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Abstract

Colormap design is challenging because the encoding must match the requirements of data and analysis tasks

as well as the perception of the target user. A number of well-known tools exist to support the design of colormaps.

ColorBrewer [HB03], for example, is a great resource to select colors for qualitative, sequential, and diverging

data. PRAVDAColor [BRT95] and Tominski et al. [TFS08], for example, provide valuable guidelines for single

analysis tasks such as localization, identification, and comparison. However, for solving real world problems

in most practical applications, single elementary analysis tasks are not sufficient but need to be combined. In

this paper, we propose a methodology and tool to design colormaps for combined analysis tasks. We define

color mapping requirements and develop a set of design guidelines. The visualization expert is integrated in the

design process to incorporate his/her design requirements, which may depend on the application, culture, and

aesthetics. Our ColorCAT tool guides novice and expert designers through the creation of colormaps and allows

the exploration of the design space of color mapping for combined analysis tasks.

Categories and Subject Descriptors (according to ACM CCS): I.3.8 [Computer Graphics]: Applications

1. Introduction & Related Work

The elementary analysis tasks of data visualizations are local-

ization, identification, and comparison of data values [AA06],

which corresponds to the search tasks locate and browse to

identify and compare data values in the multi-level typology

of Brehmer and Munzner [BM13]. This was introduced for

color mapping strategies by Tominski et al. [TFS08], who

focuses rather on different data transformations than on de-

signing colormaps. The challenge is that different tasks have

different requirements for the visual encoding. For exam-

ple, comparing data values requires that perceived distances

match data distances. This is typically accomplished with

unipolar colormaps that do not vary over different hues. These

colormaps are the results of todays tools for continuous (se-

quential) data [BRT95,HB03,WVVW∗08]. However, these

colormaps are insufficient in the task of identifying data val-

ues (e.g., read metric quantities) because they do not provide

many distinct colors [War88]. Color scales that are effective

in identification must vary over multiple hues [War88], but

this distorts perceptual linearity and biases the analysts in the

comparison task. The complexity for designing colormaps

increases if tasks are combined, e.g., to identify and compare

data values, which is a typical task in real applications.

Most of the existing guidelines and tools are data-

driven [War88, HB03, Bre15]. There exist also task-driven

guidelines and tools [BRT95,Rhe00] but they focus on single

tasks. We argue that this is not enough, since real analy-

sis tasks typically require the combination of different ele-

mentary tasks. There exist algorithms [LH92,Kei00,KRC02,

WGM∗08,LSS12,MBS∗14] for sophisticated colormaps that

may cover single task combinations. However, these algo-

rithms are based on complex color spaces and optimization

problems. The colormap designer has no influence on the

outcome of optimized results that, e.g., may lack in aesthet-

ics [WGM∗08] but also may not be in-line with the mental

model of domain experts since the ordering of colors depends

on culture and domain. This results in inappropriate colormap

selection since there is no available tool that supports de-

signers in the creation of colormaps for their analysis task.

Further, colormaps for color-blind persons require additional

strategies [Oli13,SMO∗13] or recoloring methods [KOF08].

Mittelstädt et al. [MBS∗14] defined data-dependent quality

metrics for mapping data relations to color and Bernard et

al. [BSM∗15] perceptual-metrics for static 2D colormaps.

Since both focus on encoding data relations and not on en-

coding single data dimensions, the approaches do not define
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Figure 1: Colormaps for analysis tasks ( 1 localization, 2 identification, 3 comparison) and their combinations for sequen-

tial (a) and diverging (b) data. The colormaps vary perceptual linear over hue, saturation, and intensity according to the task

combination. All colormaps presented here are color-blind safe besides 2 , which maximizes JNDs for normal color vision.

requirements and quality metrics for the elementary analysis

tasks to identify, localize, and compare data values.

We see a gap of defining the color mapping requirements

for elementary analysis tasks and their combinations; and fur-

ther, we see the need for a tool that guides designers through

the design space of colormaps. Therefore, we provide Col-

orCAT, which is a tool to support visualization experts in

the design of colormaps. The designer has to specify the

data-type (sequential or diverging) and the analysis task com-

bination. ColorCAT determines the requirements for the col-

ormap according to the specified data and task properties,

and automatically generates a suitable (color-blind safe) col-

ormap. The designer may modify the colormap according to

the application but also in terms of culture and aesthetics.

In this paper, we claim the following contributions: 1) A

definition of requirements for different analysis tasks and

their combinations; 2) Quality metrics for one dimensional

colormaps to support these requirements and; 3) provide

color-blind safe color maps for each task combination; 4) We

contribute ColorCAT for guided design of colormaps.

2. Color Mapping Requirements

The challenge is that the different tasks have conflicting re-

quirements for colormaps. We extend the guidelines [TFS08,

MBS∗14,BSM∗15] by defining colormap requirements and

quality metrics for (combined) elementary analysis tasks and

provide means for high qualitative colormaps. Figure 1 shows

examples of colormaps created with ColorCAT. The encircled

numbers link colormaps to the task combinations.

1 R1-Localization. This task is performed when the ana-

lysts wants to see “where” specific objects are located within

the data [BM13], e.g., visual query for the value 100 on the

display. Therefore, data values and ranges of high impor-

tance must be perceptually striking in the visualization (e.g.,

highlighting). To provide an appropriate color mapping, the

visual importance V I of a color i must encode the data im-

portance DI (Eq. 1). Studies showed that visual attention is

predominantly steered by intensity and saturation [CYG04].

Thus, V I can be approximated by the arc of intensity I and

saturation S (in the HSI color space [Kei00]), which is in-

line with the approach of Guo et al. [GGMZ05], Bernard et

al. [BSM∗15], and results of ColorBrewer [HB03].

QM1 = ∑
i

|DI(i)−V I(i)| V I(i) =
√

I2i +S2
i (1)

QM1 can be minimized by selecting one color hue and in-

crease in intensity and saturation according to the specified

data importance, e.g., from black to green (sequential) or

blue and orange (diverging). ColorCAT lets the user specify

the data importance by interactive spline charts and models

intensity and saturation accordingly (see Section 3.4).

2 R2-Identification. This task is performed when the ana-

lyst browses or explores the data and reads values from color

encoded objects on the screen [BM13], e.g., estimate the

value of the upper-left object. A high number of perceptually

distinct colors (JND, just-noticeable-difference [MEO94])

allows accurate identification of data values [War88,MSK14].

The task requires that the number of JNDs is maximized

but all colors share equal visual importance (R1) to avoid

the typical harmful effects of “rainbow” colormaps [RTB96]

such as attention steering effects or intensity gaps. In order to

measure the amount of JNDs, a colormap can be segmented

such that the colors within each segment are perceptually

equal to the centroid of the segment (∆E(c1,c2) < JND),

but perceptually distinct (∆E(c1,c2)> JND) to the centroid

of other segments (equivalent to MacAdam ellipses [Mac42]

in color spaces or within a 2D colormap [BSM∗15]). The

number of segments corresponds to the number of JNDs.

∆E =
√

(∆J/KL)2+∆a2+∆b2 see [LCL06] (2)

Thus, sequential colormaps must vary perceptually linear

over the full range of hues with maximized and equalized (R1)

intensity and saturation. An alternative to increase the number

of distinct colors with equal visual importance is increasing

intensity while decreasing saturation (Figure 2). This is rec-

ommended for color-blind persons for whom mixing red

and green tones must be omitted. Accordingly, diverging

colormaps increase in saturation but decrease in intensity.

Figure 2: Colorblind-safe colormaps for identification.

3 R3-Comparison (absolute differences) is about com-

paring two or more visual encoded objects [BM13] and

to perceive the relative and absolute differences. This

task requires that distances in data space are equal to

perceived distances in the visual encoding [RTB96]. The
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Figure 3: (Ia) The user selects the data type and analysis task combination ( 1 Localization, 2 Identification, 3 Comparison)

and ColorCAT suggests a colormap design based on the task requirements (see Figure 1). (Ib) The user can select different

base colors in the color picker, which allows free adding, removing and rotating knots. (Ic) visualizes the steps of the colormap

algorithm for the designer to understand how the base colors are modified to match the analysis task. (Id) Splines allow advanced

users to modify intensity and saturation of colormaps. (Ie) The scatterplot allows visual inspection of colormaps and (If) reveals

the quality of colormaps. (II) shows ColorCAT simulating red-green blindness. (III)Examples for categorical and ordinal colors.

color encoding is faithful if the color distances ∆E(c1,c2) of
two data values reflect the data distance d(d1,d2). Therefore,
perceptual linearity can be measured with the Sammon’s

stress measure (Eq. 3) [Sam69, MBS∗14]. To provide

perceptual linear colormaps for sequential and diverging data,

the colormaps must vary from single color hues to black with

perceptual linear decreasing saturation and intensity.

QM3 =
1

∑i< j d(di,d j)
∑
i< j

(d(di,d j)−∆E(ci,c j))
2

d(di,d j)
(3)

R4-Comparison (relative differences). It is possible to pre-

serve a perceptual ordering in a non-linear colormap. Col-

ormaps that vary over multiple hues and linear over inten-

sity are perceptually ordered and thus, enable relative judg-

ments [War12] (see 23 ).

12 R1 & R2. It is possible to build combinations of the dif-

ferent tasks, e.g., the analysts wants to locate specific objects

and at the same time to identify (browse) the values of other

objects (this supports the explore task of Brehmer and Mun-

zner [BM13]). To support identification, the colormaps must

vary over hues with a maximum of saturation (R2). Intensity

is increased to highlight the value ranges of interest (R1).

23 R2 & R3. The most common analysis task combination is

that the analyst wants to identify but also to compare data val-

ues. The challenge is to provide perceptual linearity and many

distinct colors simultaneously. The results are the well-known

spiral colormaps [LH92,Kei00,War12] for sequential data

that vary over hues with a maximum of saturation (R2). The

increasing intensity perceptually orders the colors and thereby

reduces the bias of non-linearity on relative judgments (R4).

13 R1 & R3. This combination comprises the localization

and comparison of data values. Complete perceptual linear-

ity (R3) cannot be achieved because some value ranges must

stand out due to highlighting. Therefore, colors must be per-

ceptually ordered by linear increasing intensity (R4) and sat-

uration increases to highlight the specified data objects (R1).

123 R1, R2 & R3. The combination of all tasks is not rec-

ommended because this results in colormaps with many

trade-offs. By varying over hues with linear increasing inten-

sity (R4) and a minimum of saturation (R2), values can be

identified and compared. To support localization, saturation

increases to the specified value range (R1).

3. ColorCAT: Guided Design of Colormaps

The idea of ColorCAT is that the designer specifies the proper-

ties of the data (sequential, diverging) and selects the analysis

task combination (see Figure 3). ColorCAT then derives the

requirements (R1,R2,R3,R4) for the selected tasks and mod-

els the intensity and saturation gradient of the colormap to

minimize the quality metrics QM1−QM3. The designer se-

lects and orders base colors especially for identification tasks

to provide multiple hues (R2). The colormap is generated by

interpolating between the base colors in a perceptual uniform

color space to maximize JNDs (R2) and to ensure perceptual

linearity (R3) and/or orderliness (R4). Advanced designers

are able to interactively change all properties of the colormap.

Categorical and Ordinal Data. All colormaps in this paper

are designed to map continuous data. ColorCAT can also

generate color encodings for categorical and ordinal data (see

Figure 3(III)) since the requirements of Section 2 are valid

for these data types as well. The user can specify the number

of colors and thereby the number of categories. Categorical

data can only be identified or localized since there exist no

absolute or relative differences between categories.

c© The Eurographics Association 2015.© The Authors 2015.
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3.1. Interactive Selection of Base Colors.

ColorCAT provides an interactive color picker that visualizes

the intuitive HSL color space. ColorCAT supports the user

by suggesting color orderings for, e.g., spiral colormaps and

color harmonies for diverging colormaps. In this way, the

designer can order the colors according to domain, culture,

or user preferences (R4). Expert users can scan through the

HSI and CIECAM02 color spaces and create customized

colormaps beyond our guidelines.

3.2. Color Vision Deficiencies

In order to design colormaps that are color-blind safe, Col-

orCAT can be switched into three types of color blindness:

protanopia, deuteranopia (most common), and tritanopia. All

colors in ColorCAT will be simulated by the approach of Bret-

tel et al. [BVM97] according to the selected deficiency and

thus, colormap designers can perceive how the colormap will

appear to a color-blind person (see Figure 3(II)). Addition-

ally, ColorCAT indicates the quality by QM1−QM3 of the

colormaps for the selected color blindness. This mainly influ-

ences the base color selection since mixing red and green hues

should be avoided. However, also these hues can be mixed

if the difference in intensity between these hues is high.

3.3. Color Map Algorithm

ColorCAT uses the perceptual uniform color space

CIECAM02-UCS [LCL06] to estimate perceived color differ-

ences and thus, create perceptual linear colormaps. However,

perceptual uniform color spaces share the problem that inter-

polation especially along the lightness channel often leads

to colors that are undefined in RGB [LSS12]. The HSI color

space [Kei00] is not perceptually uniform but is defined (in

RGB) for the creation of colormaps with perceptual linear

increasing intensity. The trade-off is that all interpolations

between base colors are calculated in CIECAM02 (in order

to provide perceptual linearity) and HSI is used for modeling

the intensity (and saturation) properties of a colormap.

The algorithm performs the following steps: 1) The base

colors are extended by interpolation between the base colors

in the HSI color space. This increases the number of “color

knots” for interpolating intensity and saturation. 2) The al-

gorithm assigns intensity and saturation to the “color knots”

according to the analysis tasks. 3) For perceptual linearity,

the algorithm computes the distances between all color knots

with CIECAM02-UCS and places the knots according to their

distances in the final (ordered) set of colors for the colormap.

4) The empty spaces between the knots are interpolated in

CIECAM02 to provide a perceptual linear colormap.

3.4. Interactive Refinement & Interfaces

ColorCAT visualizes each step of the algorithm in order to

enable the user to understand how the base colors are utilized

and modified, which can be interactively changed in the color

picker tool. Further, we provide an interactive spline chart that

visualizes the intensity and saturation of the colormap. The

user can modify the splines by interactively adding, remov-

ing, and moving control points of the intensity and saturation

splines. Thus, the user can specify the data importance (see

Section 2) for localization tasks. The quality metrics panel

reveals the quality of the colormap in the according metrics.

ColorCAT enables the user to store alternative colormaps in

a list and provides a scatterplot of continuous data, which

is encoded with the selected or currently modified colormap

for visual inspection. The background color has high impact

on the foreground color perception. Colors may blend with

the background or strong contrasts change the appearance of

single colors. Therefore, the designer can switch the back-

ground color of the scatterplot for visual inspection. Our

colormaps work best on black backgrounds. We omitted the

usage of white, which is often used to encode extreme values

but would blend with white backgrounds. ColorCAT exports

the colormaps in different formats (RGB and CIELAB color

pallets, Java and Javascript arrays) in data files, but also can

export this directly as JAVA classes. Exported classes can

be directly used in JAVA based systems to visualize the col-

ormap but also provide the interactive spline chart to modify

the intensity and saturation properties of colormaps.

4. Discussion & Future Work

There exist sophisticated color mapping algorithms that out-

perform the colormaps of ColorCAT in single analysis tasks

or data types. However, the advantage of ColorCAT is that it

integrates the visualization expert in the design of colormaps.

The expert intuitively combines different analysis tasks and

modifies the colormap to match the target domain, user pref-

erences, and culture, which is not possible for automatic

methods. We argue that the integration of the visualization ex-

pert is more important for design processes of visualizations

since the challenge of visualization design is to match the

mental model of the target user. Contrast effects have high

impact on color encodings. We therefore suggest applying the

method of Mittelstädt et al. [MSK14] to avoid this issue or at

least to add multiple base colors since varying over hues mini-

mizes contrast effects as well [War88]. Aesthetic design goals

are also very important in colormap design, because aesthetic

designs reduce the stress of visual analysis tasks [WGM∗08]

and make the use of tools more enjoyable [Nor02]. It remains

an open question how to satisfy perceptually-motivated met-

rics and to allow enough artistic freedom for colormap design

simultaneously. Novel colormaps are presented by Samsel et

al. [SPG∗15] who derived the designs with trained artists. It

would be interesting to extend ColorCAT in this direction.

5. Conclusion

In this paper, we introduce color mapping requirements and

quality metrics for elementary analysis tasks and task com-

binations. Further, we present an approach to generate (also

color-blind safe) colormaps for each task combination and

provide ColorCAT, which comprises the automatic require-

ment analysis for task-based color design and interactively

guides designers through the process of designing colormaps.

c© The Eurographics Association 2015.
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