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Abstract

Color is one of the most effective visual variables since it can be combined with other mappings and encode
information without using any additional space on the display. An important example where expressing additional
visual dimensions is direly needed is the analysis of high-dimensional data. The property of perceptual linearity is
desirable in this application, because the user intuitively perceives clusters and relationships among multidimen-
sional data points. Many approaches use two dimensional colormaps in their analysis, which are typically created
by interpolating in RGB, HSV or CIELAB color spaces. These approaches share the problem that the resulting
colors are either saturated and discriminative but not perceptual linear or vice versa. A solution that combines both
advantages has been previously introduced by Kaski et al.; yet, this method is to date underutilized in Information
Visualization according to our literature analysis. The method maps high-dimensional data points into the CIELAB
color space by maintaining the relative perceived distances of data points and color discrimination. In this paper,
we generalize and extend the method of Kaski et al. to provide perceptual uniform color mapping for visual analysis
of high dimensional data. Further, we evaluate the method and provide guidelines for different analysis tasks.

Categories and Subject Descriptors (according to ACM CCS): 1.3.6 [Computer Graphics]: Methodology and

Techniques—Standards 1.3.3 [Computer Graphics]: Picture/Image Generation—Display Algorithms

1. Introduction

Ware and Beatty [WB88] performed an experiment, in which
five dimensional data was mapped to two spatial and three
color dimensions. The results indicated that each additional
color dimension is as useful as an additional spatial dimension
for cluster identification. Other guidelines [Bre96, Warl2]
suggest mapping two dimensions to hue and saturation (or

Figure 1: Two dimensional colormaps. The position of black
dots represent the color of multidimensional data points.
(A) 2D colormap in RGB: colors are saturated, however,
not perceptually uniform; (B) Rectangular sub plane of
CIELAB: perceptually uniform, but less saturated colors;
(C) Kaski et al.: saturated and perceptually uniform colors.

The definitive version is available at http://diglib.eg.org/.

lightness). This results in few distinguishable colors, which
is in most cases enough to visualize effective overviews but
lacks in precision [War12]. In high dimensional data analysis
the focus is typically on exploring the relations of data items.
Perceptual similarity is already modeled in color spaces such
as CIELAB. If the distances in the data space are mapped
to perceptual distances in the color space, the analysts will
perceive the relations of data items by interpreting the percep-
tual similarity of their colors. In this case, the color mapping
is not bound to a fixed number of dimensions and is able to
encode high-dimensional data relations. Unfortunately, only
a subspace of CIELAB can be visualized on current displays.
This subspace (or bounds) is of non-rectangular shape that
makes interpolation and other arithmetics for color mapping
very complex (see Figure 1C). Rectangular parts of this sub-
space as defined by a maximum surrounded box provide
perceptual linear mappings but result in fewer discriminable
colors (see Figure 1B). Other techniques use two-dimensional
color maps that are often created by interpolation between
four corner colors. This results in highly discriminable colors
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Figure 2: Wine data set [BL13]. 13 attributes describe three classes of wines. The data is projected with MDS to four dimensions
and visualized in the scatter plots (x-, y-axis and two dimensions are mapped to color). (A) 2D RGB color map: classes are not
separated and colors reveal (wrong) large distance between data points; (B) CIELAB sub plane: distances are preserved but
classes are not separated; (C) Our Method: Three classes are separated and local distances of class elements are preserved.

but these color maps are not perceptually linear. The user
may group data points of the same cluster differently (in Fig-
ure 1A clusters span over two or more color hues). Kaski et
al. previously introduced a method [KVKOO] that projects
high-dimensional data with a self-organizing map to two di-
mensions and fits the data into the bounds of CIELAB (see
Figure 1C). The color assignment supports the user in rec-
ognizing clusters and preserves the relationships of clusters
while maximizing the exploitation of the color space.

In this paper, we revisit the method of Kaski et al. and
adjust it to the needs of visual analysis. Our method provides
improved color mapping for high dimensional data points,
which can be used in any visual design since color is an addi-
tional design variable that is most effective in combination
with other visual variables such as position. A result of our
method is illustrated in Figure 2. We claim the following
contributions: 1) generalization of the method with further
projection methods, and extension to 3D target color spaces;
2) efficient heuristics for practical use; 3) cost functions
to further support analysis tasks; 4) evaluation of different
configurations and methods in a user study.

2. Related Work

General guidelines on selecting color maps can be found
in [War88,BRT95,RTB96,Rhe00,SSSM 11, War12]. For more
than one dimension, color seems to be problematic. If mapped
to the receptor level (e.g., RGB or LMS) we perceive the mix-
ture and can infer similarity [WB88] but cannot separate
the input from each dimension. Bivariate color schemes that
meet several perceptual issues are discussed in [Bre96, HBO3].
These schemes, however, do only support a limited num-
ber of color levels. An extension to the approach is intro-
duced in [GGMZO05, GCMLO06]. The method uses interaction
and bell shaped rasters in the CIELAB space to produce
diverging colors. There is evidence that two-dimensional
color maps are unintelligible for encoding certain dimen-
sions [WF80]. However, under a different perspective of vi-
sualizing the similarity of data points or clusters these color
maps have shown their usefulness in many papers. For exam-
ple, in [Him00, BvLBS11] high dimensional data is projected
to a lower (two) dimensional space and then scaled to fit a two
dimensional color map. Most methods interpolate in RGB or
CIELAB between fixed color anchors in the corners. Some
methods also use uniform planes of CIELAB [WDO0S].

3. Color Mapping for High-Dimensional Data Analysis

Figure 3: Schematic Approach. High dimensional data D
is projected with P to low dimensional space D', which is
transformed with P e CM to fit into color space C.

For color mapping of high-dimensional data, we see dif-
ferent requirements for the visual analysis tasks as described
in [TFS08] on the task model in [AA06]: Group 1: iden-
tification and comparison of data points and clusters;
Group 2: lookup of clusters and classes. Group 1 requires
an accurate match of all distances in the data space and per-
ceptual distances in the mapped colors. Group 2 requires per-
ceptual separation of classes and known clusters. Assigning
clusters to distinct categorical colors works well for group 2.
However, with this approach properties of the clusters are
lost (e.g., the correlation of dimensions or relations of cluster
elements). In the ideal case, data relations are preserved in the
coloring. This requires a model of perceptual similarity that is
implemented in CIELAB. The exploitation of the whole color
space supports color discrimination and thus, lookup of clus-
ters. To guarantee full exploitation, the method must adapt
the data to the non-linear shape of CIELAB. The intuition
behind the method of Kaski et al. is that high-dimensional
data is projected into the low-dimensional color space and
then firted to the bounds of the color space (see Figure 3). The
fitting is an optimization algorithm that minimizes target cost
functions. In the following, we generalize the method and
provide cost functions that meet the requirements of different
analysis tasks.

3.1. Cost Functions & Perceptual Metrics

Definitions: D is the set of all model vectors m; € R™ de-
scribing all data elements i. C is the set of all colors ¢; € R"
in the target color space. P : R™ — R”" is the projection of
the high-dimensional model vectors in the lower dimensional
target space. D’ being the set of model vectors m; € R" (note
that D' # C). CM : R" — C is the color assignment of m/
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to color ¢;. G is the set of clusters in D with g(i) being the
cluster of data element i. Hy being the convex hull and V (Hy)
the volume of a set or cluster x (e.g., V(Hp) represents the
volume of the convex hull of D in R™).

Preservation of data relations. A quality measure of a pro-
jection from high- to low-dimensional space is the preserva-
tion of all relative distances that can, for example, be mea-
sured by the Sammon’s stress measure (1). However, the
preservation of all pairwise distances is typically impossible.
Therefore, Kaski et al. preserve the relative distances within a
cluster to increase the accuracy of the projection locally (2).
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Color space exploitation. Another important property of
good color mappings is that the mapping exploits as much
of the color space in order to provide distinguishable colors.
Kaski et al. rigidly scale the vectors m] with a parameter k.
It is increased to let D’ occupy more of the available color
space C. The original method estimates the distance of ]
to its perceptually closest color ¢; that can be displayed on
the output device. This does not measure the exploitation of
the color space. It measures the distortion of CIELAB colors
that lay beyond the color space bounds (3). The exploitation
of the color space can be measured by the overlap of the
color space in R” and the projected data D’ € R”. This can
be approximated by computing the volume of the intersection
of the convex hulls of Hp: and H¢ (4).
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Preservation of clusters. Preserving the local distances
within a known cluster and ignoring the interrelations of
clusters makes the color mapping very flexible. The data
can adapt to the non-linear shape of the color space, which
separates clusters well. However, if the task requires also to
perceive interrelations of clusters, this method will produce
misleading results. Kaski et al. introduced a heuristic that
measures the “orderliness” of clusters based on a SOM grid.
We propose a different function that preserves the relative
distances of cluster centroids 71, with r € G (5), because the
heuristic cannot be applied in high-dimensional spaces.
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Further, the original method does not measure how well clus-
ters are separated or do overlap. This can be approximated
with the inverse centroid distance (6) and the intersection of
convex hulls (7). Another issue in visualizing clusters with
color is that we will overestimate the number of clusters or
see noise if there are only few present [WB88]. Our cogni-
tions tries to differentiate between groups and objects based

on their color (hue). If a cluster spans over the whole color
space, it is likely that it is perceived as multiple clusters. A
cost function (8) measures the pairwise color distances of
cluster elements that are higher than a threshold 7 (we found
that for = 30 in CIELAB clusters are correctly perceived).
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Combination of cost functions. The optimization goal is to
minimize the multi-objective cost functions. We scalarize and
sum the functions (9). Note, that this may be different with
other optimization methods. Scalar ¢; is used to make the
cost functions comparable. This parameter can be estimated,
for example, by evaluating a “bad” random solution and
normalize all cost functions. A; steers the influence of the
cost function i on the mapping and configures the method for
different analysis tasks. Details can be found in Section 4.
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3.2. Optimization Algorithms & Heuristics

The optimization goal can be reached by minimizing the sum
of cost functions by a variety of optimization algorithms.
Kaski et al. use a stochastic gradient method. We found that
particle swarming [KE*95] provided good results. However,
we consider the choice of the optimization algorithm as inter-
changeable part of our method. The optimization goal min(f)
has several issues: 1) f is not continuous so that £’ can only
be approximated; 2) in high dimensional spaces fi and f>
suffer under the curse of high dimensionality. Sophisticated
projections P exist that effectively map R™ to R3. We, in prac-
tice, use a standard projection technique P such as MDS. The
fitting to CIELAB is then applied in a post-processing step
(see Figure 3). Global and/or local distances can be preserved
by P. Therefore, a heuristic can use translation (in three di-
mensions), scaling and rotation (about three axis; centers as
fix points) on the projected data D" or on clusters in D’ to
minimize the cost functions. This has the advantage that the
parameter vector in the optimization is of low dimensionality.
This results in seven dimensions for the whole data D’ if all
pairwise distances shall be preserved or seven dimensions per
cluster if the task is focused on the lookup of clusters.

4. Evaluation

Goal and Task. We evaluated our method empirically with
an experiment introduced by Ware and Beatty [WB88]. The
goal was to measure the accuracy of users identifying the
number of clusters in a visualization. The participants were
shown a multi-dimensional data set in a scatter plot (as in Fig-
ure 2). Two spatial dimensions were encoded by x- and y-axis
and two or three dimensions were encoded by color (note,
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Table 1: Combinations of cost functions for analysis tasks.

that we reduced the number of dimensions in order to be com-
parable with related methods). The participants were asked
to estimate the number of clusters in each scatter plot. Note,
that counting the number of clusters is not trivial and involves
elementary and synoptic tasks (see Table 1). The participant
has to compare the spatial and color distribution of the data
points, which is the elementary task of comparing data points
globally. The participant has to group the data points and
further has to differentiate between spatial distribution and
color since clusters may overlap spatially or in the color space.
With this, the participant identifies clusters (synoptic task)
and is able to count the number of clusters in the plot.
Experiment Factors. We evaluated seven color mappings
with three state-of-the-art techniques and our method. Our
method can be configured in multiple ways, however, we
selected two versions. One was configured for the elemen-
tary comparison task and the other was configured to pre-
serve known clusters (lookup and comparison task, see Ta-
ble 1). For four dimensional data we used our method with
a fixed lightness of L = 60 (2D version) and state-of-the-art
methods that were two dimensional color maps in RGB and
CIELAB (see Figure 1). For five dimensional data we used
Ware’s and Beatty’s method to map three dimensions directly
to red, green and blue [WBS88] and our method that exploits
the full CIELAB space (3D version). The color mapping of
Kaski et. al. requires the SOM projection. We excluded the
uncertainties of projections. Thus, our method was compara-
ble to the state-of-the-art but not to the method of Kaski et al.
Experimental Design. We conducted a user study with 8
visualization and data analysis experts. The study was within-
subject designed. Each participant performed 18 tasks with
each color mapping. The order of color mappings was ran-
domized. The data was created according to [WB88], with
the number of clusters (1 to 6 clusters), number of cluster
elements (min: 30, max: 80), cluster positions and cluster
shapes being randomized in each trial.

Results and Discussion. The summary of results is illus-
trated in Figure 4. With our method preserving clusters (2D
and 3D version) users were significantly more accurate than
with all other mappings on estimating the correct number
of clusters (paired U-Test: p<0.001). This method supports
the synoptic lookup and comparison task of clusters and still
preserves the local data distances. The configuration implies

RGB 2D Colormap

CIELAB Sub Space 1l
Our Method 2D*

Our Method 2D**

3 Dimensions RGB

Our Method 3D*

Our Method 3D**

N R 0.00 0.05 01_0 0.15 02_0 0.25 0.30
* Configuration: Elementary comparison of data points.

** Configuration: Synoptic lookup and comparison of known clusters.

Figure 4: Evaluation Results. Averaged normalized error

( % — 1|) and standard deviation.

that clusters are known a priori, which is typically not the
case in the cluster identification task. However, this shows the
advantage of concerning separation of known clusters in the
color mapping. Our method for cluster identification provides
correct perceptually mappings. The 3D version performed
well, however, not significantly better than the state-of-the-art
methods. The effect of perceiving more clusters if few are
present [WB88] seems to compensate the benefits of percep-
tual linearity. Especially, since our method tries to exploit the
whole color space and preserves all pairwise distances. We
presented cost functions that are designed to support two op-
posing groups of analysis tasks. We argue that these functions
are a sound basis for the analysis in realistic scenarios. How-
ever, wee see further research to support different analysis
tasks and to improve visual cluster identification. It will be
interesting to find trade offs in real applications. Further, we
see future work to estimate the benefit of preserving global
cluster relations and local cluster element relations in com-
parison to categorical color mapping.

Implications. Our guidelines are summarized and illustrated
in Table 1. Note, that 3 and f4 are independent of the task
and should always be activated. If the task is to visually
identify high dimensional clusters, standard two dimensional
color maps will perform as well as our technique. However,
if the task also implies the comparison of data items, our
technique (f1) will provide perceptual correct mappings.
When clusters are known a priori and should be perceptu-
ally preserved, our method (f2, f5-f8) should be used since
it preserves local distances and supports lookup of clusters.

5. Conclusions

In this paper, we present an extension to the method of Kaski
et al. [KVKOO] to project high dimensional data to perceptual
linear color spaces. Our method preserves the relationships of
data items and supports the user in recognizing clusters while
maximizing the exploitation of the CIELAB color space.
We provide guidelines on how to configure our method for
different analysis tasks and evaluated different versions of
our method empirically. The results show that our method
outperforms other methods in the lookup task of clusters but
also highlighted that further research is required to improve
cluster identification with color.
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