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1.INTRODUCTION 

1.1 Motivation 
Cyber physical systems (CPS) [1, 2, 3] are systems that are characterized by a tight coupling between computational and 
physical infrastructures. Examples of such systems include smart buildings, data centers, smart electric grids, etc. Figure 
1 shows a spatio-temporal data center layout of 96 racks with their inlet/outlet sensor temperatures measured every 
minute over 24 hours.  Each rack has a pair of RPVs with their colors indicating the temperature values, thus allowing 
the user to correlate disparate alarms.  Data center administrators are interested in exploiting this data in real-time to 
identify thermal problems, infer their root causes, determine under- or over-utilized resources, etc. Relevant questions 
include: Are temperature alarms that originate from different servers related? Are the alarms from servers in close 
physical proximity caused by the same underlying causes? What are the relationships between heterogeneous variables, 
such as the ambient temperature in a rack, CPU temperatures, and server utilizations? What periodic patterns occurred in 
the last few days? What are the causes of the alarms and how can the administrator take immediate action?  

The above information discovered in the CPS data streams can be used to identify correlations, patterns, and failure 
conditions. The information can also be used to validate the current operational state and provide better overall 
management. In general, the basic requirements in visual analytics of CPS data streams are locality, compactness, and 
the ability to identify periodic patterns, correlations, and anomalies from multiple large time series.    

1. 2 Related Work 
To visualize CPS data streams (e.g., data center, IT-Services, traffic, etc.), there are several different advanced time 
series visualizations listed in recent survey papers [5, 6, 7]:  

 

Cartesian Time Series Visualizations 

Cartesian visualization techniques such as TimeSeries Bitmaps [8] or Recursive Patterns [9] have shown their ability to 
visualize large time series, but may fail to provide useful results for multiple periodic time series. The density display in 
[21, 22] places large volumes of data stream values in a spreadsheet-like row and column layout for discovering patterns 
and detecting alarms.  Erbacher et al. [12] developed an environmental visualization for analyzing network traffic data to 
prevent the critical attacks. Andrienko et al. [25] support detection of events using statistical event detection methods 
and Schneiderman’s Time Searcher [13, 14, 15] suggests three interactive visual exploration techniques for analyzing 
large multivariate time-series (>10,000 data points) by showing up to ten simultaneous plots on the same screen. In [10], 
the authors discuss visualizing sets of non-equally spaced time series arising, e.g., from auction bids. Different from the 
above work, RPV displays the data streams with their physical locations and high resolution time series in a single view 
as shown in Figures 1 and 5.     

Radial Time Series Visualizations 

Radial visualizations play an important role in visualizing periodic data streams. From a survey paper [7], there are a 
number of radial visualizations used to visualize changes in large time-related multidimensional data sets, such as Circle 
View [16] and Circle Segments [17]. Further, radial hierarchical frequent pattern visualization has been used in market 
basket and web click stream analyses [11]. Stasko [18] enhanced the radical space hierarchy visualization with advanced 
focus-context techniques and a negation technique. An interesting technique in radial visualization is the spiral 
arrangement [19] to visualize time series data. Afterwards, Tominski et al. [20] enhanced the spirals with two-tone 
pseudo coloring. The spiral technique is an efficient and effective technique to visualize single variable data. However, it 
is difficult to visualize the relationships between multiple variables having different scales. A comparison of three radial 
visualization techniques for multivariate time series data is shown in Table 1.  

All these prior techniques are able to visualize multiple time series and help to discover periodic patterns, but none of 
them tightly integrates correlation and peak point detection analyses, as well as semantic zoom and drilldown to detailed 
information.   
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The user study led to the following observations: 

The strengths of Radial Pixel Visualization (RPV):  
1. The integration of pixel cells and periodic pattern discovery: Using pixel cell-based RPV, users are able to 

visualize large data streams with drilldown capability. RPV is able to show a continuous data stream (from 
comparing evening to next morning) without any split as illustrated in Figure 12’s I/O operation (8 pm to next 
day 3 am) showing a clear advantage compared to HorizonGraphs and RecursivePattern.   

2. Multivariate information encoding: This only exists in RPV. The results of an automatic correlation or peak 
point detection analysis of multiple time series are encoded in the analysis ring for helping users to quickly 
identify problems in real-time. Two significant peak point areas are highlighted by the brightness of the analysis 
ring around 3 pm to 6 pm and 9 pm to 12 pm as shown in Figure 12, on the %Utilization, #Users, and 
#Transactions RPVs. These three RPVs are highly correlated such as when the number of users and transactions 
increase, the corresponding %utilization increases accordingly.  

3. Locality: The following are three use cases to validate the importance of visualizing locality: 

a) In Figure 1, the spatial layout of a RPV can be used to detect the root cause of alarms in a data center. For 
example, if the sensor temperature alarms (e.g., near RPV F7) are all from the same aisle of the data center, 
the floor vent tiles in that aisle may require adjustment.  

b) In Figure 11, three building RPVs are placed on a geographical map based on their longitude and latitude to 
compare energy consumption between buildings as illustrated in Section 4.2.  

c) In Figure 12, three highly correlated RPVs with attributes %Utilization, #Users, and #Transaction are placed 
together to form a cluster for quick identification.   

The Weaknesses of Radial Pixel Visualization (RPV):  
1. Variable sized pixel cells: The inner rings have smaller pixel cells than the pixel cells in the outer rings. To 

overcome this difficulty, we need to place the least important variables in the inner rings, e.g., the temperature 
sensor least likely to violate the threshold (usually T1 in Figure 1). 

2. Variable sized data rings: RPV has variable size data rings because of its variable size pixel cells. In Cartesian 
coordinates, all the data segments have an equal size which could make the pattern comparisons easier than 
RPV. However, all three radial visualizations (HorizonGraphs, RecursivePattern, and RPV) show similar 
patterns and anomalies in attributes (%Utilization, #Users, and #Transaction) in Figure 12. Using different 
colors, RecursivePattern, and RPV visualizations are much easier to find patterns than HorizonGraph.      

Of 11 domain experts, 6 preferred RPVs, 3 preferred RecursivePattern and 2 preferred HorizonGraphs. To our surprise, 
none of the experts preferred the multiple line charts which were most likely due to the high degree of overplotting. 
From the user study results, we have learned that a user’s preference is highly dependent on the application requirements 
and the user’s personal experience. Both Cartesian coordinate visualizations (HorizonGraphs and RecursionPatterns) and 
RPV are able to provide an overview of the relationships among multiple data streams. Furthermore, RPV is able to 
visualize the entire CPS system with locality and the results of an automated analysis.   

6. CONCLUSION 

In this paper, we presented RPV (Radial Pixel Visualization), a new approach for CPS (Cyber Physical System) 
visualization with comprehensive features for visualizing large amounts of multi-attribute data. RPV combines pixel 
cell-based radial visualization with efficient and effective knowledge discovery techniques. We have applied the RPV 
idea to real data sets from data centers and smart buildings. The resulting Radial Pixel Visualizations provide 
significantly more information than radial visualizations without using pixel cells. In the future, we will explore the 
potential of embedding RPV into building or site-level energy management dashboards. Furthermore, we will apply 
RPV to audience sense applications which are important in analyzing customer shopping behavior. 
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