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ABSTRACT
Increasing amounts of data are collected in many areas of
research and application. The degree to which this data
can be accessed, retrieved, and analyzed is decisive to ob-
tain progress in fields such as scientific research or indus-
trial production. We present a novel method supporting
content-based retrieval and exploratory search in reposito-
ries of multivariate research data. In particular, functional
dependencies are a key characteristic of data that researchers
are often interested in. Our methods are able to describe the
functional form of such dependencies, e.g., the relationship
between inflation and unemployment in economics. Our ba-
sic idea is to use feature vectors based on the goodness-of-fit
of a set of regression models, to describe the data mathe-
matically. We denote this approach Regressional Features
and use it for content-based search and, since our approach
motivates an intuitive definition of interestingness, for ex-
ploring the most interesting data. We apply our method on
considerable real-world research datasets, showing the use-
fulness of our approach for user-centered access to research
data in a Digital Library system.

Categories and Subject Descriptors
H.3.7 [Information Storage and Retrieval]: Digital
Libraries; H.3.1 [Information Storage and Retrieval]:
Content Analysis and Indexing—Indexing methods

General Terms
Algorithms

Keywords
Research Data Repositories, Content-Based Access, Para-
metric Fitting, Interestingness Analysis, Clustering
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1. INTRODUCTION
In many scientific disciplines relying on empirical data,

e.g., earth observation, experimental physics, medical and
biological science, economics and the social sciences, vast
amounts of research data are produced or gathered on a daily
basis. Often being funded by the public, demand for open
access to the produced data is arising. Making research data
publicly available has several benefits. First, reproducibility
and transparency of obtained results is a principal require-
ment for good scientific practice and publishing. Second,
finding data related to one’s own work is crucial for many
researchers.

As a motivating example, consider that several top-tier
scientific conferences and journals increase acceptance as
an incentive for researches to actually publish their data.
Econometrica [8] is such an example, where authors are ac-
tually required to submit their data. Often though, research
data is provided on an individual basis, with researchers
putting up undocumented data, in an arbitrary format on
personal web-space. Such data is usually available only for
a limited time. Therefore, such practice hardly supports
the demand for reproducibility, let alone the possibility to
find related data. Hence, a need for library-oriented han-
dling of research data exists. This aims at the centralized,
long-term availability of data, adhering to specific format-
ting and documentation requirements. As such, this treat-
ment of research data allows for reproducibility by supply-
ing data associated with scientific publications as well as
finding related data by searching for related textual publi-
cations. Well-established database techniques and thorough
data curation, to guarantee format-adherence and meaning-
ful metadata annotations, allow digital libraries to provide
research data in such a way.

Research data typically contains large quantities of non-
textual, digital data content for which no native system sup-
port beyond annotation-based access is provided. In the
multimedia digital library context, to date several systems
exists that support content-based search relying on automat-
ically extracted descriptors. However, devising meaningful
retrieval methods for research data is a difficult problem.
Current systems rely on textual (metadata) based search,
and content-based search in the data is typically not sup-
ported. Content-based access in research data is therefore
mostly unexplored in the digital library context.

The contribution of this paper is to support content-based
retrieval and explorative search in research data, by propos-
ing a novel data similarity notion that is particularly suited
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in a user-centered Digital Library context. This similarity
notion is based on functional dependencies between obser-
vation variables in the data and thereby captures a most
important and generic data aspect. Classical examples of
functional dependencies include the Phillip’s Curve (rela-
tionship between inflation and unemployment), accounted
for in empirical econometrics data, or Ohm’s Law (relation-
ship between current, voltage and resistance) discovered by
measurements in an electrical circuit. The basic idea to
capture such dependencies, is to describe the data mathe-
matically by forming a descriptor (feature vector) capturing
goodness-of-fit parameters of the data to several regression
models. Hence we call this approach Regressional Features
(see Section 3 for details).

We show the utility of our approach on a considerable
set of real-world research data. Furthermore, we discuss a
unifying framework to extend support for research data in
digital libraries by content-based means (using regressional
features) in conjunction with established techniques relying
on metadata annotations.

2. RELATED WORK
We will begin the section on related work, where we left

off in the introduction, and elaborate on related techniques
and algorithms for data mining and knowledge discovery
in multivariate data. The second subsection details on the
related Digital Library context.

2.1 Content-Based Access to Research Data
Content-based access to research data requires data min-

ing techniques for data import, preprocessing and compar-
ison. Research data derived from possibly different data
repositories usually is highly heterogeneous. In general, a
generic data standard must be derived by which the research
data can be imported in the retrieval system.

To allow content-based access, the primary task is the def-
inition of a concept for data comparison. Similarity calcula-
tion approaches are highly data and application dependent.
For example, Liao [18] surveys a set of similarity approaches
for time series data. We consider the description of two
dimensional-data by its goodness-of-fit to several functional
models, encoded as a feature vector. The feature vector
approach is prominently used in multimedia retrieval, for
example to capture visual properties of images and shapes
for retrieval [16].

Related approaches to describe the functional form of data
include methods and references in the book by Ramsay et al.
[22] and recent work by Hebrail et al. [13]. These methods
though, are usually non-parametric (using basis functions,
i.e. splines, Fourier series, wavelets, etc.), in contrast to
our approach based on parametric models. The major ad-
vantage of non-parametric methods is, that the number of
parameters (or coefficients in that case) can be adaptive to
the complexity of the data. As a drawback, they lack the
explanatory power of parametric models and are harder to
be interpreted by users [12].

Another related topic, that does not use parametric mod-
els, but rather strives to derive them directly from the data,
is scientific discovery [23]. A particular connection to our
work is found in [26] by Todorovski and Dzeroski, where
they describe the inclusion of domain knowledge into the
discovery process. We also support this with our approach,
by allowing users to add their functional models depending

on application needs. For more information on the impor-
tance of including a priori knowledge and further topics in
data-mining please refer to the work of Fayyad et al. [12].

Due to the vast amounts of available research data,
there is a need to create a visual overview using visual-
ization and clustering techniques [2]. Assigning instances
of data to clusters based on their similarity yields such
an overview. Prominent algorithms include kmeans [19] and
self-organizing maps (SOM) [14], which are recently employed
in [17] and [25], respectively.

2.2 Digital Library Context
Digital Library systems have evolved from mere research

prototypes into production stable pieces of software, allow-
ing us to cope with the rapidly increasing numbers of digital
documents. Prominent DL systems include [6, 15, 27].

So far, these DL systems focus on annotation-based access
to documents, as well as rendering textual-content accessible
(e.g., by full-text search). This is well-suited for textual doc-
uments, however support for non-textual documents usually
relies on some metadata standard (e.g., MPEG7 for multi-
media) and is often lacking appropriate content-based access
(e.g., comparing similarity of images based on color distri-
bution). Multimedia documents (e.g., audio, image, video,
3D models) and recently, research data gathered in natu-
ral and empirical sciences, have been recognized as impor-
tant non-textual documents with a need for library-oriented
treatment.

Related, prototypical and commercial systems to sup-
port content-based access of non-textual documents include
PROBADO [4] (classical music and 3D architectural mod-
els), VICTORY [7] (3D models) and Google’s Similar Im-
ages and 3D Warehouse approaches. Recently, an approach
for content-based access to time-series research data in DL
systems was proposed [3].

Repositories and data libraries collecting research data
from different domains include generic data underlying nat-
ural sciences publications [9], geoscientific and environmen-
tal data [20], psychological data [21], or biological infor-
mation [11] and highly motivate research to increase data-
accessibility.

3. REGRESSIONAL FEATURES
What kind of function does the scatterplot on the upper

part in Figure 1 visualize? Just by looking at the form of
this plot, we as humans are certainly not able to formulate
a precise mathematical function underlying such a plot, but
still assessing the crude functional form (like x2 or 1

x
) is

possible.
One intuitive way to describe the presence of a func-

tional relationship within data mathematically is corre-
lation. Computing Pearson’s correlation coefficient for
two-dimensional data returns a value in [−1, 1], where the
absolute value of that coefficient relates to how well a line
fits to the data and the sign indicates the direction.

Inspired by this, we propose regressional features to de-
scribe the functional form of two-dimensional data projec-
tions in a similar, but extended way. The algorithm to
achieve that is outlined in Figure 1. Our basic idea is to
generalize the notion of correlation, by fitting the data to
a number of representative functional models using regres-
sion. Computing the relative goodness-of-fit (GOF) to each
of these models and storing these parameters in a vector,
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Figure 1: Schematic algorithm outline to compute regressional features. Top: Data input and normalization;
Middle: Goodness-of-fit to specified functional models; Bottom: Normalization and weighting of descriptors

yields a powerful descriptor of the functional form of the
data. We therefore denote this descriptor as regressional
feature vector �vrf . The functional models we use are in-
cluded in the figure and their respective functional form is
visualized as a colored plot. We chose these models with
complementarity and completeness in mind, such that at
least one of the models should be suitable to describe any
kind of functional relationship in the data, while not cap-
turing any functional properties the other models would be
able to. Experimental results (see the next section) show
that the chosen models work well in general. Our apporach
may also easily be extended by further functional models as
possibly required by specific application domains. We pro-
vide a simple text-based interface for users, to alter, remove
or add new functional models to the regressional features
extraction algorithm to adjust it to their needs.

In the lower left of Figure 1 we see �vrf computed for some
exemplary data. It is visualized as a colored histogram, since
each entry of the vector relates to the probability of the
correspondingly colored functional model being applicable.

The regressional feature vector can be used to assess inter-
estingness of a scatterplot (useful for ranking, filtering and
highlighting), as well as retrieval and clustering of scatter-

plots by functional similarity of the two-dimensional data
they visualize. For example, we can retrieve all scatterplots
visualizing data similar to f(x) = x2 from a database, or
give an exploratory overview of several different kinds of
scatterplots in a database by clustering according to their
functional similarity.

Compared to nonparametric data analysis techniques (see
Functional Data Mining [22]), regressional features offers
advantageous properties for user-centered applications like
Digital Library systems. Since every coefficient relates to a
specific functional model, each of them is interpretable by
the user. Furthermore interestingness and similarity func-
tions can be intuitively defined (as detailed in the following
subsections) and suited to specific user needs. This leads to
the transparency of results obtained, which is expected to
increases acceptance thereof by domain experts, as they see
how and why a particular result was computed.

To describe multivariate data with this algorithm, we
compute regressional features for each pairwise combination
of all the variables in the data. Although we are well aware
that certain patterns might be hidden in higher dimensions,
we opt not to apply any dimension reduction techniques
(like PCA), which would result in a combination of the orig-
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inal measurement variables. By only projecting one variable
orthogonally versus another, we allow domain experts to dis-
cover functional relationships between two specific variables
as well as retrieving similar relationships among those two
variables in other datasets, as they are uniquely identified
by an annotated label.

A secondary descriptor called regressional coefficient fea-
ture vector �vcoeff is also computed as part of our regres-
sional features approach. It is composed of the actual (al-
beit normalized and weighted) coefficients obtained by each
regression. It is shown on the lower right in Figure 1 and
is also visualized as a colored histogram. Note that sets of
entries have the same color to show that these entries be-
long to coefficients from the correspondingly colored func-
tional models (i.e. the three entries colored red correspond
to model f5). This color also indicates which sets of coeffi-
cients were weighted with the corresponding entry of �vrf , to
avoid having coefficients of entirely inapplicable models in
�vcoeff . This descriptor allows assessment of similarity on a
finer level of detail, since �vrf captures the functional family
of the data, while �vcoeff captures an concrete instantiation
(the coefficients) of each functional model. As such, �vrf is
robust against changes in functional properties like offset,
slope, amplitude and frequency, and is recommended for a
first search on the level of models. If a specific model has
been found, �vcoeff can be used for a refinement step. It is
also possible to specify a combination relying on both search
notions (cf. Section 3.2). The specifics of combining both
descriptors will rely on the data domain and/or the interac-
tive retrieval by the user, who is able to select the descriptor
combination to use at any step. Actual examples of regres-
sional features, computed for generated data, are shown in
Figures 2 and Figure 3.

3.1 Interestingness
The notion of interestingness certainly depends on the

domain and each user’s individual preferences. We consider
two-dimensional data projections interesting, if they can be
(unambiguously) well described by a functional relationship.
Due to the construction of regressional features, we are able
to compute precisely this notion of interestingness using the
following function:

Iα(�vrf) = α · sum(�vrf) (1)

+(1 − α) ·
√
var(�vrf) · length(�vrf)

Recalling Figure 1, we know that each entry of �vrf relates
to the probability of one of the functional models being ap-
plicable to describe the underlying data. Each entry was
weighted with the R-squared measure after normalization,
thus we compute the overall applicability of �vrf by summing
up all entries. This is the first part in Equation 1.

The second part computes the unambiguity of the func-
tional models by the standard deviation (normalized to
[0, 1]) of �vrf . The user adjustable weight α assigns more
or less importance to overall applicability or unambiguity,
depending on user preference.

An example for interestingness of regressional features, in
particular with regard to overall applicability and unambi-
guity, is provided in Figure 2.

3.2 Similarity
By means of regressional features we obtained a descriptor

for the functional form of two-dimensional data projections.

Figure 2: Interestingness of regressional features for
α = 1 (overall applicability) and α = 0 (unambiguity).
Top: applicable and unambiguous; Middle: appli-
cable but ambiguous; Bottom: not applicable and
ambiguous

Computing the distance between the descriptors of two data
projections yields a measure for the (dis-)similarity of their
respective functional form. Such a distance function is a
requirement for any retrieval or clustering algorithm.

Since our descriptor consists of two vectors, �vrf and �vcoeff ,
we propose to use a weighted L1 distance of both vectors to
measure the overall dissimilarity.

dR(A, B) = β · |�vA
rf − �vB

rf | (2)

+(1 − β) · |�vA
coeff − �vB

coeff |
The superscripts A and B indicate the two sets of data be-
ing described. Increasing the user-adjustable weight β gives
more importance to overall similarity of functional form (as
described by �vrf). If the user decreases β, more importance
is given to similarity of the functional coefficients (as de-
scribed by �vcoeff).

Figure 3 provides an example measurement for this dis-
tance with β = 1 and β = 0 to show the significant influence
of the weight parameter.
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Figure 3: Dissimilarity of two datasets A and B by computing the distance between their regressional features
focusing on functional form (β = 1), or on functional coefficients (β = 0). Our similarity measure allows users
to search between those two notions, by selecting β.

4. APPLICATION
In Section 3 we presented the idea and algorithmic outline

of regressional features, that allows us to describe the func-
tional form of two-dimensional data projections in a very
convenient way. However, to demonstrate applicability of
this algorithm in Digital Library systems, we will evaluate
our approach on two real-world research datasets. These
datasets are described in the following subsection. Two use-
cases for content-based access to this data (retrieval and
exploratory search) are described and evaluated afterwards.
The results obtained therein motivate the proposal in sub-
sequent Section 5, to extend Digital Library systems with
support for these content-based search modalities in multi-
variate research data.

4.1 Datasets
We created two datasets consisting of primary research

datafiles available through the scientific data library PAN-
GAEA [20] operated by the Alfred-Wegener-Institute for Po-
lar and Marine Research in Bremerhaven, and the Center
for Marine Environmental Sciences in Bremen. PANGAEA
archives, publishes, and distributes geo-referenced scientific
earth observation data, collected by scientists in many dif-
ferent research efforts.

The data comprises observations and measurements of
four main areas of study of several research projects and
includes water, sediment, ice and atmosphere. PANGAEA
supports data export for post-processing and analysis pur-
poses. This covers metadata and tabular raw data, as pro-
vided by individual research projects, e.g., BSRN (see be-
low). Metadata includes citations, spatial and temporal con-
ditions, parameter description and – most importantly for
our approach – variable names and physicals units.

Most of the research data itself is sequential and multivari-
ate. That is, several dependent variables (i.e. pressure or
ozone) are measured for one or more independent variables

(most prominently time and i.e. altitude). This primary
research data is curated and subsequently annotated with
metadata and cite-able via a persistent identifier (DOI) ac-
cording to the DataCite [5] standard.

The first dataset, dataMixed [24], consists of 1110 datasets
spanning all research domains published through PAN-
GAEA. These datasets were obtained manually through
PANGAEA’s search functionality1, by selecting several col-
lections of datasets from different research domains. Conse-
quently, dataMixed consists of quite heterogeneous research
data. Since we are interested in analyzing multivariate re-
search data, we are looking at each pairwise combination of
variables within each research-dataset. Please note, that we
thereby ignore sequentiality, as we are interested in global
dependencies between variables. In total, this results in
84,461 two-dimensional variable combinations (scatterplots)
and approx. 47 · 106 data-points. Based on this data, we
compute a descriptor for each scatterplot using regressional
features to support content-based access.

The second dataset, dataBSRN [24], is composed of 6770
datasets as provided by the Baseline Surface Radiation Net-
work [1] (BSRN) through PANGAEA. The data tables have
up to 100 columns (variables / measurements), and up to
50,000 rows (number of observations). Data provided by
BSRN is dominated by measurements of radiation (short-
wave, long-wave, diffuse, direct), temperature, humidity and
wind (speed, direction). Again we computed regressional
features for each pairwise combination of variables in each
dataset. Here we provide content-based access to a total of
295,475 scatterplots, consisting in total of more than 3 · 109

data-points.

4.2 Retrieval
A very prominent approach in content-based retrieval, es-

pecially in multimedia retrieval, is query-by-example. Here,

1http://www.pangaea.de
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Figure 4: Retrieval Results using query-by-sketch for ∗ vs. depth in dataMixed. Looking at the different x-axis
labels, we see that salinity, density (σθ), phosphate (PO4), dissolved, inorganic carbon (DIC) and nitrate and
nitrite (NO3+NO2) all exhibit a functional dependency on water depth similar to our sketch.

a user supplies an example object (i.e. an example image)
and is returned a ranking of all the objects in a database
according to their similarity.

Thus, content-based retrieval of research data allows sci-
entists to retrieve data that is similar to exemplary data. A
particular use-case here is finding data that either disproves
or verifies a certain hypothesis, by querying with one’s own
data underlying the given hypothesis.

Using regressional features, the datasets are indexed by
functional relationships between every two variables. There-
fore scientists can formulate a query by selecting two vari-
ables they are interested in (i.e. Altitude [m] vs. PPPP
[hPa]) and specifying a functional relationship (i.e. 1

x
) these

two variables need to be similar to, according to the query.
So in principal we also follow the query-by-example

paradigm here. But a user does not necessarily have to
provide explicit example data. Other query modalities
(that implicitly generate example data) to query for a func-
tional relationship are available. A user can either enter a
functional relationship directly as a mathematical formula,
by sketching a scatterplot or by retrieving the most inter-
esting scatterplots. These query modalities are used in the
query examples depicted in Figure 4 and Figure 5.

Given such a query, we filter all available research-datasets
via textual search for those containing the variables in ques-
tion. After this filtering, we are left with all scatterplots
depicting the two query variables, which we then rank ac-
cording to their functional similarity to the query data. This
is accomplished by computing the distance between the re-
spective regressional features (recall Eq. 2).

Although we do not go into detail on algorithmic proper-
ties like space-requirement and run-time, we briefly discuss

our empirical observations here. For dataBSRN we require
about six GB of main memory to store the raw data, meta-
data and the precomputed regressional features for each vari-
able combination (recall, approx. 300,000). We reach aver-
age query times below 2 seconds on a modern desktop PC
(Core i7 2,6Ghz, 12GB RAM) using our prototypical Matlab
implementation. Space-requirement (for regressional feature
precomputation) and query run-time depend linearly on the
number of variable combinations, so they depend quadrati-
cally on the number of dimensions in each dataset.

4.3 Exploratory Search
In contrast to retrieval scenarios, where the user usually

has a specific pattern to search for in mind, exploratory
search is concerned with guiding the user to interesting pat-
terns. By applying clustering algorithms, we can assign data
to different groups and give an overview of the data.

In particular, regressional features allows us to cluster
all scatterplots in our research database according to their
functional similarity. We apply a kmeans clustering, which
tries to optimize a specified number of centroids (in a least-
squared-distances sense) and assigns each regressional fea-
ture vector to the nearest centroid.

Using this clustering method, we can create a visual
overview of all functional relationships in the research
database. We visualize the nearest neighbor of each cluster
centroid as a scatterplot, to show the functional relationship
it represents. Since we can compute interestingness for each
centroid, we are also able to sort the visualized scatterplots
in a meaningful way.

Of course this overview is only a staring point, and details-
on-demand are available to users by selecting one of the
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Figure 5: Retrieval Results using query-by-interestingness for altitude vs. deg C (temperature in degrees
Celsius) in dataBSRN. The most interesting scatterplots depicting a relationship between those two variables
are presented. The geo-references reveal, why one of the scatterplots deviates from the rest. It shows
temperatures measured in northern Alaska [10] (both map images are attributed to Google, Imagery and
Map data). Additonally we see that temperature is a linear falling function of altitude within the troposphere
(17km). Then it rises (with the root or logarithm) of altitude, after the measurement probe has left the
troposphere and is approaching the sun.

centroids. The top-most interesting scatterplots, that were
assigned to this centroid are then visualized. During this
step, we can optionally normalize all presented scatterplots
globally, so that the user can easily spot differences in nu-
meric values among these plots (since they usually are of the
same functional form).

There are two ways to incorporate metadata (the variable
names) into the exploratory search.

First, to restrict the exploratory search to certain variables
or a particular functional relationship, we offer the query-
by-formula technique (from retrieval) to filter the datasets
before clustering. This allows for filtered clustering to cre-
ate an overview of all functional relationships in the data or
the functional relationships between one particular variable
and all the others. Entering one or two particular variables
filters out all those scatterplots not depicting these variables
by textual metadata comparison. Supplying a specific func-
tional relationship ranks all scatterplots according to their
similarity, and then filters the datasets for the most simi-
lar ones (top 20%) and clusters only those. By entering the
wildcard operator ∗ for either variable or function we avoid
prefiltering. Figure 6 shows cluster results for exploratory
searches, along with the applied prefilter commands.

The second way to incorporate metadata follows a differ-
ent paradigm, to enable users to explore the most interest-
ing variable combinations in the data. By using regressional
features’ interestingness measure, we rank all variable com-
binations with the same label (as identified by their meta-
data annotation, e.g., all combinations with the label depth

water vs. salinity) according to their aggregated interesting-
ness. This intermediate result gives important insight into
the data simply by textual means (listing the interesting
combinations), but also allows to create a cluster overview
of the most interesting variable combinations as described
before. Figure 7 illustrates an example.

5. A DIGITAL LIBRARY FRAMEWORK
FOR CONTENT-BASED ACCESS TO
MULTIVARIATE RESEARCH DATA

In the previous section we introduced two research datasets
and showed some qualitative results for retrieval and ex-
ploratory search. In this subsection we propose a framework
how research datasets can be integrated into a Digital Li-
brary system, to make content-based access, in conjunction
with annotated metadata, available to users.

Figure 8 shows the proposed framework. The upper left
part, labeled as annotation-based, provides access to research
data in a way similar to other kinds of documents, by fol-
lowing an established library processing chain.

Data is gathered and annotated by a researcher, submit-
ted to the library and after quality control by a curator made
accessible through indexing the textual metadata. Thus, by
means of textual querying, other scientists can retrieve data
of interest.

On the upper right in Figure 8, labeled as content-based,
we see the application of regressional features to index the
content of the research database as described before. This
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Figure 6: Exploratory search results for CLUSTER ALL DATASETS WITH vhpa = fe−x(valtitude) in dataBSRN. We assume
an inverse exponential relationship between atmospheric pressure and altitude and see a cluster overview of
all datasets that support this assumption on the left. By selecting clusters #1 and #10, we see the plots and
DOI references of actual datasets, that can be cited to support this assumption or to compare one’s own data
against.

allows the aforementioned, content-based query modalities
of retrieval and exploratory search as illustrated on the lower
part of the figure. By using an intuitive query interface to
specify variables and a functional relationship of interest,
we allow for access to the data in a content-based way. We
note that this content-based approach benefits from avail-
able high-quality metadata. With correct, meaningful de-
scriptions of the variables, semantically meaningful content-
based access is supported, and retrieval results can be easily
interpreted by the domain expert.

6. CONCLUSION AND FUTURE WORK
Data is an increasingly decisive factor in scientific research

and industrial applications. It represents a valuable asset
and if made accessible in a transparent and user friendly
way, can improve the scientific process as a whole. Digital
Library support for research data is therefore highly desir-
able. We presented a novel approach for content-based and
exploratory search in repositories of research data based on
a similarity concept relying on functional dependencies be-
tween pairs of variables in a data set. This is a key data
aspect in multivariate data. Our application on a large,
real-world data set showed the utility of our approach to
support content-based access.

Functional dependencies are one important, yet not the
only key aspect in data collections. Our approach is a
first step in supporting effective retrieval in research data

repositories. Future work needs to consider complementary
content-based search methods for data repositories, to be
applicable to a user community as large as possible. To this
end, we want to consider not only bivariate, but also multi-
variate dependencies in the future. Our approach currently
abstracts from temporal aspect of data. Future work will
consider approaches to include these aspects in the data
description. To this end, a large research and design space
exists, and we expect that completely new user interfaces
need to be designed as well, for query specification and
result visualization.
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Figure 7: Exploratory search of the most interesting variable combinations in dataMixed, see (a.1) to (a.4)
(grouped by annotation, sorted by Eq. 1). We select the 3rd variable combination (temperature vs. depth)
for further details and see a detailed clustering in (b). Cluster #15 is inspected further in (c).
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