Visual Analytics of Cyber Physical Data Streams
Using Spatio-Temporal Radial Pixel Visualization
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Figure 1: A 500 kilowatt data center showing 96 racks (8 rows, 12 racks per row) with temperature sensors to monitor the
thermal state that allow the user to correlate and take action for disparate alarms. Each rack contains 5 inlet/outlet temperature
sensors, thus monitoring large volumes of separate temperatures every minute over 24 hours in real-time. Each rack produces a
pair of Radial Pixel Visualizations (RPVs) for their inlet and outlet sensors with color indicating temperature values. The
temperatures can be checked against a user defined threshold and usually the temperatures are in an ascending sequence, that is,
T1<T2<T3<T4<T5, where T1 is closest to the floor. Each minute of temperature measurements is represented by a colored pixel
cell. Color depicts temperature using the standard data center color map ranging from low (purple, blue) to medium (green) to
high (red). By correlating thermal alarms and their physical locations and by looking at temperature patterns in the recent past,
administrators are able to quickly identify problems (e.g., Rack F7 (on top left) has an out of sequence sensor: T3>T4) and find
the root causes of those alarms.

ABSTRACT

Cyber physical systems (CPS), such as smart buildings and data centers, are richly instrumented systems composed of
tightly coupled computational and physical elements that generate large amounts of data. To explore CPS data and
obtain actionable insights, we present a new approach called Radial Pixel Visualization (RPV); which uses multiple
concentric rings to show the data in a compact circular layout of pixel cells, each ring containing the values for a specific
variable over time and each pixel cell representing an individual data value at a specific time. RPV provides an effective
visual representation of locality and periodicity of the high volume, multivariate data streams. RPVs may have an
additional analysis ring for highlighting the results of correlation analysis or peak point detection. Our real-world
applications demonstrate the effectiveness of this approach. The application examples show how RPV can help CPS
administrators to identify periodic thermal hot spots, find root-causes of the cooling problems, understand building
energy consumption, and optimize IT-services workloads.
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1.INTRODUCTION

1.1 Motivation

Cyber physical systems (CPS) [1, 2, 3] are systems that are characterized by a tight coupling between computational and
physical infrastructures. Examples of such systems include smart buildings, data centers, smart electric grids, etc. Figure
1 shows a spatio-temporal data center layout of 96 racks with their inlet/outlet sensor temperatures measured every
minute over 24 hours. Each rack has a pair of RPVs with their colors indicating the temperature values, thus allowing
the user to correlate disparate alarms. Data center administrators are interested in exploiting this data in real-time to
identify thermal problems, infer their root causes, determine under- or over-utilized resources, etc. Relevant questions
include: Are temperature alarms that originate from different servers related? Are the alarms from servers in close
physical proximity caused by the same underlying causes? What are the relationships between heterogeneous variables,
such as the ambient temperature in a rack, CPU temperatures, and server utilizations? What periodic patterns occurred in
the last few days? What are the causes of the alarms and how can the administrator take immediate action?

The above information discovered in the CPS data streams can be used to identify correlations, patterns, and failure
conditions. The information can also be used to validate the current operational state and provide better overall
management. In general, the basic requirements in visual analytics of CPS data streams are locality, compactness, and
the ability to identify periodic patterns, correlations, and anomalies from multiple large time series.

1. 2 Related Work

To visualize CPS data streams (e.g., data center, IT-Services, traffic, etc.), there are several different advanced time
series visualizations listed in recent survey papers [5, 6, 7]:

Cartesian Time Series Visualizations

Cartesian visualization techniques such as TimeSeries Bitmaps [8] or Recursive Patterns [9] have shown their ability to
visualize large time series, but may fail to provide useful results for multiple periodic time series. The density display in
[21, 22] places large volumes of data stream values in a spreadsheet-like row and column layout for discovering patterns
and detecting alarms. Erbacher et al. [12] developed an environmental visualization for analyzing network traffic data to
prevent the critical attacks. Andrienko et al. [25] support detection of events using statistical event detection methods
and Schneiderman’s Time Searcher [13, 14, 15] suggests three interactive visual exploration techniques for analyzing
large multivariate time-series (>10,000 data points) by showing up to ten simultaneous plots on the same screen. In [10],
the authors discuss visualizing sets of non-equally spaced time series arising, e.g., from auction bids. Different from the
above work, RPV displays the data streams with their physical locations and high resolution time series in a single view
as shown in Figures 1 and 5.

Radial Time Series Visualizations

Radial visualizations play an important role in visualizing periodic data streams. From a survey paper [7], there are a
number of radial visualizations used to visualize changes in large time-related multidimensional data sets, such as Circle
View [16] and Circle Segments [17]. Further, radial hierarchical frequent pattern visualization has been used in market
basket and web click stream analyses [11]. Stasko [18] enhanced the radical space hierarchy visualization with advanced
focus-context techniques and a negation technique. An interesting technique in radial visualization is the spiral
arrangement [19] to visualize time series data. Afterwards, Tominski et al. [20] enhanced the spirals with two-tone
pseudo coloring. The spiral technique is an efficient and effective technique to visualize single variable data. However, it
is difficult to visualize the relationships between multiple variables having different scales. A comparison of three radial
visualization techniques for multivariate time series data is shown in Table 1.

All these prior techniques are able to visualize multiple time series and help to discover periodic patterns, but none of
them tightly integrates correlation and peak point detection analyses, as well as semantic zoom and drilldown to detailed
information.



Multi Spirals - reference [19]:

Shows two time series by rendering
intertwined Spiral Graphs. Each spiral
represents one time series. Color encodes
different time series, e.g., Microsoft
(yellow) and Sun Microsystems (red).

Circle View - reference [16]:

Shows a six attribute time series which
is arranged in each segment. Color
represents the aggregated value of each
attributes. Each segment needs to be
compared with the corresponding time slots
of the neighboring segments to detect

Radial Pixel Visualization - This Paper:

Shows a five attribute time series. Each
time series is arranged in one single ring
using high resolution pixel cell-based time
series. All time intervals (pixel cells) are
aligned across different time series. Color
represents the value of an attributes at a

correlations. specific time interval.

- Each spiral represents one time series.

- 4 to 8 spirals can be combined in a single
graph using color coding.

- To detect periodic patterns requires
knowing the cycle length for proper
alignment.

- Each segment represents one time series. - Each ring represents one time series.

- Can have many attributes per radial pixel
visualization.

- Can have many attributes per circle view.

- To detect correlations requires placing

- Able to detect periodic patterns (Figure 3)
related segments close to each other.

and correlations since the rings are time
aligned.

(Further contributions are described in
Section 1.3)

Table 1: A comparison of three radial visualizations for multivariate time series data

1.3 Our Approach and Contributions

To leverage the prior work and to meet CPS challenges, we introduce a new approach of pixel cell-based Radial Pixel
Visualization (RPV) with the following unique features:

1.

The integration of pixel cells with radial visualization

RPV uses multiple concentric rings to represent high resolution multivariate time series. Each measurement
value is shown in a colored pixel cell. All pixel cells in the RPV are accessible to the users for drilldown.
Periodic pattern discovery

The pixel cells are aligned by time in different rings which allows the easy detection of periodic pattern. In
addition, the pixels are continuously placed in a ring over time (e.g., 24 hours). RPV is able to show data
streams with cycles without a split as in Cartesian visualizations.

Multivariate correlation/peaks encoding

To show the results of correlation analysis and peak point detection, we define an additional ring to show the
analytic results. From the brightness of the analysis ring, analysts can detect the degree of correlation and
dependency patterns. To prevent exceeding system capability, peaks can also be identified with the analysis
ring, leading the analyst to focus on important and potentially dangerous events.

Physical infrastructure and location analysis

To allow analysts to correlate the spatial relationships of different cyber data streams with their physical
infrastructures, RPV uses x-y coordinates to relate the measurement data with their physical locations, e.g.,
longitude and latitude.



Using multiple RPVs, we can construct a real-time dashboard and combine it with advanced interaction
techniques (e.g., semantic zoom and parameter control) to incorporate human domain knowledge into the
process of solving problems.

2. RADIAL PIXEL VISUALIZATION (RPV)
Radial pixel visualization (RPV) is a temporally-aligned high resolution pixel time series graph for visualizing large
volumes of data. RPV has two types of rings (data ring and analysis ring) and three different usages (single variable,
multiple variables, and spatio-temporal layouts).
Data Rings

As illustrated in Figure
2, the ring construction
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Figure 2: Radial Pixel Visualization (RPV) Construction

Analysis Ring (e.g., correlations, peaks)

In order to help users to quickly identify the important information in large data streams, we use an analysis ring on the
outside of the data rings to highlight areas with a significant correlation between variables and/or interesting peak points.
This unique feature did not exist in prior radial visualizations and is critical for CPS applications requiring anomaly
detection and capacity planning. Details are described in sections 3.1 and 3.2.

2.1 Single Variable Rings

In a single variable RPV, each time period (one day, or week, or month, etc.) is assigned to a corresponding ring. This
layout typically shows several time periods of a single variable. The ring alignment (from the inner to the outer)
represents the time sequence. Each time period in a high resolution data stream is visualized to make periodic behavior
perceivable.

Figure 3 illustrates a single variable (power consumption in a building) RPV over multiple time periods (from 6/6
to 6/8). As expected, each day shares a similar pattern: low consumption during the night and increasing consumption
during the day with high values from noon to 6 pm. Note that 6/7 shows an area with high peak points (red, e.g., 960.32
KW) from 3 pm - 6 pm. The administrators need to investigate the source of this incident to determine the likely cause
and whether it is related to a problem. In addition, knowing the periodic patterns of the daily power consumption enables
administrators to predict future consumption.



1440 pixel cells per ring ( 3days, 1 variable)

Figure 3: Single variable RPV with 3 one-day
data rings (6/6-6/8)
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2.2 Multiple Variable Rings

The multi-variable RPV is used to analyze the relationships between multiple heterogeneous variables. Figure 4 is an
example of temperatures from five data center sensors compared over the same day’s time periods. Two patterns are
visible. The first occurred at 1:56 pm and involved variables T1, T2, T3, T4, and T5 with correlated sensor high
temperatures (red, yellow, and green); the second occurred at 5:50 pm and involved the same set of variables with
correlated sensor mediurn temperatures (green and yellow). The first pattern lasts about twice long as the second. With
this information, administrators are able to look into the root-causes of the high temperature periods.

2.3 Spatio-Temporal Layout

The spatio-temporal RPV layout allows an overview of a large number of data streams. Figure 5 shows 40 RPVs
visualizing multiple rack temperatures in a data center. Each RPV uses the output of five different thermal sensors. In
total, there are 200 data streams, containing interesting patterns. The analyst can easily identify problematic
measurements in a systern. For example, the hot temperature sensors are easily visible by their red colors.

By analyzing the spatial context in this overview, the analyst can build a hypothesis based on the spatial
proximities and identify critical areas. Furthermore, spatio-temporal RPVs enable administrators to spot patterns across
different locations and attributes and allow the identification of interesting incidents in real-time.

3. VISUAL EXPORATION
3.1 Correlation Detection

In this application, we compute the average of all pair-wise correlation-results shown by brightness in the analysis ring.
One way to quickly identifying potential root causes is to find interdependencies. Correlation detection is a method to
analyze the potential root-causes of a problem. In the early analysis, the sign of the correlation (positive/negative) is not
as essential as the strength of the correlation. The positive or negative correlation will be analyzed when the user wants
to do further analysis on the cause-effect between variables. The capability of highlighting the correlation strength
guides the user to focus on interesting time intervals. We enable the user to find correlations between variables by
showing them in the analysis ring (grey scale) in Figure 6.

First, we calculate the Pearson correlation
coefficient to calculate the pair-wise correlations for a
pair of the corresponding time slices. However, if the
values of both variables remain constant over a time
interval, the Pearson coefficient will be undefined
(division by zero); in this case, we set their correlation
coefficient to 0 in equation 3. The average of all pair-
wise correlation-results is used to brighten the analysis
ring. Negative and positive correlations do not
compensate each other, because equation 3 only
considers absolute values. Thus, the brightness of the
analysis ring identifies the degree of the correlation
between variables. Time intervals without correlations
are faded out to reduce visual clutter (i.e., black: not
correlated; white: highly correlated as in Figure 6).

Brightness encodesthe degree
of correlation

sl The brighter the analysis ring,
0.if AA1,442~ 0 The higher the correlation.
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s ;;EF_(:;;;:;_,‘””.MM (4 rings show: Server Utilization, CPU Temperature, Ambient
Cov = Covariance Temperature, and analysis ring on correlation). Two extended high

Var = Variance correlation areas are shown around 3 am and 1 pm.



To illustrate the usage of the analysis ring on correlation, the data center administrator can analyze the relationships
between heterogeneous variables, such as Server Utilization, CPU Temperature, and Ambient Temperature. As
illustrated in Figure 6, CPU temperatures are high in two different time intervals (around 3 am and 1 pm). When
observing only the CPU temperature ring, the root cause of the high temperature would remain unclear. By plotting
both the ambient temperature and server utilization in Figure 6, it becomes evident that the first increase in CPU
temperatures at 3 am is related to a period of high ambient temperature while the second increase at 1 pm is related to
high server utilization. With this knowledge, the data center administrators are able to manage their resource
consumption more effectively.

3.2 Automatic Peak Detection and Labeling

For thermal state analysis, peak points also have a high level of
significance. Peaks in temperatures may, for example, reduce hardware
reliability. We can use the analysis ring to show the significant peaks in
the corresponding time intervals instead of showing correlations. (A) Smoothed time series

The automatic peak area detection algorithm is based on a variant of
the Douglas Peucker algorithm equation that only considers absolute
values [23]. The data stream is first reduced to a number of peak points
as shown in Figure 7 (A) and (B). Each of the peak points higher or
lower than a given threshold in Figure 7 (C) is encoded in the analysis
ring. To enhance the visibility of the discrete peak points, we use a
Gaussian kernel to brighten the analysis ring at the corresponding
position. The Gaussian curves will overlap and increase if two or more
peaks from the same or different rings are close to each other, which
enables users to easily detect the high density peak areas.

_ encodesthe
brightnessin the
analysis ring

(C) User can interactively adjust the threshold.

Figure 8 illustrates the three most significant peak points (i.e., Efgh ide_"h'f":(d Pealk F;Ol:n't?rta b aﬁds
. ags . - . a baussian Kernel of brightness to the
85.88% in server utilization, 63.17° C in CPU temperature, 18.14° C in ol i st R ouT s exidang, drri vl

Ambient temperature in the data rings). These peaks were automatically

labeled at the time that the peaks (exceed maximum values, red)

occurred. Discovering these peaks during CPS operation is essential for Figure 7: Automated peak points detection
administrators to  manage their  resource
consumption and for capacity planning; e.g., before
new equipment can be added at a particular
location in a data center, the administrator needs to
make sure that the peak and cooling requirements
can be met. Using the highlighting from the peak
point detection analysis ring enables administrators
to quickly focus on the peak resource. From Figure
8, administrators are able to compare the peaks
with the normal temperature readings (35° C) and
server utilization (80%) to make a decision about
whether or not to add additional computer power
and/or cooling resources.

brightness
encodes the
significant
peak points

Analysis Ring

Figure 8: Encode automatic peak detection in the analysis ring.
The brightness indicates significant peak point areas



3.3 Semantic Zoom and Drilldown

Besides changing the size of radial pixel visualization and controlling the parameters for calculating the correlations and
peak points, the user is able to perform a semantic zoom of a problem sensor (red) as shown in Figure 9 (A). The
zoomed RPV can be displayed at a higher resolution (the color map is rescaled) to identify high temperatures (red) and
peaks as shown in the bright area of the analysis ring in Figure 9 (B). A tooltip displays detailed information (location,
attribute name, value, and time stamp) of the selected data point. In addition, the corresponding RPV can be displayed as
line charts in Figure 9 (C) with more accurate details before smoothing.

temperature range 17.54°C - 35.53°C

SHpeys aul| 0} UMOP|ILP

longitude

(A) Data Center Sensor Temperature Consumption
(B) temperature range 34.27- 35.53°C

(C) comparing five temperature sensor (T1-T5)
changes over time before smoothing

number of points at pos =0
2007/8/20 15:1:0

Figure 9: Interactive semantic zooming and drilldown to detailed information



4. USE CASES

4.1 1T Workload Optimization

Figure 10 shows attributes pertaining to IT workload and cooling power in a data center over a 24-hour period.
Administrators are able to use RPV to visualize the power consumption differences and reschedule the non-critical IT
workload to use the photovoltaic (solar) output in the daytime. Before optimization, the non-critical workload was
spread throughout the day in Figure 10 (A); after optimization, it is concentrated during the period of PV power
generation (solar supply) as shown in Figure 10 (B). The visualization confirms the benefits of rescheduling the
workload and reducing the overall daily cooling power consumption [24].

) the non-critical IT _ Power Consumption high
fowy:0 workload was hour: 0

running 24 hours of cooling power
ELEV

cooling power,

non-critical IT workload

critical IT worklo reschedule the non-critical
solar IT workload in the daytime
supply to use solar supply

notrelated to highlyrelated to
solarpower supply solarpowersupply
and cooling power and cooling power
(A) Before Optimization (B) After Optimization
The distribution of the non-critical workload Reschedule the non-critical workload
does not use the solar power supply to use the solar power supply in the daytime

Figure 10: Use RPV to visually validate the benefits of reschedule the not-critical IT workload
Use normalized scale for each variable (low: blue, medium: green, high: red)

4.2 Building Energy Consumption
Characterization

Figure 11 shows the power consumption of three
buildings at an urban campus over three days. The
daily usage patterns are easy to see for Buildings 1
and 2. As expected, consumption is high during the
working hours (9 am to 6 pm). Building 3’s
consumption is flat, due to the presence of solar
panels that offset part of the demand during the day.
The visualizations allow administrators to compare
usage patterns between buildings and validate the
impact of solar panels under different weather
conditions (e.g., sunny, cloudy, etc).

Figure 11: Building 3 has flat energy consumption (Solar)
(Each ring shows one day’s consumption, 6/6-6/8)
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5. EVALUATION

To evaluate the effectiveness of Radial Pixel Visualization (RPV) and compare it with three well-known visualizations
(Multiple Line Charts, HorizonGraphs [4], and RecursivePattern [9]) as illustrated in Figure 12, we conducted an
informal user study with 11 domain experts from four different cyber physical system areas: 1T Services, Data Center,
Campus Building, and Research Labs. Both HorizonGraphs and RecursivePattern use Cartesian coordinates.

Figure 12 illustrates an IT service performance analysis. The data set consists of five different variables (Memory,
1/0 Operation, %Utilization, #Users, and #Transactions) recorded over eight days in 5-minute intervals. In order to
compare four different techniques, each one is given exactly the same physical space.

12pm 0-3am
1/0 Operation

Dam 12pm 0-3am L Oam

Memory

|—_ m %% Utilization

Multiple | Horizon
Line Charts A SN Graphs

#Users
#Users " #Transactigns -

LW N,

Recursive
Pattern

#Users #Transactions

Figure 12: Evaluation of Multiple Line Charts, HorizonGraphs, RecursivePattern (Cartesian Layout)
and Radial Pixel Visualizations (RPV) with an analysis ring highlighting peaks.



11

The user study led to the following observations:

The strengths of Radial Pixel Visualization (RPV):

1. The integration of pixel cells and periodic pattern discovery: Using pixel cell-based RPV, users are able to
visualize large data streams with drilldown capability. RPV is able to show a continuous data stream (from
comparing evening to next morning) without any split as illustrated in Figure 12’s 1/O operation (8 pm to next
day 3 am) showing a clear advantage compared to HorizonGraphs and RecursivePattern.

2. Multivariate information encoding: This only exists in RPV. The results of an automatic correlation or peak
point detection analysis of multiple time series are encoded in the analysis ring for helping users to quickly
identify problems in real-time. Two significant peak point areas are highlighted by the brightness of the analysis
ring around 3 pm to 6 pm and 9 pm to 12 pm as shown in Figure 12, on the %Ultilization, #Users, and
#Transactions RPVs. These three RPVs are highly correlated such as when the number of users and transactions
increase, the corresponding %utilization increases accordingly.

3. Locality: The following are three use cases to validate the importance of visualizing locality:

a) In Figure 1, the spatial layout of a RPV can be used to detect the root cause of alarms in a data center. For
example, if the sensor temperature alarms (e.g., near RPV F7) are all from the same aisle of the data center,
the floor vent tiles in that aisle may require adjustment.

b) InFigure 11, three building RPVs are placed on a geographical map based on their longitude and latitude to
compare energy consumption between buildings as illustrated in Section 4.2.

c) InFigure 12, three highly correlated RPVs with attributes %Ultilization, #Users, and #Transaction are placed
together to form a cluster for quick identification.

The Weaknesses of Radial Pixel Visualization (RPV):
1. Variable sized pixel cells: The inner rings have smaller pixel cells than the pixel cells in the outer rings. To
overcome this difficulty, we need to place the least important variables in the inner rings, e.g., the temperature
sensor least likely to violate the threshold (usually T1 in Figure 1).

2. Variable sized data rings: RPV has variable size data rings because of its variable size pixel cells. In Cartesian
coordinates, all the data segments have an equal size which could make the pattern comparisons easier than
RPV. However, all three radial visualizations (HorizonGraphs, RecursivePattern, and RPV) show similar
patterns and anomalies in attributes (%Ultilization, #Users, and #Transaction) in Figure 12. Using different
colors, RecursivePattern, and RPV visualizations are much easier to find patterns than HorizonGraph.

Of 11 domain experts, 6 preferred RPVs, 3 preferred RecursivePattern and 2 preferred HorizonGraphs. To our surprise,
none of the experts preferred the multiple line charts which were most likely due to the high degree of overplotting.
From the user study results, we have learned that a user’s preference is highly dependent on the application requirements
and the user’s personal experience. Both Cartesian coordinate visualizations (HorizonGraphs and RecursionPatterns) and
RPV are able to provide an overview of the relationships among multiple data streams. Furthermore, RPV is able to
visualize the entire CPS system with locality and the results of an automated analysis.

6. CONCLUSION

In this paper, we presented RPV (Radial Pixel Visualization), a new approach for CPS (Cyber Physical System)
visualization with comprehensive features for visualizing large amounts of multi-attribute data. RPV combines pixel
cell-based radial visualization with efficient and effective knowledge discovery techniques. We have applied the RPV
idea to real data sets from data centers and smart buildings. The resulting Radial Pixel Visualizations provide
significantly more information than radial visualizations without using pixel cells. In the future, we will explore the
potential of embedding RPV into building or site-level energy management dashboards. Furthermore, we will apply
RPV to audience sense applications which are important in analyzing customer shopping behavior.
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