
© 2020 IEEE. This is the author’s version of the article that has been published in IEEE Transactions on Visualization and
Computer Graphics. The final version of this record is available at: xx.xxxx/TVCG.201x.xxxxxxx/

Multiscale Snapshots: Visual Analysis of Temporal Summaries in
Dynamic Graphs

Eren Cakmak, Udo Schlegel, Dominik Jäckle, Daniel Keim, and Tobias Schreck

Fig. 1. Overview of our Multiscale Snapshots approach: We (1) recursively create temporal summaries (snapshots) of graphs at
different temporal scales (time granularities); (2) We then apply an unsupervised graph learning method (graph embedding) to learn
low-dimensional representations of snapshots; Then, we (3) then give an exploratory visualization that organizes the snapshots of
different temporal granularities in a hierarchy, to provide an overview of the evolving structural properties, which utilizes the graph
embeddings for analytical tasks (e.g., similarity search). The approach allows rich interaction with the temporal and structural
aggregates to understand large time-dependent graphs, for example, to visually analyze reoccurring temporal states.

Abstract—The overview-driven visual analysis of large-scale dynamic graphs poses a major challenge. We propose Multiscale
Snapshots, a visual analytics approach to analyze temporal summaries of dynamic graphs at multiple temporal scales. First, we
recursively generate temporal summaries to abstract overlapping sequences of graphs into compact snapshots. Second, we apply
graph embeddings to the snapshots to learn low-dimensional representations of each sequence of graphs to speed up specific analytical
tasks (e.g., similarity search). Third, we visualize the evolving data from a coarse to fine-granular snapshots to semi-automatically
analyze temporal states, trends, and outliers. The approach enables us to discover similar temporal summaries (e.g., reoccurring
states), reduces the temporal data to speed up automatic analysis, and to explore both structural and temporal properties of a dynamic
graph. We demonstrate the usefulness of our approach by a quantitative evaluation and the application to a real-world dataset.

Index Terms—Dynamic Graph, Dynamic Network, Unsupervised Graph Learning, Graph Embedding, Multiscale Visualization.

1 INTRODUCTION

A dynamic graph models changing relationships between entities over
time. Many real-world data analysis problems rely on dynamic graphs,
including, among others, social, computer, and communication net-
works, and in practice, contain large amounts of dynamic data, hence
presenting challenges for effective exploration. An important task in
such dynamic graphs is to obtain an overview of the evolving topol-
ogy by identifying meaningful temporal intervals and their underlying
changing structural properties [22]. For instance, analysts are often
interested in the identification of stable, reoccurring, transition, and
outlier states [60]. However, as dynamic graphs are often large-scale
and evolve over long periods, it is a major challenge to identify suit-
able analysis methods and present the data in a readable, scalable, and
expressive manner [13]. Previous approaches for visual analysis of
dynamic graph data, therefore, often incorporate temporal abstraction

• Eren Cakmak, Udo Schlegel, and Daniel Keim are with the University of
Konstanz, Germany. E-mail: firstname.lastname@uni-konstanz.de

• Dominik Jäckle is an Independent Researcher, Munich, Germany.
E-Mail: dominikjaeckle@gmail.com

• Tobias Schreck is with the TU Graz, Austria.
E-Mail: tobias.schreck@cgv.tugraz.at

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

methods (e.g., temporal aggregation and dimensionality reduction)
to provide an overview of higher-level structures over time [60]. In
real-world applications, the usefulness of such temporal abstraction
methods depends on many factors, including the selection of an appro-
priate temporal scale, the user task at hand, graph size, and frequency
of topological changes. Currently, visual analytics systems for dynamic
graphs lack methods for the visual analysis of dynamic processes at
different temporal abstraction scales (multiscale analysis), often leav-
ing the analyst with the challenging task of distinguishing overlapping
temporal changes manually.

We propose Multiscale Snapshots, a novel visual analytics approach
to semi-automatically provide a multiscale overview of structural and
temporal changes in dynamic graphs. We combine temporal hierarchi-
cal abstractions with unsupervised graph learning methods to enable
the identification of similar evolving graphs. First, the temporal hierar-
chical snapshots summarize the dynamic graph recursively at multiple
temporal scales to reduce the size of the large-scale data. Second, we
apply unsupervised graph learning (e.g., graph2vec [50]) to the snap-
shots of the hierarchy to learn low-dimensional representations of graph
sequences, which enables users to use the embeddings for analytical
tasks (e.g., similarity search) and later on to adapt the temporal scale
semi-automatically. Third, the visualization of the hierarchy of snap-
shots provides an overview of trends, allows users to compare periods,
and to explore structural as well as temporal properties of dynamic
graphs. The approach enables exploring various abstraction methods
at multiple temporal scales to provide an overview of large dynamic
graphs temporal and structural properties.

1

https://doi.org/xx.xxxx/TVCG.201x.xxxxxxx/

With Multiscale Snapshots, we can retrace how dynamic patterns
and changing graph properties affect the overall evolving data, and com-
pare temporal structures at different levels of temporal resolution. The
contributions of this work are the following: (1) The Multiscale Snap-
shots approach to visually analyze temporal and structural similarities
at multiple temporal scales; (2) A temporal hierarchical abstraction us-
ing unsupervised graph learning methods to reduce the size of dynamic
graphs and speed up analytical tasks (e.g., similarity search).

The remainder of this paper is structured as follows. Section 2
discusses the related work. Section 3 describes the addressed problems,
the research gap, and the design goals. In Section 4, we describe the
Multiscale Snapshots approach and our implementation. In Section
5, we quantitatively evaluate and apply the approach to a real-world,
large-scale dynamic graph. A discussion is given in Section 6, before
Section 7 concludes.

2 RELATED WORK

Multiscale Snapshots combines temporal summaries with graph em-
beddings to present an overview of the underlying dynamic phenomena.
In the following, we discuss related work from automated analysis,
visualization, visual analytics, and multiscale visualization approaches
for dynamic graphs.

2.1 Dynamic Graph Analysis and Visualization
The visual analysis of long graph sequences has lately gained research
attention [13]. The automatic analysis, such as the temporal analysis of
static as well as dynamic graph metrics (e.g., centrality, diameter [19],
or change centrality [33]), enables us to examine structural properties
of the data. Furthermore, recent approaches in unsupervised learning
focus on embedding graph structures into low-dimensional space [65].
However, only analyzing such automatically extracted structural prop-
erties might hide specific local dynamic changes (e.g., changes of
density) and may fail to capture the overall dynamic phenomena [65].
Interactive visualizations can overcome these challenges by allowing
analysts to explore the dynamic relationships in their evolving struc-
tural context, and several visualization techniques for dynamic graphs
have been proposed. Popular approaches display dynamic graphs as
animations [8, 30, 54], timeline [11, 28, 29, 38, 64] and hybrid visual-
izations [9, 23, 55]. For further reading, we refer to the surveys of
Kerracher et al. [44], Beck et al. [13], and Nobre et al. [52].

Many of the proposed visualization techniques, however, do not
scale to a large number of nodes, edges, and time steps at the same
time [37]. Consequently, to adapt existing techniques to large-scale dy-
namic graphs, visual analytics approaches were proposed that combine
automatic analysis methods with interactive visualizations to reduce
the presented data and highlight structural changes.

2.2 Visual Analytics of Dynamic Graphs
The visual analytics of dynamic graphs aims to seamlessly integrate
graph analysis methods [51] with visualization techniques [13] to in-
teractively analyze the evolving structural properties. Such visual
analytics approaches facilitate abstraction methods for large-scale dy-
namic graphs to reduce the amount of data and provide an overview
of high-level changes. The usefulness of such abstraction methods,
however, depends on the applied method (e.g., temporal clustering) and
input parameters (e.g., number of clusters) [38]. Therefore, according
to Aigner et al. [4], it is essential to interactively adapt abstraction
methods and tune their underlying parameters to identify changes that
otherwise would remain hidden.

In general, there are two categories of abstraction methods; data
space abstraction (e.g., sampling, clustering) and visual space ab-
straction (e.g., zooming, focus-and-context) [27]. The data space
abstraction in dynamic graphs reduces the number of graph elements
or time steps [56]. Often, data space abstraction methods lower the
resolution of the data (e.g., temporal aggregation [49]). For instance,
Van den Elzen et al. [60] proposed a visual analytics approach that
segments and aggregates sequences of graphs to a vector and applies
dimensionality reduction to obtain an overview of the states in dy-
namic graphs. However, the resulting overview depends strongly on

the selected segmentation scale and the abstraction method (extracted
features) into vectors. Further, the dimensionality reduction technique
is hard to interpret as the projection does not visualize the evolving
graph structure. For an overview of data space abstraction methods,
we recommend the recent survey of Liu et al. [47]. The visual space
abstraction methods in dynamic graphs reduce the amount of presented
data (e.g., by applying zooming [14]). Many of the visual space ab-
straction methods allow the user to interactively change the depicted
level of detail [1,7,17,31,41,63,66]. For example, temporal navigation
methods help to interactively adapt the horizontal (e.g., TempoVis [3])
and vertical (e.g., Bender-deMoll and McFarland [16]) time dimen-
sion. Multiple visual analytics approaches, including visual abstraction
methods, were recently proposed. For instance, Small MultiPiles [9]
enables users to interactively stack and present a sequence of graphs as
piles of adjacency matrices to reduces the number of displayed views.
Furthermore, Cubix [10] allows users to visually explore adjacency
matrices of dynamic graphs in a cube metaphor. However, in both
approaches, the identification of temporal patterns in long sequences
of adjacency matrix visualizations remains challenging due to limited
display space and overlapping issues in 3D visualizations.

Many of the previously proposed approaches focus mainly on aggre-
gation and display the abstracted temporal or structural dimension at
one scale, which makes it challenging to investigate the influences of
abstraction methods on the resulting visualization, as patterns may be
found at different scales and intervals. Multiscale visualizations aim
to overcome these challenges by simultaneously displaying different
levels of abstraction, hence providing an encompassing overview of
possible structural and temporal aggregation levels.

2.3 Multiscale Dynamic Graph Visualizations
Multiscale (multiresolution) visualizations present the data at multiple
user-defined levels of abstraction and are useful to set detailed abstrac-
tion levels into the overall temporal context [32]. For example, Javed
and Elmqvist [42] stack different levels of zoomed time-series data in a
tree structure to serve as a graphical history and preserve the context
during zooming. Nearly all of the previously mentioned approaches
visualize the dynamic graphs on a single time granularity (scale) using
mostly one adjustable abstraction method. One notable exception is
the recent work of Burch and Reinhardt [22] that proposed a time-
line visualization technique that allows exploring dynamic graphs at
different temporal granularities. However, the approach focuses on bi-
partite graphs, and due to the overplotting produced by the interleaving
method, the identification of temporal patterns remains challenging.

Most of the listed approaches for dynamic graphs focus on the anal-
ysis of dynamic graphs at a particular temporal scale and require the
manual definition of parameters. For instance, the work of Van den
Elzen et al. [60] requires users to define a discretization scale, feature
selection, and the choice of a suitable dimensionality reduction tech-
nique. In contrast to these approaches, we propose using temporal
hierarchical abstractions with unsupervised learning methods to ex-
plore input parameters (e.g., discretization scale) and simultaneously
visualize graph sequences at different levels of temporal abstraction.

3 APPLICATION BACKGROUND

The analytical goal of our approach is to provide an overview of evolv-
ing graph properties at multiple abstraction scales. In the following, we
describe the addressed problems, the research gap we close, and our
derived design goals.

3.1 Problem Description
The starting point of data analysis is often an overview visualization to
examine the overall data structure, and to identify useful analytical and
visualization techniques [57]. However, providing an overview of large-
scale dynamic graphs can be challenging for multiple reasons [13].
First, the complexity and size of data pose various challenges as many
dynamic graph visualization techniques do not scale [12]. Second, it is
challenging to visualize dynamic graphs as there is a trade-off between
displaying the detailed graph structure for each time step, and also
presenting the evolving properties over time. For instance, animations

2

© 2020 IEEE. This is the author’s version of the article that has been published in IEEE Transactions on Visualization and
Computer Graphics. The final version of this record is available at: xx.xxxx/TVCG.201x.xxxxxxx/

Publication, Year Visualization Scalability Temporal Explorability

A
ni

m
at

io
n

Ti
m

el
in

e

H
yb

ri
d

Sm
al

l

L
ar

ge

M
ul

tis
ca

le

N
od

es

E
dg

es

N
ei

gh
bo

rs

Pa
th

s

C
lu

st
er

s

Su
bg

ra
ph

s

Multiscale Snapshots • • • • • • • • •
Rufiange & McGuffin [55], 2013 • • • • • •

Hadlak et al. [38], 2013 • • • • •
Cui et al. [28], 2014 • • • • •
Bach et al. [9], 2015 • • • •

Burch & Weiskopf [23], 2015 • • • • • •
Bach et al. [11], 2015 • • • •

Van den Elzen et al. [60], 2016 • • • • • •
Burch et al. [22], 2017 • • • • •

Dal et al. [29], 2017 • • • •
Xu et al. [64], 2018 • • • • • •

Wang et al. [62], 2019 • • • • • •

Table 1. The comparison highlights the essential temporal properties
of related visualization techniques, ordered by publication date, and
assessed by us to the best of our knowledge from analysis of the works.
The visualization category classifies the techniques using the taxonomy
of Beck et al. [13]. The scalability category elaborates on multiscale
temporal approaches and the temporal scalability with large scalability
meaning a dynamic graph with more than 1000 graphs. The temporal
explorability is adapted from the work of Nobre et al. [52] and illustrates
whether the graph structures (e.g., neighbors, clusters) are explorable
and comparable within the temporal dimension.

support the exploration of each static graph over time. However,
animations are considered unsuited to provide an overview of long
periods due to the problems caused by cognitive effort [8, 40, 59]
and difficulties maintaining a mental map in dynamic graphs [54].
Third, creating compact temporal abstractions (summaries) of dynamic
graphs is user task-dependent and relies upon the application domain
as well as data properties. For example, a fine-grained temporal
aggregation in large-scale dynamic graphs results in various intervals
with little information unable to provide an overview [16]. In contrast,
coarse-scale aggregation produces only a few intervals, which may
contain a high variance, where meaningful intervals could go unnoticed.
Finding appropriate levels of abstraction is a non-trivial task [45].

3.2 Gaps in Related Approaches
We compare a selection (see Table 1) of recent work on dynamic graph
visualization to point out the gap we intend to close. The selected
publications are based on the recursive search of references from
the recent surveys of Beck et al. [13] and Nobre et al. [52]. The
categories of our comparison comprise visualization techniques from
the dynamic graph taxonomy [13], the temporal scalability, including
multiscale approaches, and the temporal explorability of different
graph structures [52].

The comparison reveals several insights. First, the number of tem-
poral multiscale approaches for dynamic graphs is limited. Multiscale
approaches present either time series in a multiresolution design (e.g.,
graph metrics [38]) or include visualizations having multiscale char-
acteristics (e.g., time curves [11]). Second, timeline visualizations
(time-to-space mappings) reduce the size of the data and are suitable
to provide an overview of a sequence of graphs. However, such ap-
proaches abstract and discretize structural information at one temporal
scale (uniform time slicing), often requiring users to manually iden-
tify overlapping temporal patterns [62]. For example, timeline-based
visualizations often require to define input parameters, e.g., discretiza-
tion parameters and derived features [60]. Third, current work either
introduce a single complex visualization, or the combination of various
simple views, which poses the question of how to arrange the different
visualizations in the limited screen space and link them effectively.

In summary, a significant number of visualization techniques view a
dynamic graph as a series of static graphs which neglects to simultane-
ously capture the evolving structural properties of dynamic graphs. In
contrast to previous approaches, we interactively apply an unsupervised
graph learning method (graph embeddings) on a multiscale temporal
hierarchy to directly learn structural properties. We furthermore use
graph embeddings as a familiar representation for an analytical user task
(e.g., similarity search, comparison) and utilize the visual exploration
of different visual metaphors.

3.3 Design Goals
We derived three design goals for our visual design from the previously
described problem description, the research gap, and also research
challenges outlined in related work [6, 12, 13].

G1: Time-oriented visual analysis The visual analysis of dynamic
graphs lacks new paradigms to examine structural (static) and tem-
poral properties simultaneously. First, the identification of structural
properties, e.g., clusters in a static graph, allows searching for simi-
lar structural properties over time. Such an exploration enables users
to identify temporal states and continue to search for similar trends,
reoccurring structures, and outlier structures.

G2: Temporal multiscale overview Our core idea is to provide an
overview of multiple levels of temporal granularity, which facilitates
users to relate higher-level overviews with low-level details. Such a
multiscale overview allows detecting useful temporal analysis scales
and gives additional context while navigating the temporal dimension
(e.g., temporal filtering). For instance, a multiscale overview allows
comparing states and transitions across multiple temporal granularities.

G3: Multiple visual metaphors The combination of different vi-
sual metaphors in a consistent interface allows adjusting the visualiza-
tion to the data characteristics of particular intervals. It also increases
the task coverage by enabling an analyst to adapt the visual represen-
tations to the task at hand. For example, matrix-based visualization
techniques are better suited for dense subsequences of dynamic graphs.

4 MULTISCALE SNAPSHOTS

Multiscale Snapshots provides an overview of higher-level and fine-
grained temporal intervals of large-scale dynamic graphs. The approach
reduces the complexity of the data by integrating temporal summariza-
tion and graph embeddings in an interactive multiscale visualization.

Our proposed visual analytics approach consists of three adjustable
steps (see Fig. 1) to promote the exploration and summarization tasks
for dynamic graphs [20]. The first step transforms the temporal dimen-
sion into a hierarchy of snapshots summarizing subsets of the dynamic
graph into overlapping multiscale intervals. The second step reduces the
complexity of the snapshots by embedding the summaries of the evolv-
ing topology into vector representations (e.g., using graph2vec [50]).
The mapping of intervals into vector representation allows us to auto-
matically adjust the visualization to highlight temporal states, trends,
and outliers. The third step transforms the abstracted temporal data
into a flexible and interactive hierarchical visualization and supports
essential interaction as well as navigation methods to analyze the evolv-
ing graph structure visually. Furthermore, the visualization intends
to increase the task coverage by combining different visualizations of
dynamic graphs in a consistent interface. The following subsections
describe each transformation step in more detail.

4.1 Temporal Hierarchical Snapshots
Dynamic graphs model relationships over time (e.g., social net-
works) and can be described as a number of T static graphs DG =
(G1,G2, ...,GT). The temporal abstraction of dynamic graphs (e.g.,
aggregation, filtering) helps to reduce the data size, speed up tem-
poral queries, support interactive analysis, and eliminates noise [47].
However, the temporal abstraction of sequence graphs into summaries
remains challenging due to the selection of time granularity, which
depends on many factors (e.g., application, data size), as well as the
choice of abstraction method (e.g., summarization).

In various dynamic graph visualizations, a simple selection of one
time granularity (uniform time-slicing) is used due to the simplicity
of the approach [62]. In contrast, we propose a recursive temporal
abstraction into a hierarchy with temporal overlaps to model multiple
time granularities (see Fig. 2). We generate and stack multiple par-
titionings using uniform intervals (time slices) of different temporal
granularities. We organize the stacked partitionings in a hierarchy that
orders the different levels of abstraction (discretizations) from coarse to
fine-grained temporal representations. Our bottom-up approach groups
per default the temporal dimension into intervals of length 2l with the
level l ∈ 1, ...,dlog(T)e. Fig. 2 displays an example partitioning for a
dynamic graph with eight time steps. The level one of the hierarchy

3

https://doi.org/xx.xxxx/TVCG.201x.xxxxxxx/

Fig. 2. The Figure displays the generation of temporal hierarchical snapshots for a dynamic graph with eight timesteps. First, the dynamic graph is
partitioned into overlapping intervals at four levels of temporal granularity. The fourth level contains all data, and the first level consists of intervals of
size one (static graphs). Second, abstraction methods are applied to the intervals to generate different compact summaries of the subsets of the
dynamic graph. The result is a hierarchy of temporal snapshots that contains multiple summary graphs (e.g., union, intersection, and disjoint graph.

consists of intervals of length one, containing only one graph of the
evolving data. The intervals are generated using a rolling window
method, which facilitates time discretization without hard boundaries.
The rolling window approach for level l is computed by shifting the
interval of width 2l by the temporal overlap of width 2l−1. This results
in each level having dT/2l−1e intervals and the whole hierarchy hav-
ing (3 ·T)−1 intervals. Essentially, as seen in Fig 2, each generated
interval overlaps partly (e.g., per default half) with the next interval
except for the level one (single graph) and the root node (all graphs).
The default recursive partitioning into multiscale intervals results in
the height of dlog(T)e. In practice, for most datasets, the height of the
hierarchy is below 20 (< 1 million graphs). The width of time slicing
can be modified to the application domain, for example, intervals with
a width of a day, week, month, year.

The uniform time-slicing produces intervals of the same width for
each level. The generation of non-uniform intervals for each level can
be computed by applying temporal clustering techniques with varying
input parameters. For example, the temporal clustering approach of
Hadlack et al. [38] can be used to identify similar substructures based
on graph properties to provide an overview of temporal trends. A
hierarchy of temporal intervals can also be automatically generated by
facilitating unsupervised learning with boundary detectors to obtain
hierarchical temporal dependencies at different time scales [25]. The
generation of such hierarchical temporal dependencies only works on
time-series data of a dynamic graph, for example, on evolving graph
metrics such as average clustering coefficient or density. Therefore,
applying such methods remains challenging as there is no single graph
metric that can capture all of the evolving graph structures.

The temporal abstraction aims to summarize and capture the evolv-
ing structural properties of sequences of graphs. We suggest utilizing
multiple abstraction methods to generate diverse representations of
the generated multiscale intervals as there is not a single abstraction
method able to encode all evolving properties of a dynamic graph. We
transform the intervals into graph summaries per default using set op-
erations (union, intersection, disjoint graph). For example, the union
operation abstracts the interval into a supergraph, which helps to pro-
vide an overview of all nodes and edges [37]. The three default graph
summarization techniques (see Fig. 2) are the union graph that consists
of a union of the set of all node and edge sets. The intersection graph
which consists of all nodes appearing more than i-times in the interval.
The disjoint graph consists of all nodes appearing less than i-times in
the interval. We set the default value for the parameter i to the interval
overlap of an interval. If the values of i are below the interval overlap,
this will most probably result in successive intervals with a similar
intersection and disjoint graphs.

We call the three computed graph summaries of an interval a snap-
shot Sl,k (see Fig. 2). A snapshot aims to capture the structural and
temporal properties of a sequence of graphs on level l and the k gener-
ated interval. The resulting intervals of the snapshots can be indexed
in an interval tree to support the efficient support window queries, for
example, identifying the best fitting interval to a user-defined period.
We suggest, furthermore, utilizing more graph summarization methods
based on the analytical task, data characteristics, and application do-
main. For example, we implemented a community detection algorithm

(e.g., the Clauset-Newman-Moore algorithm [26]) to reduce the overall
number of nodes in each static graph and to extract higher-level prop-
erties (e.g., meta-nodes and edges). For more graph summarization
methods that can be added to our approach, we refer to the survey by
Liu et al. [47].

Overall, the first step results in a hierarchy of abstracted snapshots
at different temporal granularities (see Fig. 2). Every interval in the
hierarchy contains multiple graph summaries, which can be used for
different types of queries later on. For example, we can search for
similar changes between intervals by using the disjoint graphs to iden-
tify reoccurring changes in the dynamic graph. The resulting temporal
hierarchy of the dynamic graphs is used in the next step of our Mul-
tiscale Snapshots approach by mapping each summary to its vector
representation.

4.2 Multiscale Dynamic Graph Index

As for the next step, the resulting hierarchical snapshots are learned and
embedded into low-dimensional space to reduce the complexity of the
graphs and speed up analytical tasks (e.g., similarity search). The main
goal is to use unsupervised learning methods to model the similarities
between the different multiscale temporal summaries and reduce the
complex data characteristics to low-dimensional vectors preserving
information. We apply a graph embedding (e.g., graph2vec [50]) to
map all snapshot graphs (e.g., union and disjoint graphs) to vector repre-
sentations. In contrast to earlier approaches (e.g., Van den Elzen [60]),
unsupervised graph learning methods learn the topological structures
of graphs and do not require any hand-engineered features. The em-
beddings can be precomputed and are also typically small enough to fit
into main memory. To the best of our knowledge, Multiscale Snapshots
is the first visual analytics approach to propose using unsupervised
graph learning methods with different temporal granularities to visually
analyze intervals sharing similar properties over time.

Recently, new unsupervised graph learning methods have been pro-
posed to learn node and graph embeddings [65]. However, many of
these methods mainly focus on learning static graph embeddings and
cannot model the evolving properties of dynamic graphs [65]. In con-
trast to earlier approaches, we propose to model dynamic graphs by
embedding summaries of subsets of the evolving data to capture the
temporal dependencies between graphs. The analyst can apply graph
embeddings such as graph2vec [50], GL2Vec [24], and FGSD [61]
to the snapshots. The approach embeds all snapshots of the temporal
hierarchy except for the level one (single graphs), which results in the
embedding of 2T −1 snapshots. The resulting 2T −1 embeddings are
also indexed to support efficient K-nearest neighbor search queries. We
employ the following two index structures: an interval tree to support
efficient temporal queries for the intervals, and an individual index
structure for each level. We utilize for the indexing of the graph em-
beddings the proposed method of Malkov et al. [48] to perform a fast
K-nearest neighbor search in each level.

In our evaluation (see Sec. 5), we compare different unsupervised
graph embeddings, discuss the scalability of the approaches, and show
that the embeddings of the snapshots are able to capture structural as
well as temporal changes.

4

© 2020 IEEE. This is the author’s version of the article that has been published in IEEE Transactions on Visualization and
Computer Graphics. The final version of this record is available at: xx.xxxx/TVCG.201x.xxxxxxx/

4.3 Multiscale Snapshots Visualization
The final step applies a visual mapping to organize the temporal snap-
shots in a multiscale visualization to enable the visual analysis of the
generated snapshots and uses the graph embeddings for analytical tasks.
In the following, we describe the components of our visual and interac-
tion design (see Fig. 3).

The visualization presents the hierarchy of snapshots and orders
them from coarse to granular scale (top-down) and facilitates the hori-
zontal (time) as well as vertical (time granularity) temporal navigation
to search for similar properties over time (G1). The visualization stacks
and displays the multiscale temporal abstractions (G2), allowing to
analyze and compare the abstracted data at different temporal granu-
larities. Presenting multiple abstraction levels enables us to gain more
knowledge about the underlying abstracted dynamic graph (e.g., data
distribution) [32]. The highest level (root) displays an aggregated ver-
sion of the whole dynamic graph (e.g., union graph), and the bottom
level enables us to depict a limited number of each time step. The
levels in-between allow visualizing a subset of the generated snapshots
in snapshots views (juxtaposed small multiples).

A snapshot view combines different visual metaphors in a consistent
interface to increase the task coverage (G3) and displays one of the
summary graphs (e.g., union graph). Every view enables users to depict
the data using four kinds of visual metaphors (node-link, adjacency
matrix, animation, and time series of graph metrics). We use these
visual metaphors since the individual benefits, and drawbacks of the
representations are well studied (e.g., graph layout and matrix reorder-
ing) [13]. We utilize multiple visual metaphors for certain intervals as
the usefulness of dynamic graph visualization depends on the underly-
ing changing data (e.g., sparse versus dense graphs) [22]. We consider
our snapshot views as hybrid visualizations, as the view combines dif-
ferent visual metaphors in small multiple representations. Furthermore,
the Clauset-Newman-Moore community detection algorithm [26] is
applied to minimize visual clutter and to reduce the number of nodes in
a snapshot view, if the size of the displayed summary graph exceeds a
specific threshold (more than 100 nodes). This threshold is based on the
size classification of Nobre et al. [52]. The resulting communities are
then shown as meta-nodes and allow to filter the respective nodes and
edges of the community for the entire Multiscale Snapshot visualization.
For instance, the filtering of a structural cluster allows us to explore
the evolving properties of the cluster in the displayed snapshot views.
The snapshot view also visualizes derived structural properties using
the background color of each snapshot view to highlight differences
between adjacent visual metaphors. The derived properties (graph met-
rics) of the summary graph are used to identify and emphasize temporal
or structural graph properties. For instance, we compute graph metrics
such as the sum of the number of edges in a snapshot, which indicates
the density of the underlying graph sequence. A linear color scale from
light blue (low values) to darker blue (high values) is used to highlight
changes of the derived structural properties [39].

The use of multiple levels of juxtaposed small multiples remains
challenging due to limited display space and the preservation of the
viewer’s mental map. The simultaneous presentation of multiple levels
and their snapshot views does not visually scale due to the restricted
display space with an increasing number of snapshot views, as the
readability of each view decreases. We, therefore, incorporate visual
space abstraction methods to limit the number of displayed levels and
snapshots views. The number of displayed levels is limited (default
four), and during the vertical navigation, the respective lowest or highest
level of temporal granularity is removed. Furthermore, we abstract
snapshot views to reduce the number of shown visualizations and on
particular snapshots while keeping the context of the abstracted views
(focus-and-context principle). An abstracted snapshot is displayed as
a compact colored rectangle without any visual representation. The
background color can be mapped to extracted graph metrics of the
selected summary graph, for example, the number of nodes as well
as edges, average clustering coefficient, density, and transitivity. The
coloring of such abstracted snapshot views enables the identification of
intervals with specific properties, such as subsequences of dense graphs.
In general, the usage of such color indicating graph properties allows

Fig. 3. The hierarchy organizes and displays the summaries from
the snapshots from coarse to fine-grained representations. The visual
metaphors in each snapshot view can be manually or semi-automatically
adapted. The snapshot views can be abstracted to reduce the number
of displayed views and duplicate information. The background color of
each snapshot is mapped to graph metrics (e.g., number of edges).

users to identify and compare temporal intervals [58]. The abstraction
can be done manually by reducing individual snapshot views or whole
levels of the hierarchy, using a user-driven threshold, and an automated
abstraction algorithm.

The automated algorithm limits the number of intervals by traversing
the hierarchy and abstracting redundant information. The algorithm
abstracts snapshots if the number of views exceeded a specific threshold,
or if the algorithm detects duplicate displayed periods. The algorithm
traverses each level of the hierarchy (top-down) and compares the
displayed snapshots at each level against each other. If coarse snapshots
(high level) are displayed in the fine-grained snapshots (low levels), they
are abstracted. The automatic abstraction is done based on overlapping
windows in the interval tree, which means that the snapshot view
with the highest overlap with low-level snapshots is abstracted. The
algorithm compares, for example, the time interval of the root view
against all other not abstracted snapshots, and if the periods of these
more granular levels display the majority of temporal information of
the root view, then the root snapshot view is abstracted. The thresholds
for the automatic abstraction algorithm, such as the overall number of
levels and snapshot views, are adjustable by the analyst.

Furthermore, we aim to preserve the viewer’s mental map, which
increases the readability and interpretability of the evolving data [54].
To maintain the viewer’s mental map, we fix and use one global layout
for each visual metaphor. For instance, we compute one layout for the
overall supergraph of the dynamic graph. Furthermore, the usage of
linking and brushing aims to preserve the mental map between adjacent
snapshots that are using different visual metaphors and the different
levels of abstraction in the hierarchy.

Multiscale Snapshots utilizes the graph embeddings for automated
analysis to identify trends, reoccurring, and outlier states. For exam-
ple, an analyst can select a snapshot view and can apply a k-nearest
neighbor search query to detect similar summary graphs (see the query
interface Fig. 4). The detected k-nearest neighbor snapshots can also
be disaggregated to more granular views using the interval tree (drill-
down). The similarity search can also be applied to a particular type
of summary graph, for instance, search for similar intersection graphs.
Such similarity queries also enable to semi-automatically abstract and
adapt the displayed snapshot views. The k-nearest neighbor queries
can also be applied to particular intervals (subqueries) and to specific
levels, which allows examining the summaries of the dynamic graphs
in a top-down manner. The embeddings can also be used to cluster
levels of the hierarchy and to identify outlier states by applying outlier
detection algorithms [2].

In summary, the visual design provides an overview of snapshots of
a dynamic graph by combining automatic analysis methods with visual
space abstraction methods (focus-and-context).

5

https://doi.org/xx.xxxx/TVCG.201x.xxxxxxx/

4.4 Multiscale Snapshots Prototype
We show the usefulness of our approach by applying it to real-world
data using our prototype 1. The prototype consists of two compo-
nents (see Fig. 4 A-B): the Multiscale Snapshots visualization and the
query interface. Both components allow users to explore and semi-
automatically search for similar temporal states in the dynamic graph.

The Multiscale Snapshots visualization consists of a toolbar, the
stacked snapshot views, and two context bars. The toolbar facilitates
the application of automated analysis methods (e.g., open the query
interface) and visualizes the summary graphs of the snapshots (e.g.,
display union or intersection graph). Furthermore, the toolbar enables
changing the data space abstraction methods (e.g., filter and cluster
nodes) and adapting visual transformations (e.g., reordering algorithms
for matrix visualization). The prototype displays by default the root of
the hierarchy as a supergraph (union graph) using a node-link diagram
visualization. The layout of the node-link diagram is computed once for
the root supergraph using per default the Fruchterman-Reingold [34]
layout algorithm and later used for all snapshot views. The hierarchy en-
ables an analyst to navigate horizontally (time) or vertically (overview
to detail) on the temporal dimension. The two context bars display
additional information during the horizontal and vertical navigation of
the temporal dimension. The time context bar on the top shows the
visualized intervals, and the level context bar on the right allows to add
and remove levels. Each snapshot view can be visually analyzed via
zooming, panning, brushing, and changing the layout in all views (e.g.,
reordering of the matrix) to make visual patterns more apparent [15].
The visual transformations for individual or all snapshot views can be
adjusted by the analyst to enable the adaption of visual metaphors to the
underlying sequence of graphs, such as switching for periods of dense
sequences of graphs to matrix visualization. The prototype also enables
filtering by specific graph properties (e.g., node degree) and cluster-
ing [26] to reduce overall displayed elements to extract higher-level
features (e.g., meta-nodes and edges). The background color of each
snapshot view can be mapped to extracted graph metrics and computed
node characteristics (e.g., clustering coefficient) to node size. To apply
a k-nearest neighbor query, an analyst has to select a specific summary
graph in a snapshot view.

The query interface allows applying specific k-nearest-neighbor
queries to search for similar summary graphs on all or particular lev-
els of temporal granularity. The query interface displays each time
dimension of a level and encodes the currently visualized and already
investigated snapshots via color. This additional information helps to
keep an overview of the already explored snapshots of all levels. The
timelines can be ordered by different features, such as by the percentage
of explored snapshots. An analyst can select the levels, time interval,
and the summary graph type (e.g., only union graphs) to apply the
k-nearest neighbor search. The number of k-nearest neighbors is also
configurable. The query results are displayed as dots on the timeline,
and the euclidean distance between the underlying graph embeddings
is mapped to the opacity of the dot. The analyst has to select a subset
of the nearest-neighbors, which are then displayed in the Multiscale
Snapshots visualization. The selected results are shown as snapshot
views and allow users to analyze and compare similar temporal states
in lower or higher temporal granularities against each other.

5 EVALUATION

In the following section, we evaluate the two main components of
the Multiscale Snapshots approach. We provide a usage scenario to
demonstrate how the visual analytics approach can be utilized to gain an
overview of temporal summaries in a dynamic graph. We furthermore
quantitatively evaluate the similarity (k-nearest neighbors) search of
the graph embeddings with synthetic and real-world datasets.

5.1 Usage Scenario
We demonstrate the applicability of our approach using a real-world,
large-scale dynamic graph of the website Reddit [46]. Reddit is a
social news aggregation website with 440 million active users who

1https://github.com/eren-ck/MultiscaleSnapshots

can publish and upvote posts of interest (e.g., link to news sites) in
particular communities (subreddits). The analyzed dataset is a dynamic
hyperlink graph in which nodes are subreddits, and edges are hyperlinks
posted between subreddits.

Tasks In the following, we outline the actions that a fictitious analyst
takes to discover structural and temporal changes during the 2016
US presidential elections (see Fig. 4). A task in the visual analysis
of such hyperlinks is to gain an overview of temporal events (e.g.,
political scandals), identify reoccurring links between communities,
and examine structural changes within groups of subreddits. The visual
analysis of such data with state-of-the-art visual analytics approaches
remains challenging due to the varying duration of such events. For
example, the length of political scandals varies significantly due to
media exposure and their temporal context (e.g., during elections). In
contrast to previous approaches, Multiscale Snapshots enables us to
detect events/states of different temporal lengths due to the temporal
multiscale modeling.

Dynamic Graph The Reddit dataset [46] comprises hyperlinks be-
tween subreddits from the 1st January 2016 to 30th November 2016.
The resulting dynamic graph contains 7974 graphs (grouped by hours),
18546 subreddits (nodes), and 88328 hyperlinks between subreddits
(edges). The timestamped hyperlink posts have a sentiment label in-
dicating if the post is positive or negative towards the other subreddit.
The dynamic graph index was computed using the Graph2Vec [50]
embedding approach for 80 epochs, and three summary graphs for each
snapshot were generated (union, intersection, and disjoint graphs). The
validation of the detected findings is done by comparison to the ground
truth of real historical news coverage.

Initial Setup Per default, our prototype displays the entire graph
as an aggregated node-link diagram (supergraph). Then, based on
the Kamada-Kawai algorithm [43], a global layout is computed for
all snapshot views once. This way, the mental map is preserved
during the visual analysis. Furthermore, snapshot views that display
more than 100 nodes are automatically clustered using the greedy
Clauset-Newman-Moore community detection algorithm [26] to
reduce the number of nodes and to extract higher-level properties (e.g.,
meta-nodes and meta-edges). The clustering of the approximately
8000 nodes of the analyzed data reveals several clusters of subreddits
(e.g., computer games subreddits).

Starting Point: Election Week First, the analyst wants to analyze
the election week of the 2016 US presidential race (8th November
2016) to identify important groups of political subreddits. The analyst
enters the dates of the election week, and the prototype automatically
searches for the best fitting snapshot period using the interval tree.
The prototype depicts a union graph of election week, and the analyst
maps the size of the cluster to the node size to discover large groups
of subreddits (see Fig. 4-A). He selects the largest visible meta-node
and all underlying political subreddits of the cluster. He filters these
political subreddits as he assumes that the political subreddits of the
election week have also been active in the political discourse of the
whole election.

Similarity Search To identify political events similar to the election
week in the dynamic graph, the analyst searches for similar embeddings
using the election weeks supergraph. Using the query interface (see
Fig. 4-B), he queries the five nearest neighbors for each level and
sorts the levels by the similarity of the embeddings. The executed
nearest neighbor query is calculated on the unfiltered summary graphs
for each snapshot, which means that the similarity search results will
include false-positives that do not necessarily include any political
subreddits. The analyst discovers that the results of the query are
similar embeddings on the second (2-hour periods) and third level (4-
hour periods), which means that these rather short sequences of graphs
consist of a subset of hyperlinks similar to the ones during the election
week. The analyst selects the three closest neighbors for both levels
and therefore navigates from a high temporal aggregation (a week) to
a lower granularity (2-4 hours). Three queried snapshots are empty,
meaning the views do not contain any of the previously filtered political
subreddits. The empty views are presumably false positives that capture
other graph sub-structures of the election week. The analyst removes

6

https://github.com/eren-ck/MultiscaleSnapshots

© 2020 IEEE. This is the author’s version of the article that has been published in IEEE Transactions on Visualization and
Computer Graphics. The final version of this record is available at: xx.xxxx/TVCG.201x.xxxxxxx/

Fig. 4. The prototype implementation consists of two primary components the Multiscale Snapshots visualization (A) and the query interface (B).
The figures present the visual analysis of the Reddit hyperlink dataset (see Sec. 5.1). The displayed nodes are subreddits, and the edges are
timestamped hyperlinks between subreddits with either positive (blue) or negative (red) sentiment. The displayed nodes are subreddits, and the
edges are timestamped hyperlinks between subreddits with either positive (blue) or negative (red) sentiment. The example illustrates by the case of
the 2016 US election how the approach allows searching for similar temporal states in the dynamic graph. The intermediate steps of the visual
analysis and the resulting interfaces are presented in the sub-figures C-D. In D, the results of the visual analysis by similarity search are displayed,
which are significant events in the timeline of the presidential election.

the three empty snapshots and examines the remaining three snapshots
by changing the visual mapping from a node-link diagram to the time
series of graph metrics.

Fine-Grained Temporal Analysis The three remaining snapshots
contain a different amount of nodes. The intersection graph on the
second level contains only one subreddit (the donald), which means the
subreddit was referenced in both graphs of the snapshot (2 hours). The
analyst discovers that a high-level summary graph (disjoint) includes
a displayed snapshot of the second level. The unexpected overlap
steers the analysts towards the low-level disjoint graph, which seems
to also be the peak in the time series of graph metrics. The time
series presents the number of nodes, edges, as well as connected graph
components, the graph density, the average clustering coefficient, and
the transitivity over time. It seems that this second level snapshot
is essential for the results of the search as the snapshot has similar
graph structures compared to the supergraph of the election week.
The peak is presented as a matrix visualization (see Fig. 4-C) and
can be attributed to the events of the national democratic convention
where H. Clinton was nominated for the presidential election. The
disjoint graph represented as a matrix visualization (see Fig. 4-C) can
be associated to the political event of the democratic nomination H.
Clinton which resulted in a cluster of hyperlinks between political
subreddits (e.g., hillaryclinton, asktrumpsupporters, and garyjohnson)
and other hyperlinks between political subreddits (e.g., communism101,
altright, and crazyideas) The analyst uses the snapshot (disjoint graph)
for another similarity search. He expects the similarity search to return
more political events because the low-level graph embedding of the
two-hour snapshot contains mainly linked political subreddits.

Searching for Political Events The similarity search finds many
similar snapshots at different temporal granularities, which indicates
that these political events also seem to be discussed for different periods.
The query returns several similar snapshots of the sixth level with an
interval length of 32 hours, which can refer to potential political events

and their daily news coverage scheme (see Fig. 4-D). The analyst
investigates the different snapshot views, mostly union, and disjoint
graphs, and abstracts all snapshot views with only a few subreddits. The
remaining presented snapshots are on levels 5-7 and contain intervals
of 16, 32, and 64 hours. The analyst maps the average clustering
coefficient to the background color of each snapshot view to identify
periods with structural clusters. He changes the visual metaphors of the
dense snapshots to matrix visualizations and the higher-level periods
to the time-series metaphor. The different visual metaphors allow the
analyst to put the events on lower levels into the overall temporal
context, for example, the analyst can relate how the linkage behavior
between subreddits declines after political scandals.

Political Events and Scandals The analyst then visually analyzes
the periods and sees that during the selected periods political subreddits
link each other, mainly in a positive (blue edge) or negative (red edge)
way. Various subreddits such as the donald and asktrumpsupporters
usually have positive hyperlinks between each other. He examines
external resources of the timeline of major events for the 2016 US
elections and can refer the presented snapshot views to events in the
presidential race. The sixth level of the hierarchy displays several GOP
(republican party) political debates, B. Sanders dropping out of the
primary election, and the H. Clinton Email affair. The analyst is also
able to identify structural changes between the views, for instance,
after B. Sanders drops the linking activity of some subreddits (e.g.,
SandersForPresident or Democratic Socialism) declines. The snapshot
view of 6-7th October on the fifth level stands out as it mostly contains
negative links between the subreddits. The analyst can relate the period
to the leaked tapes of the 2005 Access Hollywood show in which D.
Trump brags about sexual exploits and also on the same day WikiLeaks
published the email of H. Clintons campaign manager revealing her
paid Wall Street speeches. The analyst wants to analyze this snapshot
further and displays the supergraph as an animated node-link diagram to
examine the spread of news between the subreddits on an hourly basis.

7

https://doi.org/xx.xxxx/TVCG.201x.xxxxxxx/

During the further analysis of snapshot views, the analyst can also detect
other events, for instance, the final nomination of D. Trump by the GOP,
which results in visible changes in the time series plot of graph metrics.
He also detects some events, which he cannot relate to actual major
political events directly. Those events are probably general political
discussions initiated by Reddit users or targeted distribution of news
from public-relations groups or political bots. To further investigate
such events, the analyst can select these non-assignable events and
search for similar periods, for example, to identify the reoccurring post
of political bots.

5.2 Experimental Evaluation
The generated graph embeddings for the multiscale snapshots are in-
dependent of any analytical task and can be used for clustering, graph
prediction, and outlier detection. In the following, we show that the
multiscale graph embeddings allow us to search for similar sequences
of graphs. Across all experiments, we use the same parameter settings
for the generation of the multiscale index.

Problem Background A similarity search for a set of graphs can
be interpreted as a query to return k-nearest neighbors to a specific
graph. An exhaustive simple brute-force algorithm would compute the
distance between all graphs, for example, the graph editing distance
(GED) [21] and return the list of k nearest graphs. However, the
extensive brute-force approach does not scale as the GED computation
is not feasible for graphs with more than 16 nodes [18]. Therefore,
heuristics are usually applied to decrease the computation effort of k-
nearest neighbor queries, which in turn frequently reduces the accuracy
of the results. In the following, we apply window queries for sequences
of graphs to show that summarization methods (e.g., union graph) can
capture some temporal characteristics.

Datasets We evaluate the performance of similarity search on syn-
thetic and real-world data. We generated five synthetic dynamic graphs
using the dynamic stochastic block model with diminishing commu-
nities [35]. The synthetic datasets consist of 150 nodes with three
communities and 100-time steps, containing varying amounts of di-
minishing communities (up to 20-time steps) in which two nodes are
exchanged for each time step. We evaluate the approach with real-
world datasets. The Reddit data [46] is a dynamic hyperlink graph with
subreddits (nodes) and hyperlinks or crossposts between subreddits
(edges). The Wikipedia dataset [53] consists of a dynamic graph that
captures the editing behavior (edge) between Wikipedia Talk pages
(nodes). For each real-world dataset, we preprocess the data by comput-
ing a supergraph for each hour, which generates descriptive dynamic
graphs with more than two nodes per time step. We evaluated our
approach on randomly picked subsets (100 graphs) of the real-world
data. We select a subset of the data as the computation of the following
ground truth is quite expensive.

Ground Truth We calculate a ground-truth similarity score for the
k-nearest neighbor search by computing the distance between the input
and all other graphs. We employ the following similarity measure be-
tween two graphs. Our similarity measurement first models the graphs
as two adjacency matrices A and B and then compute for each matrix
the singular values via the singular value decomposition. Afterward,
we calculate the f norm using

f norm =

√√√√ S

∑
i=0

σ2
i

We define the distance between two graphs as

madist(A,B) = | f norm(A)− f norm(B)|

Using the given similarity measurement, we compute the distances
between all graphs to obtain a ground-truth of k-nearest neighbors.

Baseline Methods We used three unsupervised graph learning meth-
ods on the described datasets. The graph embeddings are applied
once with and once without the multiscale temporal modeling. We
used the following graph embedding methods with the described input
parameters:

• graph2vec [50]: 250 epochs, 0.025 learning rate, 2 Weisfeiler-
Lehman iterations, and 128 dimensions.

• GL2Vec [24]: 250 epochs, 0.025 learning rate, and 128 dimen-
sions.

• FGSD [61]: 200 number of histogram bins with a the histogram
range of 20.

For window queries for the single graph embeddings without any sum-
marization methods, we utilize the median value of the embeddings as
the representative value of the interval. We use the median as the aver-
age of the embeddings as these can lead to potential distortions in the
embedded space. For the multiscale temporal embedding, we applied
only one temporal summarization method to generate a union graph for
each snapshot. The searched intervals for the k nearest neighbor search
are extracted before training of embedding techniques. We randomly
extracted five intervals with different lengths (1−8) from the dynamic
graph and randomly removed one node from each graph.

Evaluation Metrics The following metrics are used to evaluate the
approach. We compute the accuracy of the 5-nearest neighbor queries
based on the ground-truth. For the accuracy computation, we do not
incorporate the ordering of the nearest neighbors and expect only the
presence in the result set.

Experimental Setup All experiments were computed on a computer
with two CPU cores (Intel i7-6567U 3.30GHz) and 16 GB RAM. The
experiment was repeated five times, and the average accuracy was
computed for each randomly picked interval with different lengths.

Results The results are described in Table 2. The results indicate
that FGSD [61] works best to identify nearest neighbors on an embed-
ding basis using the median. The results show that the single graph
embeddings have a higher accuracy on the synthetic data. In contrast,
the real-world datasets indicate different results by demonstrating equal
or improved results by using the multiscale index for longer intervals
(< 4). An explanation for this can be the fact that there is a drastic dif-
ference between the topology of the synthetic and real-world datasets.
For example, in the real-world data nodes and edges are added and
removed more frequently between time steps. The synthetically gen-
erated dataset has a quite high density, while in contrast to this, the
real-world datasets are much more sparse. For example, in the syn-
thetic data, the nodes are just moved between the clusters, so only edges
change over time. These synthetic properties prevent supergraphs from
encoding the topological changes over time. Therefore, the multiscale
graph index requires a different temporal summarization method to
capture the changes of the synthetic dataset (e.g., disjoint graph).

6 DISCUSSION

The Multiscale Snapshots approach consists of three steps: (1) applying
temporal summarization methods, (2) utilizing graph embedding meth-
ods to reduce the size of the generated graph summaries, and (3) the
visual analysis of the generated snapshots. Our quantitative evaluation
indicates the usefulness of the multiscale graph embeddings, and the
usage scenario shows the application of the approach to real-world data.
Overall the utility of the approach yet depends on multiple aspects (e.g.,
summarization method and graph embedding), the data characteristics
(e.g., data distribution), and the task at hand (e.g., outlier analysis).

Steps (1-2) involve multiple methods with parameters. For instance,
the graph embeddings methods require a definition of the number of lay-
ers and epochs. For an analyst, such parameter choices pose a challenge
as he has to determine suitable methods and their input parameters to
generate useful embeddings. We consider the flexibility of using dif-
ferent temporal summarization methods and graph embeddings as an
advantage of our approach and a possibility for future work.

Another challenge for steps (1-2) is the computational scalability for
the precomputation of the embeddings. For example, the computation
of a dynamic graph of length T with |V | nodes and |E| edges require for
only union graphs O(log(T) ·(|V |+ |E|)) memory and time complexity.
We speed up the computation of temporal summaries by parallelizing
each levels snapshot generation and the usage of an interval tree. Goyal
and Ferrara [36] surveyed the time complexity of graph embeddings,

8

© 2020 IEEE. This is the author’s version of the article that has been published in IEEE Transactions on Visualization and
Computer Graphics. The final version of this record is available at: xx.xxxx/TVCG.201x.xxxxxxx/

Synthetic Data Reddit Data [46] Wikipedia Data [53]

Interval length 1 2 3 4 8 1 2 3 4 8 1 2 3 4 8

Graph2Vec 0.096 0.146 0.096 0.15 0.096 0.332 0.066 0 0 0.264 0 0 0 0 0.066
GL2Vec 0.096 0.122 0.024 0.024 0 0.198 0.132 0.266 0.066 0.066 0.066 0 0.066 0 0.066

FGSD 0.146 0.224 0.198 0.198 0.048 0.464 0.332 0 0.132 0.066 0.866 0.132 0.066 0.132 0.134
Multiscale Graph2Vec 0.148 0.072 0.096 0.072 0.122 0.266 0.264 0 0.066 0.264 0.234 0.066 0.066 0.066 0.198

Multiscale GL2Vec 0.148 0.072 0.096 0.072 0.122 0.198 0.132 0.066 0.132 0.4 0.234 0.066 0.198 0.132 0.198
Multiscale FGSD 0.146 0.096 0.096 0.072 0.122 0.264 0.264 0 0 0.332 0.466 0.066 0.2 0.198 0.266

Table 2. The Table presents the quantitative evaluation results of the k-nearest neighbor search with and without the multiscale graph index for
different graph embedding methods. The average accuracy values for window queries of different lengths (1-8) are depicted for each dataset. The
experiment was repeated five times on synthetically generated data and with randomly selected subsets of real-world data. The results of the
evaluation indicate an improved accuracy on window queries on the listed real-world dataset.

and scalable embeddings run in the time complexity of O(|E|). Due to
the time and memory complexities, we suggest computing the graph
embeddings for large scale dynamic graphs on a server.

Step (3) aims to display the temporal dimension at multiple scales,
which poses new user-related aesthetic challenges [12]. To preserve
the mental map, we compute and use only one layout for each applied
visual metaphor (e.g., global node-link diagram layout). An analyst
can change the global layout for all snapshot views, for instance, by
reordering the cells and rows of the adjacency matrix visualization.
The snapshot views can also result in adjacent snapshots that display
different dynamic graph visualization (e.g., node-link and matrix visual-
ization). Consequently, the mental map between such views cannot be
preserved as it is not possible to track and identify changes efficiently.
We provide brushing and linking methods to minimize the cognitive
load of identifying nodes in different visual metaphors. Another limita-
tion of our approach is the fact that specific snapshots can be mistaken
for other periods (temporal aliases [12]). We aim to overcome such
temporal aliases by displaying the period in each snapshot view and
the time context bar highlighting the underlying period in the overall
temporal context. We consider these aesthetic challenges [12] as open
possibilities for the development of new methods for the interactive
comparison of two or more snapshots at different granularities. For
example, the investigation of how such mixed visual metaphors impact
the overall user experiences poses an opportunity for future work.

The applied methods during the visual analysis influence the compu-
tational and visual scalability of our approach. For instance, the live
computation of displayed graph summaries scales linearly to the num-
ber of time steps and the size of the evolving graphs. Furthermore, the
real-time analysis of snapshots can suffer based on the algorithmic time
complexities of applied methods, for example, the Clauset-Newman-
Moore community detection algorithm [26]. A possible solution to
these challenges is to investigate how graph embeddings can be utilized
to guide an analyst towards temporal changes to speed up the analysis
process. Furthermore, the display space limits the visual scalability
and readability of structural properties in a snapshot view since they
depend on the number of presented snapshots. To address this, we limit
and automatically abstract the number of depicted snapshot views to
provide visually readable representations. The limit for the number of
snapshots is adjustable and is as a heuristic limited to six snapshot views
for each level. The visual scalability can also be increased by adapting
the visual metaphors based on graph properties, such as, automatically
presenting matrix-based visualization for dense graphs.

We showed the applicability of the approach through the visual anal-
ysis of similar periods in a dynamic hyperlink graph, which required an
initial starting point for the similarity search (e.g., the election week).
An analyst has to be aware of such states in advance or apply automated
analysis methods to identify them, for instance, by using change-point
detection [5] algorithms on the graph embeddings. Furthermore, the
variety of functionality also affects the usability of the approach since
the application prototype can be challenging to use for untrained users.
In general, the usage of user guidance in combination with the potential
application of more automatic analysis methods (e.g., outlier detection
algorithms), can help to set high-level snapshots in the context of low-
level snapshots, drill down the temporal hierarchy, and steer the user
towards a useful combination of data and visual transformations to high-
light specific trends. For example, the utilization of sub-queries in the

temporal hierarchy can be used to steer an analyst towards fine-grained
states with particular graph properties (e.g., motifs).

A limitation of our work is the lack of a formal comparative study to
compare Multiscale Snapshots with other visual analytics approaches.
In general, such a comparison remains challenging as our approach al-
lows us to integrate visualization techniques (e.g., van Elzen et al. [60]),
which is a simple way to increase the overall task coverage. Despite
the shortage of a comparative study, our quantitative evaluation and the
usage scenario highlight key benefits of our approach, such as the mul-
tiscale embedding of sequences of graphs to speeds up analytical tasks
(e.g., similarity search). Graph embeddings come with the sacrifice
of information loss compared to methods such as the computation of
graph editing distance (GED) [21]. In future work, we aim to overcome
shortcomings by integrating new visual metaphors to allow analysts
to examine snapshots and their graph embeddings to understand and
interpret the quality of the underlying graph embeddings.

7 CONCLUSION

In this paper, we presented Multiscale Snapshots, a visual analytics
approach, to provide an overview of a dynamic graph. The approach
consists of three steps: creating multiscale temporal summaries, apply-
ing graph embeddings, and the semi-automatic visual analysis. The
combination of the steps enables us to visually explore how temporal
and structural properties affect the overall dynamic graph. We im-
plemented a prototype and showed in a quantitative evaluation that
the approach helps to identify similar temporal states in artificial and
real-world dynamic graphs. We also show the applicability by a usage
scenario analyzing a real-world dataset, demonstrating that patterns in
dynamic graphs can be visually analyzed over time.

The application of Multiscale Snapshots and the underlying multi-
scale temporal analysis paradigm is not limited to dynamic graphs and
can be extended in several ways to work with any temporal data. For
instance, the Multiscale Snapshots approach can be adjusted to support
the user-driven analysis of multivariate time-series data.

ACKNOWLEDGMENTS

This work was partly funded by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) under Germany’s Excellence
Strategy - EXC 2117 - 422037984 and the European Union’s Horizon
2020 research and innovation programme under grant agreement No
830892.

REFERENCES

[1] J. Abello and F. Van Ham. Matrix zoom: A visual interface to semi-
external graphs. In IEEE symposium on information visualization, pp.
183–190. IEEE, 2004.

[2] C. C. Aggarwal. Outlier analysis. In Data mining, pp. 237–263. Springer,
2015.

[3] J.-w. Ahn, M. Taieb-Maimon, A. Sopan, C. Plaisant, and B. Shneider-
man. Temporal visualization of social network dynamics: Prototypes for
nation of neighbors. In International Conference on Social Computing,
Behavioral-Cultural Modeling, and Prediction, pp. 309–316. Springer,
2011.

[4] W. Aigner, S. Miksch, W. Müller, H. Schumann, and C. Tominski. Vi-
sual methods for analyzing time-oriented data. IEEE transactions on
visualization and computer graphics, 14(1):47–60, 2008.

9

https://doi.org/xx.xxxx/TVCG.201x.xxxxxxx/

[5] L. Akoglu and C. Faloutsos. Event detection in time series of mobile
communication graphs. In Army science conference, vol. 1, 2010.

[6] D. Archambault, J. Abello, J. Kennedy, S. Kobourov, K.-L. Ma, S. Miksch,
C. Muelder, and A. C. Telea. Temporal multivariate networks. In Multi-
variate Network Visualization, pp. 151–174. Springer, 2014.

[7] D. Archambault, T. Munzner, and D. Auber. Grouseflocks: Steerable
exploration of graph hierarchy space. IEEE transactions on visualization
and computer graphics, 14(4):900–913, 2008.

[8] D. Archambault, H. Purchase, and B. Pinaud. Animation, small multiples,
and the effect of mental map preservation in dynamic graphs. IEEE
Transactions on Visualization and Computer Graphics, 17(4):539–552,
2011.

[9] B. Bach, N. Henry-Riche, T. Dwyer, T. Madhyastha, J.-D. Fekete, and
T. Grabowski. Small multipiles: Piling time to explore temporal patterns
in dynamic networks. In Computer Graphics Forum, vol. 34, pp. 31–40.
Wiley Online Library, 2015.

[10] B. Bach, E. Pietriga, and J.-D. Fekete. Visualizing dynamic networks
with matrix cubes. In Proceedings of the SIGCHI conference on Human
Factors in Computing Systems, pp. 877–886. ACM, 2014.

[11] B. Bach, C. Shi, N. Heulot, T. Madhyastha, T. Grabowski, and P. Drag-
icevic. Time curves: Folding time to visualize patterns of temporal evolu-
tion in data. IEEE transactions on visualization and computer graphics,
22:559–568, 2015.

[12] F. Beck, M. Burch, and S. Diehl. Towards an aesthetic dimensions frame-
work for dynamic graph visualisations. In 2009 13th International Confer-
ence Information Visualisation, pp. 592–597. IEEE, 2009.

[13] F. Beck, M. Burch, S. Diehl, and D. Weiskopf. A taxonomy and survey of
dynamic graph visualization. In Computer Graphics Forum, vol. 36, pp.
133–159. Wiley Online Library, 2017.

[14] B. B. Bederson, L. Stead, and J. D. Hollan. Pad++: Advances in multiscale
interfaces. In Conference on Human Factors in Computing Systems:
Conference companion on Human factors in computing systems, vol. 24,
pp. 315–316, 1994.

[15] M. Behrisch, B. Bach, N. Henry Riche, T. Schreck, and J.-D. Fekete. Ma-
trix reordering methods for table and network visualization. In Computer
Graphics Forum, vol. 35, pp. 693–716. Wiley Online Library, 2016.

[16] S. Bender-deMoll and D. A. McFarland. The art and science of dynamic
network visualization. Journal of Social Structure, 7(2):1–38, 2006.

[17] A. Bezerianos, F. Chevalier, P. Dragicevic, N. Elmqvist, and J.-D. Fekete.
Graphdice: A system for exploring multivariate social networks. In
Computer Graphics Forum, vol. 29, pp. 863–872. Wiley Online Library,
2010.

[18] D. B. Blumenthal and J. Gamper. On the exact computation of the graph
edit distance. Pattern Recognition Letters, 2018.

[19] U. Brandes and D. Wagner. Analysis and visualization of social networks.
In Graph drawing software, pp. 321–340. Springer, 2004.

[20] M. Brehmer and T. Munzner. A multi-level typology of abstract visual-
ization tasks. IEEE transactions on visualization and computer graphics,
19(12):2376–2385, 2013.

[21] H. Bunke. What is the distance between graphs. Bulletin of the EATCS,
20:35–39, 1983.

[22] M. Burch and T. Reinhardt. Dynamic graph visualization on different
temporal granularities. In 2017 21st International Conference Information
Visualisation (IV), pp. 230–235. IEEE, 2017.

[23] M. Burch and D. Weiskopf. Flip-book visualization of dynamic graphs.
Int. J. Software and Informatics, 9(1):3–21, 2015.

[24] H. Chen and H. Koga. Gl2vec: Graph embedding enriched by line graphs
with edge features. In International Conference on Neural Information
Processing, pp. 3–14. Springer, 2019.

[25] J. Chung, S. Ahn, and Y. Bengio. Hierarchical multiscale recurrent neural
networks. In 5th International Conference on Learning Representations,
ICLR 2017, 2019.

[26] A. Clauset, M. E. Newman, and C. Moore. Finding community structure
in very large networks. Physical review E, 70(6):066111, 2004.

[27] Q. Cui, M. Ward, E. Rundensteiner, and J. Yang. Measuring data ab-
straction quality in multiresolution visualizations. IEEE Transactions on
Visualization and Computer Graphics, 12(5):709–716, 2006.

[28] W. Cui, X. Wang, S. Liu, N. H. Riche, T. M. Madhyastha, K. L. Ma, and
B. Guo. Let it flow: a static method for exploring dynamic graphs. In
2014 IEEE Pacific Visualization Symposium, pp. 121–128. IEEE, 2014.

[29] A. Dal Col, P. Valdivia, F. Petronetto, F. Dias, C. T. Silva, and L. G. Nonato.
Wavelet-based visual analysis of dynamic networks. IEEE transactions
on visualization and computer graphics, 24(8):2456–2469, 2017.

[30] S. Diehl and C. Görg. Graphs, they are changing. In International
Symposium on Graph Drawing, pp. 23–31. Springer, 2002.

[31] N. Elmqvist, T.-N. Do, H. Goodell, N. Henry, and J.-D. Fekete. Zame:
Interactive large-scale graph visualization. In 2008 IEEE Pacific visualiza-
tion symposium, pp. 215–222. IEEE, 2008.

[32] N. Elmqvist and J.-D. Fekete. Hierarchical aggregation for information
visualization: Overview, techniques, and design guidelines. IEEE Trans-
actions on Visualization and Computer Graphics, 16(3):439–454, 2010.

[33] P. Federico, J. Pfeffer, W. Aigner, S. Miksch, and L. Zenk. Visual analysis
of dynamic networks using change centrality. In Proceedings of the 2012
International Conference on Advances in Social Networks Analysis and
Mining (ASONAM 2012), pp. 179–183. IEEE Computer Society, 2012.

[34] T. M. Fruchterman and E. M. Reingold. Graph drawing by force-directed
placement. Software: Practice and experience, 21(11):1129–1164, 1991.

[35] P. Goyal, S. R. Chhetri, N. Mehrabi, E. Ferrara, and A. Canedo. Dynam-
icgem: A library for dynamic graph embedding methods. arXiv preprint
arXiv:1811.10734, 2018.

[36] P. Goyal and E. Ferrara. Graph embedding techniques, applications, and
performance: A survey. Knowledge-Based Systems, 151:78–94, 2018.

[37] S. Hadlak, H.-J. Schulz, and H. Schumann. In situ exploration of large
dynamic networks. IEEE Transactions on Visualization and Computer
Graphics, 17(12):2334–2343, 2011.

[38] S. Hadlak, H. Schumann, C. H. Cap, and T. Wollenberg. Supporting the
visual analysis of dynamic networks by clustering associated temporal
attributes. IEEE Transactions on Visualization and Computer Graphics,
19(12):2267–2276, 2013.

[39] M. Harrower and C. A. Brewer. Colorbrewer. org: an online tool for
selecting colour schemes for maps. The Cartographic Journal, 40(1):27–
37, 2003.

[40] C. Healey and J. Enns. Attention and visual memory in visualization
and computer graphics. IEEE transactions on visualization and computer
graphics, 18(7):1170–1188, 2012.

[41] N. Henry and J.-D. Fekete. Matrixexplorer: a dual-representation system to
explore social networks. IEEE transactions on visualization and computer
graphics, 12(5):677–684, 2006.

[42] W. Javed and N. Elmqvist. Stack zooming for multifocus interaction
in skewed-aspect visual spaces. IEEE transactions on visualization and
computer graphics, 19(8):1362–1374, 2012.

[43] T. Kamada, S. Kawai, et al. An algorithm for drawing general undirected
graphs. Information processing letters, 31(1):7–15, 1989.

[44] N. Kerracher, J. Kennedy, and K. Chalmers. A task taxonomy for temporal
graph visualisation. IEEE transactions on visualization and computer
graphics, 21(10):1160–1172, 2015.

[45] A. Kerren, A. Ebert, and J. Meyer. Human-Centered Visualization En-
vironments: GI-Dagstuhl Research Seminar, Dagstuhl Castle, Germany,
March 5-8, 2006, Revised Papers, vol. 4417. Springer, 2007.

[46] S. Kumar, W. L. Hamilton, J. Leskovec, and D. Jurafsky. Community
interaction and conflict on the web. In Proceedings of the 2018 World
Wide Web Conference on World Wide Web, pp. 933–943. International
World Wide Web Conferences Steering Committee, 2018.

[47] Y. Liu, T. Safavi, A. Dighe, and D. Koutra. Graph summarization methods
and applications: A survey. ACM Computing Surveys (CSUR), 51(3):1–34,
2018.

[48] Y. A. Malkov and D. A. Yashunin. Efficient and robust approximate
nearest neighbor search using hierarchical navigable small world graphs.
IEEE transactions on pattern analysis and machine intelligence, 2018.

[49] J. Moody, D. McFarland, and S. Bender-deMoll. Dynamic network visual-
ization: Methods for meaning with longitudinal network movies. Retrieved
November, 11:2008, 2004.

[50] A. Narayanan, M. Chandramohan, R. Venkatesan, L. Chen, Y. Liu, and
S. Jaiswal. graph2vec: Learning distributed representations of graphs.
arXiv preprint arXiv:1707.05005, 2017.

[51] M. Newman. Networks. Oxford university press, 2018.
[52] C. Nobre, M. Meyer, M. Streit, and A. Lex. The state of the art in

visualizing multivariate networks. In Computer Graphics Forum, vol. 38,
pp. 807–832. Wiley Online Library, 2019.

[53] A. Paranjape, A. R. Benson, and J. Leskovec. Motifs in temporal networks.
In Proceedings of the Tenth ACM International Conference on Web Search
and Data Mining, pp. 601–610, 2017.

[54] H. C. Purchase, E. Hoggan, and C. Görg. How important is the “mental
map”?–an empirical investigation of a dynamic graph layout algorithm.
In International Symposium on Graph Drawing, pp. 184–195. Springer,
2006.

10

© 2020 IEEE. This is the author’s version of the article that has been published in IEEE Transactions on Visualization and
Computer Graphics. The final version of this record is available at: xx.xxxx/TVCG.201x.xxxxxxx/

[55] S. Rufiange and M. J. McGuffin. Diffani: Visualizing dynamic graphs
with a hybrid of difference maps and animation. IEEE Transactions on
Visualization and Computer Graphics, 19(12):2556–2565, 2013.

[56] H.-J. Schulz and C. Hurter. Grooming the hairball-how to tidy up net-
work visualizations? In INFOVIS 2013, IEEE Information Visualization
Conference, 2013.

[57] B. Shneiderman. The eyes have it: A task by data type taxonomy for
information visualizations. In The Craft of Information Visualization, pp.
364–371. Elsevier, 2003.

[58] C. Tominski, G. Fuchs, and H. Schumann. Task-driven color coding. In
2008 12th International Conference Information Visualisation, pp. 373–
380. IEEE, 2008.

[59] B. Tversky, J. B. Morrison, and M. Betrancourt. Animation: can it
facilitate? International journal of human-computer studies, 57(4):247–
262, 2002.

[60] S. van den Elzen, D. Holten, J. Blaas, and J. J. van Wijk. Reducing
snapshots to points: A visual analytics approach to dynamic network
exploration. IEEE transactions on visualization and computer graphics,
22(1):1–10, 2016.

[61] S. Verma and Z.-L. Zhang. Hunt for the unique, stable, sparse and fast
feature learning on graphs. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wal-
lach, R. Fergus, S. Vishwanathan, and R. Garnett, eds., Advances in Neural
Information Processing Systems 30, pp. 88–98. Curran Associates, Inc.,
2017.

[62] Y. Wang, D. Archambault, H. Haleem, T. Moeller, Y. Wu, and H. Qu.
Nonuniform timeslicing of dynamic graphs based on visual complexity.
In 2019 IEEE Visualization Conference (VIS), pp. 1–5. IEEE, 2019.

[63] P. C. Wong, P. Mackey, K. A. Cook, R. M. Rohrer, H. Foote, and M. A.
Whiting. A multi-level middle-out cross-zooming approach for large
graph analytics. In 2009 IEEE Symposium on Visual Analytics Science
and Technology, pp. 147–154. IEEE, 2009.

[64] J. Xu, Y. Tao, Y. Yan, and H. Lin. Exploring evolution of dynamic networks
via diachronic node embeddings. IEEE transactions on visualization and
computer graphics, 2018.

[65] D. Zhang, J. Yin, X. Zhu, and C. Zhang. Network representation learning:
A survey. IEEE transactions on Big Data, 2018.

[66] M. Zinsmaier, U. Brandes, O. Deussen, and H. Strobelt. Interactive level-
of-detail rendering of large graphs. IEEE Transactions on Visualization
and Computer Graphics, 18(12):2486–2495, 2012.

11

https://doi.org/xx.xxxx/TVCG.201x.xxxxxxx/

	Introduction
	Related Work
	Dynamic Graph Analysis and Visualization
	Visual Analytics of Dynamic Graphs
	Multiscale Dynamic Graph Visualizations

	Application Background
	Problem Description
	Gaps in Related Approaches
	Design Goals

	Multiscale Snapshots
	Temporal Hierarchical Snapshots
	Multiscale Dynamic Graph Index
	 Multiscale Snapshots Visualization
	Multiscale Snapshots Prototype

	Evaluation
	Usage Scenario
	Experimental Evaluation

	Discussion
	Conclusion

