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ABSTRACT
3D Object Retrieval is an important field of research with
many application possibilities. One of the main goals in this
research is the development of discriminative methods for
similarity search. The descriptor-based approach to date
has seen a lot of research attention, with many different ex-
traction algorithms proposed. In previous work, we have
introduced a simple but effective scheme for 3D model re-
trieval based on a spatially fixed combination of 3D object
fragment descriptors. In this work, we propose a novel flexi-
ble combination scheme based on finding the best matching
fragment descriptors to use in the combination. By an ex-
haustive experimental evaluation on established benchmark
data we show the capability of the new combination scheme
to provide improved retrieval effectiveness. The method is
proposed as a versatile and inexpensive method to enhance
the effectiveness of a given global 3D descriptor approach.

Categories and Subject Descriptors
I.3.7 [Computer Graphics]: Three-Dimensional Graph-
ics and Realism; H.3.3 [Information Storage and Re-
trieval]: Information Search and Retrieval

General Terms
Algorithms, Experimentation
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3D object retrieval, descriptor combinations, effectiveness
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1. INTRODUCTION
3D Object Retrieval is concerned with devising methods

for similarity search in databases of 3D objects. To this
end, 3D similarity functions are researched which provide
content-based access. Together with query-by-example or
query-by-sketch, access to and re-usage of existing content
in applications such as Computer-Aided Design, Simulation,
and Visualization become feasible. Also, analytic applica-
tions such as cluster analysis rely on similarity functions.
Under the popular descriptor-based approach, descriptors
(or signatures) are computed for each 3D object, and a dis-
tance function defined on the descriptors is taken as a sim-
ilarity measure. To date, many different descriptor extrac-
tion methods have been proposed, with no single method
showing best for any kind of application.

In [4], we proposed a scheme for the generic improvement
of given global 3D object descriptors. It heuristically parti-
tions a 3D object into a number of fragments. Descriptors
are extracted from the global object and from its fragments,
and all are combined to form a joint descriptor. The discrim-
ination performance of the joint descriptor was shown to out-
perform the performance of a number of baseline description
extraction methods in experiments. A major drawback of
the original scheme was that it used a spatially fixed match-
ing of fragment descriptors in the combination. In this work,
we introduce a spatially flexible, graph-based matching of
fragment descriptors which improves substantially over the
original fixed scheme. The scheme is proposed as a simple,
yet effective method to boost the retrieval performance of
given global 3D descriptors. It furthermore is inexpensive in
terms of implementation and runtime complexity required.
Given its independence from any particular descriptor im-
plementation, it is orthogonal to descriptor definition and
can accommodate additional descriptors to be developed in
the future.

2. RELATED WORK
3D Object Retrieval is an active field of research, con-

cerned with the definition and evaluation of methods for
similarity search for 3D objects. Its roots are in Computa-
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Figure 1: Our approach is based on combining global 3D descriptors by concatenation of feature vectors
extracted from fragments of the respective model (d). A whole 3D model, such as illustrated in (b), is par-
titioned by an Octree scheme (a) into eight individual fragments (c). We introduce a substantially improved
new scheme for forming descriptor combinations, providing more effectiveness in the description.

tional Geometry and Computer Vision, but also Multime-
dia Databases and Computer Graphics. Early methods for
comparison of 3D shapes include, for example, the Iterative
Closest Points method [1], which computes an alignment of
two point sets for comparison. Under the descriptor-based
approach, descriptive measurements are calculated from 3D
objects. Forming descriptors e.g., in form of feature vectors
or graphs, these can be used to compare 3D shapes for sim-
ilarity [14, 3]. Global methods extract one descriptor for a
given 3D object, while local methods extract descriptors for
local parts of the model. While global methods support a
notion of global object similarity, local methods are capa-
ble to support partial similarity and a variety of invariance
properties. Local methods can be considered more complex,
in that they need to identify the number of local objects
parts based on 3D object segmentation [5] or identification
of interest points [12, 6] among others. While global meth-
ods often can employ structurally simple distance functions,
local methods are often based on matching approaches or
employ bag-of-feature [2] schemes, to compare sets of local
descriptors.

Global descriptor methods typically are simple to imple-
ment and therefore, are often preferable in practical applica-
tions. However, also current evaluations show that to date,
the search for effective global descriptors is not solved [7].
Improving the performance of global descriptors remains a
challenging topic, and improvement approaches orthogonal
to descriptor definition remain important [4].

3. APPROACH
We next recall the baseline procedure from [4] and present

our new improved descriptor combination scheme.

3.1 Spatially Fixed Combination Scheme
Global 3D object descriptors produce one descriptor as

the results of some global 3D shape analysis process. A
prominent example includes image-based descriptors such
as proposed in [17]. These (1) produce a number of refer-
ence 2D views of the objects, (2) calculate descriptors for
each 2D view, e.g., Fourier or HOG descriptors, and (3)
combine the view descriptors in a joint similarity function.
However, global extraction techniques may suppress local
information. This may result from specifics of the method.
E.g., in case of view-based descriptors, occlusion may pre-
vent relevant object detail to enter in the descriptor. Or, in
case of sampling-based schemes such as 3D centroid descrip-
tors, relevant object detail may be missed due to sampling

artifacts. To overcome such implicit method problems, in
[4] we proposed to partition a given 3D object into a num-
ber of fragments, and combine descriptors calculated for the
whole model and all of its fragments. In particular, descrip-
tors were given as feature vectors, and the combination FV c

was obtained by concatenation of normalized and weighted
feature vectors:

FV c =
FV g

||FV g|| ⊕
w

8

FV 1

||FV 1|| ⊕ ...⊕ w

8

FV 8

||FV 8|| , (1)

where FV g is the global descriptor, and FV n is the descrip-
tor of the nth object fragment (n = 1, . . . , 8) from the Octree
partitioning of the model. All descriptors in the combina-
tion are normalized to unit length; and weight w is used
to scale the fragment descriptor importance relative to the
global descriptor.

This approach allowed for a more complete description
of the objects with respect to the aforementioned potential
problems. Figure 1 illustrates the overall process. As ev-
ery model was normalized for rotation prior to partitioning
and descriptor extraction, and as the descriptor concatena-
tion proceeds in order of the fragment indexes, the method
yields a spatially fixed 1:1 mapping between object frag-
ments (see Figure 2(a) for a 2D illustration). While the par-
titioning was done in a simple and heuristic way based on
Octree partitioning, the approach managed to increase the
discrimination performance, as compared to several baseline
descriptors. Retrieval rates were improved up several per-
centage points, as compared to the original descriptors [4].

3.2 New Combination Scheme Based on Bi-
partite Graph Matching

A major drawback of the original scheme was that it com-
bined the global and fragment descriptors in a spatially fixed
scheme. The original spatially fixed 1:1 mapping may not
be the best mapping in every case. In particular, many 3D
objects show local symmetries along their main principal di-
rections. While we assume the 1:1 spatially fixed matching
is adequate for many classes, we further assume that a more
flexible matching scheme is adequate for other models.

To this end, we introduce a more flexible scheme to the
combination process, considering the problem of compar-
ing the fragment descriptors as a bipartite graph matching
problem. Specifically, we define an edge between each pair of
fragment descriptors of the objects to be compared, weighted
by the Manhattan distance between the descriptors of the
respective fragments. We apply the Hungarian method [10]
to compute a matching between the fragment descriptors,
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Figure 2: Combining global and fragment descrip-
tors. (a) Spatially fixed combination employed
in [4]). (b) Spatially flexible scheme proposed
here, based on bipartite graph matching (three best
matching fragments shown in illustration).

which minimizes the total sum of edge weights, in effect
minimizing the dissimilarity between the matching solution.
Finally, we form the descriptor concatenation according to
the alignment of fragments as provided by the solution of
the Hungarian algorithm. Figure 2(b) illustrates the match-
ing. We allow two parameters for our combination scheme.
Parameter w in Equation 1 (named local weight in Section
4) determines the relative weight between the global and the
fragment descriptors in the combined descriptor. Also, we
allow to consider a variable number of fragment descriptors
in the combination (parameter parts in Section 4). In par-
ticular, we allow to consider only a number of best matching
edges from the bipartite graph matching solution (see Figure
2(b) for an illustration). The idea behind the latter is that
two models may be similar even though that some parts of
them might not be similar. Both parameters are examined
experimentally in Section 4.

4. RESULTS

4.1 Experimental Setup
We experimentally evaluate our approach using three es-

tablished 3D object retrieval benchmarks. The benchmarks
are: The Purdue Engineering Benchmark (ESB, [9]), the
Princeton Shape Benchmark Test Partition (PSB, [11]), and
the SHREC 2009 New Generic Benchmark (SHREC, [8]).
Each of these benchmarks comprises hundreds of 3D mesh
models of generic (PSB, SHREC) and engineering (ESB)
model typology. Each benchmark provides class labels for
the contained objects. We performed retrieval experiments,
in which for each benchmark, we use each classified object
as a query object. We then calculate average R-Precision
(or First Tier) [11] scores as the effectiveness measure to
compare our combination schemes.

As to the considered global descriptors, analogous to [4]
we consider the following descriptors: Rays with Spherical
Harmonics representation (RSH), Silhouette (SIL), Depth
Buffer (DBD), and Desire (DSR) descriptors [16, 15]. RSH,
SIL, and DBD are established, standard global 3D object
descriptors. DSR is a combined descriptor formed from con-
catenating RSH, SIL, and DBD descriptors. Also analogous
to [4], we partition each 3D object by Octree partitioning
into 8 fragment parts, after rotation, translation, and scale

normalization. We then calculate descriptors for the whole
models and all of their fragments.

To compare our combination schemes, we performed ex-
haustive experiments. For each descriptor and benchmark,
we considered spatially fixed and flexible combination schemes.
Specifically, we vary two parameters to model the spec-
trum of possible combination schemes. Parameter parts =
0, . . . , 8 specifies the fragment selection method as follows:
p = 1, . . . , 8 allows for 1 up to 8 pairs of matched fragments
to contribute to the distance while the rest is ignored (cf. also
Section 3.2). parts = 0 corresponds to the spatially fixed
combination scheme using all 8 fragments and represents
the method studied in [4]. Parameter local weight = [0, 1]
gives the sum of the weights of all fragment descriptors rel-
ative to the global descriptor (corresponds to parameter w
in Section 3.1). local weight = 0 corresponds to using only
the global descriptor, while local weight = 1 corresponds
to the global and fragment descriptors contributing to the
overall distance function at equal weight.

4.2 Experimental Results
We performed exhaustive experiments calculating average

R-Precision scores for each descriptor and benchmark, while
varying parameters parts and local weight. As we want to
study two parameters, we chose to visually analyze the re-
sults using heatmap displays. In this display, the x-axis
corresponds to the parameter parts, and the y-axis corre-
sponds to the parameter local weight, the latter sampled
at steps of 0.1. We normalize the R-Precision scores over
all cells linearly according to the minimum and maximum
values occurring, and map the respective values inversely to
a black-to-green color gradient. Thereby, shades of more
intense green correspond to higher R-Precision scores (or
better discrimination power)1.
Figure 3 shows the results for the SHREC data set and the

DBD descriptor in an annotated heatmap display. The first
column (marked by a thin orange frame) shows the results
for parts = 0, which is the baseline spatially fixed scheme
combining all 8 fragment descriptors with the global descrip-
tor. We see that in this scheme, R-precision is maximum
for the smallest local weight at 10%, and then decreases, as
local weight increases. Considering the columns to the right
(large orange frame), we see that the flexible combination
scheme manages to outperform the spatially fixed combina-
tion scheme, for a substantial area in the parameter space.
This can be visually seen by comparing the green shades of
the cells in the first column (fixed scheme) with the shades
in the columns to the right. In particular, for the parameter
range between 4 and 7 fragments allowed in the bipartite
graph solution, and local weight between 20% and 40%, we
see maximum relative R-Precision results (yellow frame in
the figure).

Table 1 shows a numeric comparison of the best R-Precision
rates obtained for the two combination schemes for the DBD
descriptor, and all three benchmark data sets. The spatially
fixed scheme provides 42.8%, 34.7%, and 35.4% R-PRecision
for the SHREC, PSB, and ESB data sets, at parameter
local weight of 10%, 10%, and 20%, respectively. The flex-
ible combination scheme provides 44.9%, 35.8%, and 36.5%
R-Precision at parameters local weight of 20%, 10%, 20%,

1We recommend viewing the diagrams on a color printout
of sufficient color contrast or on a monitor display, for best
perception of shading differences.



Figure 3: R-Precision result heatmap obtained for
the DBD descriptor on the SHREC benchmark. The
flexible combination scheme improves over the spa-
tially fixed combination scheme, for a substantial
range in the parameter space. This result can be
seen by visually comparing the two schemes via the
green cell shades in the orange frames (more green
intensity indicates higher R-Precision). The param-
eter region of maximum R-Precision is shown by the
yellow frame.

and parts of 6, 6, 7, respectively. This implies a relative
increase in R-Precision of the flexible scheme over the spa-
tially fixed scheme between 3% and 5%, for these parameter
ranges.

We also observe similar rates of improvement for the other
tested descriptors RSH, SIL, and DBD (cf. Tables 2, 3, 4).
Figure 4 visualizes the results in an array of heatmap dia-
grams, where rows correspond to data sets, and columns cor-
respond to descriptors. For almost all cases, a rather large
and stable region in parameter space exists, for which the R-
Precision results of the spatially fixed combination scheme
are outperformed. This parameter space region is consis-
tently located around low to medium values of local weight,
and medium to high values of parts.

4.3 Discussion of Results and Extensions
Based on our experimental evaluation, we argue that the

flexible combination scheme can provide better R-Precision
than the spatially fixed combination scheme. The improve-
ment comes at the price of an additional parameter (parts).
However, based on the experimental results, a rather large
and stable region in parameter space exists for which im-
provements can be realized. A simple rule-of-thumb for this
parameter, as derived from the analysis of results in Fig-

Method (DBD) SHREC PSB ESB

Global only 39.4% 33.2% 33.7%
Best spatially fixed 42.8% 34.7% 35.4%
Best spatially flexible 44.9% 35.8% 36.5%
Improvement wrt. global 14.0% 7.8% 8.3%
Improvement wrt. fixed 4.9% 3.2% 3.1%

Table 1: Summary of the best R-Precision results
obtained for the DBD descriptor and the three con-
sidered benchmarks. The new combination scheme
provides robust effectiveness improvements over the
spatially fixed scheme.

Method (DSR) SHREC PSB ESB

Global only 43.8 % 29.4% 29.8%
Best spatially fixed 45.3 % 30.1% 31.4%
Best spatially flexible 45.9 % 30.7% 32.4%
Improvement wrt. global 4.8% 4.4% 8.4%
Improvement wrt. fixed 1.3% 2.0% 2.9%

Table 2: Results obtained for the DSR descriptor.

ure 4, can be used in practical implementations. Note that
improvements of even a few percentage points in retrieval
precision are important, as we are considering the problem
of improving the effectiveness of the retrieval here. Unlike ef-
ficiency, effectiveness cannot be addressed by scaling-up the
system hardware/software, but improvements to the core
search algorithms need to be found. Our approach involves
the Hungarian method to solve a bipartite graph matching
problem. This algorithm has runtime complexity of O(n3)
in the number of nodes to match. Given that we consider
a small number of fragments (eight), this runtime complex-
ity is deemed acceptable. We have yet not explored the
implications of using a higher number of fragments. We
note that for more fragments, possibly also more efficient
matching schemes, e.g., relying on approximation, could be
necessary. Detailed runtime consideration was beyond the
scope of this study and is left for future work. We have
tested our scheme on four different 3D descriptors. While
to date, a wealth of other descriptors is available, the tested
descriptors resemble a set of robust and standard methods.
Further methods should be considered for generalizability.
The improved combination approach can be recommended
as a simple-to-implement scheme that is orthogonal to the
definition or global 3D object descriptors.

We see several promising extension possibilities. It would
be interesting to further analyze the reason for the improve-
ments brought about by the flexible matching scheme. In
particular, if we could identify cases for which model classes
which fragments typically match, we might be able to incor-
porate heuristic rules to automatically guide the matching

Method (SIL) SHREC PSB ESB

Global only 36.1 % 23.9% 27.8%
Best spatially fixed 37.7 % 25.6% 29.0%
Best spatially flexible 38.4 % 26.1% 30.1%
Improvement wrt. global 6.3% 9.2% 8.3%
Improvement wrt. fixed 1.9% 2.0% 3.8%

Table 3: Results obtained for the SIL descriptor.



(a) ESB-RSH (b) ESB-SIL (c) ESB-DBD (d) ESB-DSR

(e) PSB-RSH (f) PSB-SIL (g) PSB-DBD (h) PSB-DSR

(i) SHREC-RSH (j) SHREC-SIL (k) SHREC-DBD (l) SHREC-DSR

Figure 4: R-Precision heatmap diagrams obtained for all benchmarks (rows) and descriptors (columns). For
almost all cases, the flexible combination scheme improves over the fixed combination scheme, and for a
substantial area in the parameter space.



Method (RSH) SHREC PSB ESB

Global only 32.4 % 20.2% 26.6%
Best spatially fixed 34.3 % 21.4% 27.3%
Best spatially flexible 34.7 % 21.8% 28.0%
Improvement wrt. global 7.1% 7.9% 5.3%
Improvement wrt. fixed 1.2% 1.9% 2.6%

Table 4: Results obtained for the RSH descriptor.

process. Learning-based approaches could be useful to this
end. Our scheme is currently based on a simple Octree-based
partitioning scheme. Data-dependent partitioning schemes,
e.g., based on local interest point analysis [12, 6], could fur-
ther improve the method and should be experimentally com-
pared to the proposed method. Also, the output of local
interest point analysis could serve to find locally-adaptive
weighing schemes (currently, local weight is set uniformly
for all fragment indices and query objects). Our distance
function violates the triangle inequality, and thereby, is not
a metric. Thus, many established indexing techniques for
metric spaces are not applicable, but non-metric approaches
[13] need to be considered. Finally, applicability of our ap-
proach to further multimedia object types with spatial ref-
erence such as images, would be interesting to consider in
the future.

5. CONCLUSIONS
3D object retrieval using global descriptors remains a chal-

lenging research problem. We proposed a scheme to generi-
cally improve the retrieval precision of global 3D descriptors
based on a new combination scheme. The scheme forms
combinations of global and fragment descriptors, allowing
for flexible fragment matching based on solving a bipar-
tite graph problem. By exhaustive systematic experiments
on several benchmark data sets and descriptors, we showed
that the new matching scheme provides retrieval precision
rates exceeding those of using only the global descriptors.
And in particular, the new scheme improves over an exist-
ing scheme based on spatially fixed fragment combinations.
The method is proposed as an inexpensive and practical ap-
proach to improve the retrieval performance of 3D object
retrieval based on global 3D descriptors. A range of inter-
esting future work possibilities exists as discussed.
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