Analysis of Local Data Patterns by Local Adaptive Color Mapping
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Figure 1: Boosting of peak points in a pixel-based time series visu-
alization. (A) shows two time series in a line chart. (B) illustrates
the pixel-based visualization of the same data with different color
mappings (each rectangle holds 24 hours of data). The trend of T2 is
invisible in the linear representation, which is recovered by the other
color mappings. However, the non-linear histogram-based algorithm
transfers some value ranges that were orange into the yellow and
white ranges of the color map, which biases global comparison.

ABSTRACT

Color, after position, is among the most effective visual variables
to encode information. It is pre-attentively processed by the visual
system, and if used appropriately, supports detection and correlation
of patterns. Several global color mapping schemes (such as linear,
non-linear and histogram-based) exist that support certain analy-
sis tasks. However, static global schemes map data with a small
local variation (within a data set of high variation) to small color
differences. Often, these color differences are below the noticeable
difference threshold of user perception or the display device. As a
consequence, valuable information may be lost since data points or
structures cannot be adequately perceived and correlations or other
patterns of interest may be missed. Existing techniques to avoid
this effect either require user interaction or are based on specific
assumptions about the data. We introduce a novel automatic algo-
rithm for local-adaptive color mapping that is applicable to dense
data and is based on the idea to locally modify the color mapping
to enhance the visibility of structures. This technique emphasizes
patterns of interest within locally chosen color-ranges such that (1)
the visibility of local differences is enhanced and (2) the introduced
global distortion of the color mapping is kept small. This allows
the perception of relevant patterns while approximately maintaining
global comparability across the whole data set.

1 INTRODUCTION

Color mappings yet do not consider the surround of pixels in
visualizations and cannot guarantee the visibility of structures
in the final visualization. This is one of the general problems of
visualizations, for example, to enhance the visibility of structures
such as streets on maps or veins in the human body but also in
abstract data visualizations where sets of pixels form important
structural information. Assuming we can identify requirements
of a concrete visual analysis task, we may be able to define an
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appropriate color scale for the particular case, which embeds a
adapted scaling of data values. Data transformations can support
the analysis of local data properties of interest.For instance, square
root normalization spreads data concentrated in lower intervals of
the input data domain to a larger region in the color-scale. It thereby
improves the distinction of data values in this area. However, such
techniques require a-priori understanding of the data and its relevant
scales. They are static in that they apply one scheme to the whole
data set. And also, they introduce non-linearity, harming comparison
tasks on the global and absolute scale where perceptual linearity is
desired. For example, in Figure 1 (A), the periodic patterns of time
series T1 and T2 are visible in the line charts. However, the patterns
are invisible in the linear pixel-based display (Figure 1 (B)). If we
apply a histogram-based algorithm, the trend of T2 becomes visible
by mapping the original orange color tones into yellow and red. If
we want to compare these values, one would intuitively say, that
T1 is far higher than T2. Indeed, the averages are about the same.

Given these shortcomings of static color-mapping schemes, we
propose a novel algorithm for dense data displays to dynamically
adapt colors based on local data properties. This approach retains
the visibility of local details without using additional visualization
space and aims at keeping the global distortion small. The technical
achievements are as follows: 1) A color boosting algorithm that
locally adapts the color mapping for important data structures and
guarantees the visibility of important data points; 2) The method
preserves global metric quantities of the data and provides an infor-
mative overview without interaction.

Our method thereby introduces contrast effects in order to en-
hance the visibility of structures. Typically, this is one of the major
problems in data visualizations. A solution to compensate for con-
trast effects was recently presented in [4]. In this paper, however,
we present how contrasts can be used to enhance dense-data visual-
izations that use color for encoding metric quantities of numerical
data. Note, that this algorithm can be applied to any image or data
visualization to enhance the visibility of known structures.

2 RELATED WORK

Generally, there is no color map that meets all the requirements of
data visualizations equally. The challenge is to create an appropriate
color map for a specific task and specific data properties, as proposed
in the literature. General guidelines on selecting color maps can
be found in [1, 7, 8]. Approaches that use histogram equalization
optimize the visual distinction of data points by equalizing the distri-
bution of the color scale in the image [2, 6]. Also, lenses [3] could be
used as an interactive tool to emphasize local visualization aspects,
but this depends on the user to actively spot areas of interest in the
data. In [5] the authors discuss several approaches to enhance the
visibility of data points. E.g., Boosting by halos and color visually
highlights interesting data points or borders by changing the color
of their surrounding pixels in order to increase the contrast. The
techniques in [5] are applicable predominantly to sparse data. We
consider dense data and therefore, these approaches are not ideal
as we want to preserve the metric quantities of the data and avoid
overwriting of quantities.



Data: Structures sorted according importance
Result: Boosted structures
for Structure s in structures do
high = s.copy(); low = s.copy();
while /visible(high) & & !visible(low) do
for i=0; i < high.size; i++ do
‘ high[i].color ++; low[i].color - -;
end
end
if visible(high) then
| visibleStructures.add(high);
else
\ visibleStructures.add(low);
end

end

return visibleStructures,
Algorithm 1: Guarantees the visibility of important structures.
The variable high[i].color denotes the colormap level of a pixel
within the structure that is increased by the boosting.

3 COLOR BOOSTING

We illustrate the basic idea of our proposed method by the example
in Figure 1. In part (A), the local details in time series T2 (blue)
are visible in the line chart. However, they are invisible in the linear
pixel-based representation (B), as they are below the noticeable dif-
ference threshold. We assume that the peak points are important in
this application. Therefore, we locally manipulate the color mapping
in order to make these details just noticeable. Our color boosting
algorithm performs two steps in order to reveal local structures:
1) Structure detection: Local structures of interest are detected by an
application dependent detector; 2) Color boosting: The color level
of these structures is scaled in both directions of the color map until
they become just noticeable from their spatially surrounding area.

The structure detection is a modular function within the algorithm
and can be replaced by any meaningful approach. For example,
connected pixels that form a structure such as pixels encoding a peak
value or streets on maps can be defined as structures. A structure is
perceivable, if its border pixels are visual distinct to the surrounding.
Therefore, the color distance of each border pixel must be greater
than the just noticeable difference (JND) to its surrounding, exclud-
ing the pixels of the same structure. We want to minimize the color
distortion in order to preserve global comparability as far as possible.
Thus, the algorithm has to maximize the visibility of structures and
minimize the distortion of color at the same time.

Our heuristic solves this optimization problem by sorting the
structures in a priority queue according to their importance for the
current visualization and then sequentially process each structure.
The algorithm aims to maximize the number of visible border pixels
of a structure, while minimizing the bias of the boosting. This
(sub-) optimization problem can easily be tackled by an algorithm,
that increases and decreases the color levels of the structure pixels
and tests in each iteration whether the border pixels have become
visible (see Algorithm 1). As soon as enough border pixels of a
structure are visible the algorithm stops and continues with the next
structure in the priority queue. As a rule of thumb, we set this to 99%
of all border pixels of a structure. A border pixel is considered as
visible, if the color distance of the pixel to every of its surrounding
pixels is above the IND (Algorithm 2). Color distances can be
estimated in the CIELAB color space, where AE ~ 2.3 expresses
the JND. This algorithm has a complexity of O(s* pxw[) where
s is the number of structures, p the number of pixels per structure,
w is the number of neighbors (standard: 8 neighborhood) and / the
number of color levels. Since, in the worst case s * p = n (number of
pixels) and w,! << n, the algorithm has a linear complexity of O(n).

Data: Current structure s
Result: Visibility of s
for Pixel p in borderPixels(s) do
for Pixel n in neighbors(p,!s) do
if colorDistance(p,n) < JND then
| visible = false; break;
end
end
cntVisible = visible?cntVisible+1:cntVisible;
cntlnvisible = !visible?cntInvisible+1:cntlnvisible;
end
return _-Visible . 0.99
Algorithm 2: Tests the structure’s visibility. The function neigh-
bors(p,!s) provides the neighboring pixels of p within the 8 neigh-
borhood that are not in the same structure.

4 CONCLUSION & FUTURE WORK

We present a method that locally adapts the color mapping to im-
prove the visibility of interesting pixels and structural information.
The algorithm is applicable to any kind of 2D image or visualization
when the structures that should be preserved are known. It should
be highlighted that there are some general limitations in the local-
adaptive color mapping methodology and there are interesting future
work items to be addressed. When local adaption is applied, we
may see artifacts introduced, since equal data values may be mapped
to different color tones and vice versa, based on the local adaption
strategy. It is an interesting fundamental question how we can assess
the trade-off between the analytical gain of making local structures
visible, as compared to the bias introduced by this methodology. It
will be interesting to understand in more detail, where the trade-off
runs for different application domains and visualization techniques.
Further, we aim for defining the problem of structural visibility as
perceptual optimization problem since important perceptually pro-
cesses are not considered in the technique such as contrast sensitivity
and color appearance. In the near future, we want to research and
extend image-based structure detectors for visual analytics applica-
tions. We plan to research an interactive approach where the user
marks a local data pattern of interest, and then the systems com-
putes a color mapping which best emphasizes this local structure in
the global view. Thereby, we could conveniently parameterize the
local-adaptive color mapping on-the-fly.
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