textured with the data values representing the dis-
tance field. At the intermediate positions, we rely on simple bilinear
interpolation, which is automatically performed by the texture unit.
Again, we use the given value as an index into our transfer func-
tion texture. See Subsect. 6.3 for a visual comparison of the two
approaches.

5 Visualization

In this section, we describe our point-cloud visualization approach.
For any given point cloud, we start by calculating a discrete distance
field. By relying on the approximation scheme and implementa-
tion described in Sections 3 and 4, we are able to efficiently and
smoothly zoom in or out at arbitrary scales into the distance field.
We approach the visualization of the distance field representation
by applying the concept of transfer functions known prominently
from volume visualization [Preim and Bartz 2007]. We consider
here a set of transfer functions for visualization of distance fields,
by mapping distance field values to the Red, Green, Blue and Al-
pha (or opacity) channels in RGBA color space. The role of the
R, G, and B color channels is to assign a color gradient to each
field of distances. The alpha (or opacity) channel is important for
blending multiple distance field visualizations. Based on a varying
set of transfer functions applied on a given set of distance fields, a
plethora of different effects may be achieved. We allow two modes

of operation for visualization. In interactive mode, the user may
either choose a transfer function from a set of predefined template
functions or, if necessary, interactively adjust the template functions
to specific needs. The user is also allowed to freely draw suitable
transfer functions over the cumulative histogram calculated from a
given distance field. Once a transfer function is updated or newly
created, it can be stored for future use. Fig. 3 shows the user in-
terface we provide to this end. We also provide an automatic mode
for transfer function specification. In this mode, the distance field
data is automatically analyzed, and a transfer function, heuristically
based on the data to be visualized, is assigned. We next detail on
the interactive and automatic generation of transfer functions.

Figure 3: Display and editing of transfer functions. Top: cumulated histogram
of distances of a given distance field. It serves also as the background for the
interactive transfer function editor. Middle: non-cumulated distance histogram.
Bottom: preview of the resulting color gradient, giving immediate feedback to
the user when selecting or editing the transfer functions to apply.

5.1 Interactive Transfer Function Assignment

We identify different types of transfer functions useful for different
analysis tasks; we provide a number of transfer function templates
from which the user may chose in interactive mode. For example,
simple unichromatic transfer functions may assign decreasing val-
ues of a given color channel (or combination thereof) to increasing
distance values. The typical result is a radially decaying visualiza-
tion, like shown in Fig. 5 (b) (respective transfer function sketched
in Fig. 4, top).

Visual analysis of point clouds at different levels of abstraction is
possible by setting the transfer functions to constant values only
within certain distance bands. Depending on the distance band in
which the functions are positive, the notions of near, middle, and
far proximity areas covered by the points are supported. Fig. 5 (c)
illustrates three proximity areas assigned by three different short-
banded transfer functions (sketched in Fig. 4, bottom).

Figure 4: Simple mono- (left) and multi-chromatic (right) transfer functions
applied in Fig. 5 (b) and (c).

Different effects may be achieved by appropriate setting of the
transfer functions, and these can be exploited for effective visual-
ization construction. For example, by considering the opacity chan-
nel, it is possible to discretely or continuously hide certain distance
regions, achieving explicit transparency effects. Also, by adjusting
the slope of the transfer function, certain shading effects are possi-
ble and can be selectively employed to enhance the perception of
background-foreground boundaries, increasing the perceived con-
trast between areas in the distance field as Fig. 5 (d and e) illustrates.
Further example transfer functions will be discussed in Sect. 6.
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Figure 5: Point cloud with associated convex hull (a) and monochromatic distance field visualization (b). The blending of individual transfer functions applied on
the RGB color channels allows the construction of different areas around the point clouds (c). Outward and inwards oriented shading effects may be achieved by
employing transfer functions of positive or negative slopes, respectively (d and e).

5.2 Automatic Transfer Function Assignment

Based on the data analysis requirements at hand, it is possible to de-
rive transfer functions in a data-dependent way, highlighting certain
data features deemed important. This usually requires knowledge
of the underlying application - typically, a data analysis function
detects interesting features, and appropriately configures the trans-
fer functions. Basically, two different types of analysis functions
are possible. Histogram-based analysis functions analyze the over-
all distribution of distances present in the distance field image, dis-
regarding spatial information on the localization of individual dis-
tance field values. In contrast, spatial analysis functions also con-
sider spatial properties of the distance field, in forming the overall
transfer function.

In our visualization, we currently implement a simple histogram-
based analysis function, which yields histogram-equalizing transfer
functions for given distance fields. The basis for our analysis func-
tion is the standard histogram equalization image processing tech-
nique [Gonzalez and Woods 2007]. We alter the characteristic of a
selected channel of the transfer function (R, G, B, or opacity), ad-
justing certain properties of the function (e.g., its slope, amplitude,
or maximum width) in accordance with the underlying data distri-
bution. For example, if the data points are dominantly distributed
closely to each other, then higher color and/or opacity contrast is
dedicated to the small distances interval, to emphasize smaller val-
ues in the distance field (see Fig. 6 for an illustration).

Figure 6: Basic (left) and equalized (right) transfer functions.

Algorithmically, we calculate the cumulative point distance dis-
tribution and in accordance with the standard histogram equaliza-
tion approach [Gonzalez and Woods 2007], recalculate the transfer
function values. The selection of the basis function is task and ap-
plication specific (see Sect. 6). For example, in geographic applica-
tions, a maximum distance from a city can be used as a parameter
for setting the size of the transfer function for visualizing the dis-
tance field around that city. Or in cluster analysis, point clusters can
be identified by using automatic maximum within cluster distance.

5.3 Visualization of Multiple Distance Field Layers

In extension of the visualization of a single point cloud, we also
support visualizing combinations of distance fields. For (layered)
combinations of distance fields, not only the distance field-specific
distance distribution properties are relevant, but also, the ‘vertical’
aspects of the layered distance fields. The latter allows the inclusion
of e.g., interference effects which the different point clouds may
exercise upon each other (see Fig. 7 for an example).

Figure 7: Blending two (left) and three (right) distance field layers.

6 Applications

In this Section, we apply our technique on different data sets,
demonstrating its versatility and effectiveness and compare our re-
sults with the standard bilinear interpolation approach.

6.1 Visual Cluster Analysis

Fig. 8 shows an example of a point cloud, which we would like
to analyze for potential clusters. We apply transfer functions for
the R, G, and B color channels which are defined around three dis-
tinct intervals on the distance histogram. While the red band pins
down individual points, the green band is defined around a larger
interval of distances, consequently outlining a region more apart
of the individual points. Finally, the blue band is defined at the
largest of the three intervals, visualizing the coarse outlines of the
cloud. In the visualization, we can easily observe point groupings
on various distance levels. The visualization is useful for interac-
tive cluster analysis of objects (points) by interactively varying the
transfer function. The display, being updated in real time, commu-
nicates the clustering structure at the respective abstraction levels.
The analyst can thereby generate and validate hypotheses regarding
plausible clustering structures given in a given data set.



Figure 8: Visual analysis for radial clusters on varying levels of abstraction.

6.2 Geo-spatial Analysis

Geo-spatial data analysis includes techniques studying entities us-
ing their geographic properties. Modern spatial analysis examines
large amounts of data using statistical and computational modeling.
Spatial analysis models are broadly used in urban planning appli-
cations such as road planning, migration analysis, or other socio-
economic analysis scenarios. We here focus on an analysis of com-
muting flows. The aim of the analysis is to find out variables that
determine the amount of people commuting to and from towns in
a selected area. Commuting flows are often modeled using gravity
models which are based on physical Newton’s law. For a given loca-
tion the attraction to a city is set proportional to the mass of the city
(e.g. population, number of employed persons, etc.) and inversely
proportional to its distance to the city [Torrens 2000]. Although
modern spatial analysis offers effective analytical tools for model-
ing commuting flows (measured by statistical indicators), by now it
has been very difficult to visually present results of the analysis or
to visualize and analyze the resulting data interactively. In this pa-
per, we threrefore use spatial locations and socio-economic data for
visual analysis of commuting attraction forces in the western part
of Slovakia (see Fig. 9, left). We have collected data for 27 district
capitals from Slovak Statistical Office. We use population size as
a measure of the cities’ respective mass (attraction), and their geo-
graphic position for approximation of the distances between cities.

Figure 9: Left: Western part of Slovakia. Right: Example of radius depen-
dency on city population.

We apply the presented point cloud visualization to visually explore
the attraction forces of the cities. We represent the cities as points,
and the attraction forces of the cities as distance fields. More specif-
ically, we consider the location of each city as the center of a disc
with radius proportional to the population of the corresponding city
(see Fig. 9, right).

In Fig. 11, upper right, we show a model of commuting flow at-
traction for the analyzed Slovak cities. In this view, the analyst
can easily recognize the distribution of attraction forces around all

examined cities. The shape of the attraction areas as well as the de-
caying magnitude of the attraction forces around the cities is clearly
visible. On demand, the analyst may zoom into a specific part of
the view to examine the distribution of attraction forces in more
detail. The spline-based distance field approximation enables a
detailed view on the distribution of forces as it better reflects the
non-linearities of the gravity model than the bilinear interpolation
approach (see Subsect. 6.3 for a comparison of the techniques).

As can be seen from Fig. 11, upper right, the shapes of attraction
areas are strongly dependent on the spatial locations of the cities.
An isolated city attracts a radially distributed, radially decreasing
number of commuters (see Fig. 10, left). However, when two or
more entities are located close to each other, their commuting at-
traction forces interfere. The resulting model shows the areas of
maximum attractions of commuters to each city (see Fig. 10, right).
The areas are here no longer circular. The point cloud visualiza-

Figure 10: Visualization of the shape of the attraction forces, according to the
gravity model for one city (left) and for multiple neighboring cities (right).

tion approach introduced in this paper allows addressing interest-
ing spatio-analytical questions. Using interactive adjustment of the
transfer function and blending of multiple point clouds, the users
are able to efficiently examine the underlying data. We next sketch
interesting exemplary analysis cases.

A transfer function with stepwise coloring - using piecewise con-
stant red and green coloring and constant blue color (see Fig. 11,
bottom left) allows showing different attraction zones around the
cities (see Fig. 11, upper left). For analysis of the model-based de-
pendency of the attraction forces on the distance, a transfer function
with linear increasing green and red colors and constant blue color
(see Fig. 11, bottom right) is suitable. Using this function, we can
see how the commuting flow attraction of the cities is distributed.
Both views also allow the user to view the borders of the commut-
ing areas around the cities (see Fig. 11, upper right).

Figure 11: Visualization of commuting patterns for cities in Western Slovakia.
Left: Commuting zones. Right: model-based commuting pattern. Top: Dis-
tance field visualization. Bottom: Transfer functions applied.



In general, the magnitude of the attraction forces of region capitals
differs significantly from those of the smaller cities. This is obvious
from Fig. 12, which shows the attraction fields of the largest three,
and all the remaining cities separately. To effectively analyze the in-
teraction between such groupings, blending of multiple point cloud
visualizations is applied. This better supports the perception of dif-
ferent data groups, as opposed to visualizing a combined distance
field representation. Also, this approach allows for much more flex-
ibility in designing the visualization with respect to the areas of in-
terference. We illustrate several possible application scenarios. The

Figure 12: Large metropolitan areas (left) and smaller cities (right).

top row in Fig. 13 shows the attraction area of the region capitals
when analyzed separately (the foreground picture) and its commut-
ing pattern when considering the influence of the other analyzed
cities. It clearly shows that the commuting agglomerative area of
region capitals is covering small cities situated close to the capitals.
In the overlaid areas both forces influence the commuting behavior
of people living there. Using various transfer functions for the fore-
ground layer we can analyze the effect of region capital attraction
from different view points. For example, by looking at the inferred
view, these forces are lower than the attraction of these cities in
smaller areas around them.

The bottom row of Fig. 13 shows several rather illustrative visual-
izations of the same point sets. The transfer functions were set so
to give a kind of ‘cellular’ or ‘organic’ style to the visualization. In
Figures 13 (d) and (e), the large cities form a rather closed plane
of attraction, clearly dominating the smaller cities. This might help
to better communicate the role of the larger cities. Fig. 13 (f) fi-
nally shows the most abstract of our transfer functions. We transfer
shades of blue to the smaller cities layer, while the larger cities
are visually aggregated by a green veil. Note that we set opacity
to a low value for the center areas of the latter layer, allowing a
look-through effect onto the layer of smaller cities. While such vi-
sualizations might introduce a rather strong element of abstraction,
we argue that such visualizations might be well suited for usage in
popular media information design, an application domain for Infor-
mation Visualization often overlooked [Ericson 2007].

6.3 Evaluation

In order to evaluate the spline-based approximation, we compare it
with a standard bilinear interpolation approach. In order to show
the difference between the two approaches, we present visualiza-
tion of two point clouds of lower resolution with different transfer
functions using spline quasi- and bilinear interpolation, respectively
(see Fig. 14). The pictures on the left-hand side were rendered
using bilinear interpolation and those on the right-hand side using
spline-based approximation. As can be seen from the figure, in case
of lower resolution distance fields, the spline-based interpolation
nicely reconstructs the true distance field distribution around point
clouds. In contrast, the bilinear approach causes squarified (instead
of circular) distance field visualization. The difference between the

two techniques is dependent on the resolution of the underlying dis-
tance field data. The lower the resolution the larger the advantage
of using spline-based approximation.

Figure 14: Visual comparison (50×50 data points). Left: Bilinear interpolation.
Right: Quasi-interpolating splines.

7 Conclusions

We described a novel scheme for smooth approximation of distance
fields using a GPU implementation. Our spline-based visualization
scheme for distance field data provides smooth and efficient ap-
proximation of distance field data at arbitrary resolutions. In spite
of low total degree approximation, we demonstrated the advan-
tages of this approach in comparison to the bilinear interpolation
scheme. We visualize the distance field representation by mapping
distance values to channels in RGBA color space. Interactive or au-
tomatic variation of the transfer functions allows the user to achieve
a plethora of different effects useful for data analysis in various ap-
plication areas. In extension of the visualization of a single point
cloud, we also support combinations of distance fields.

We have shown that our approach is suitable for application in point
cloud analysis (cluster analysis) and in the broad subject of geo-
spatial analysis models. The spline-based distance field approxi-
mation enables a realistic detailed view on the distribution of the
spatial forces as it better reflects the non-linearities of the spatial
analysis models then the bilinear approach. Furthermore, using
various shapes of transfer functions the analyst can easily create
appropriate views allowing her to effectively examine the data. The
blending of multiple point clouds enhances the analysis of the spa-
tial models by showing various model scenarios at the same time.

To address additional analytical scenarios, we would like to imple-
ment two variations of semantic zooming. The shape of the transfer
function will be automatically adjusted to the given zooming level,
to support application-based detail or context analysis. In addition,
according to the zoom level, we could show varying levels of de-
tails by adding or removing smaller cities in the view. This ap-
proach should be especially suited to support the visual exploration
of very large geo-spatial data sets. In addition, automatic generation
of transfer functions can be extended for (layered) combinations
of distance fields. In this case not only the distance field-specific
distance distribution properties are relevant, but also, the ‘vertical’
aspects of the layered distance fields.



(a) (b) (c)

(d) (e) (f)

Figure 13: Blending of two layers of distance fields, representing the groups of large and smaller cities. The top row shows the interfering commuter attraction forces
excerted by the large cities, overlaid over those of the smaller cities. Zooming allows for detail analysis (b,c). We defined several transfer functions supporting also
the illustrative visualization of such diagrams, e.g., proposed for usage in popular media.
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