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Figure 1: Visual analysis of subspace patterns by a series of consecutive pattern transitions between scatterplots. (a) Scatterplots
depict subspaces and are grouped and sorted based on similarity. (b) This example shows the pattern transitions in the University
data set. Based on a 3D cube like visualization, one can trace sorted patterns in a side and top view on the cube (see Section 7.1).

ABSTRACT

Subspace analysis methods have gained interest for identifying pat-
terns in subspaces of high-dimensional data. Existing techniques
allow to visualize and compare patterns in subspaces. However,
many subspace analysis methods produce an abundant amount of
patterns, which often remain redundant and are difficult to relate.
Creating effective layouts for comparison of subspace patterns re-
mains challenging. We introduce Pattern Trails, a novel approach
for visually ordering and comparing subspace patterns. Central to
our approach is the notion of pattern transitions as an interpretable
structure imposed to order and compare patterns between subspaces.
The basic idea is to visualize projections of subspaces side-by-side,
and indicate changes between adjacent patterns in the subspaces by
a linked representation, hence introducing pattern transitions. Our
contributions comprise a systematization for how pairs of subspace
patterns can be compared, and how changes can be interpreted in
terms of pattern transitions. We also contribute a technique for vi-
sual subspace analysis based on a data-driven similarity measure
between subspace representations. This measure is useful to order
the patterns, and interactively group subspaces to reduce redundancy.
We demonstrate the usefulness of our approach by application to
several use cases, indicating that data can be meaningfully ordered
and interpreted in terms of pattern transitions.
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1 INTRODUCTION

Information is collected at large-scale in all areas of our day-to-day
life: statistical surveys of natural disasters or inhabitants, rankings
of public institutions, or any tabular data that consists of multiple
observations and attributes. A main task in understanding such mul-
tivariate data is to identify and interpret relevant patterns like dense
groups (clusters), outliers, or correlations. Often, data comprises
many attributes (high-dimensional data), and relevant patterns are
not only found in the full attribute space, but also among subspaces
– we refer to subspaces as attribute subsets of the data. More im-
portantly, especially in high-dimensional data, patterns may only be
found in smaller subspaces and would get lost when considering all
dimensions at once [6]. However, we cannot assume that patterns
will be similar across different subspaces. Rather, we can expect
they may be structurally different in different subspaces, posing the
challenge to identify, interpret, and compare them visually. Visual
analytics suggests to involve the analyst into the automated analysis
process using interactive data visualizations [43]. By leveraging the
human capabilities to explore the data, visual analytics facilitates
finding relevant patterns and fosters sensemaking.

Automatic subspace analysis and clustering methods provide sets
of possibly interesting patterns and subspaces. While such methods
drastically reduce the amount of possible attribute configurations by
ignoring subspaces with a high attribute and pattern overlap, they
entirely leave out the analyst [31] from the initial search process.
They typically provide no hints on an appropriate ordering or on
relationships among the reported subspaces. Hence, the amount of
considered subspaces can in fact be reduced, yet it is challenging to
explore the data to find interesting patterns. In recent years, several

2017 IEEE Conference on Visual Analytics Science and Technology (VAST) 
October 1–6, Phoenix, Arizona, USA 
978-1-5386-3163-8/17/$31.00 ©2017 IEEE



approaches have been presented to visually explore multivariate data,
and in particular patterns in subspaces. Parallel Coordinate Plots
(PCPs) [22] present a key technique for multivariate data analysis.
Besides researched challenges such as axis re-ordering, one axis
merely corresponds to one attribute making it a difficult task to
compare different attribute combinations with each other. Recent
work proposes to augment PCPs with Scatterplots [56]. Scatterplots
are a prominent means to make subspaces visually accessible and can
enhance the analysis of subspace patterns. However, this approach
proposes to manually switch between the representations, making it
a tedious, challenging task to search for interesting subspaces and
patterns. Scatterplots can also be combined to Scatterplot Matrices
(SPLOMs) that enable pairwise comparisons between attributes,
effective for small to moderate sized data sets [46].

Recent advances in machine learning propose Dimensionality
Reduction (DR) to transform the data to a lower-dimensional space,
preserving the main structure of the data. We refer to the structure
of the data as interrelated or correlated subsets of attributes over
subsets of data records. Results can be depicted in a two-dimensional
scatterplot, in which proximity between points indicates similarity.
Techniques using DR typically present only one view on the data or
present all subspaces via small multiples [52], making it challenging
to identify interesting patterns and trace their meaning in different
subspaces. Even if applying subspace analysis prior to the visual
exploration phase, subspaces can still be redundant and too many to
identify relevant patterns. Automatic approaches require the user to
adapt the analysis model based on the task at hand to retrieve relevant
views on the data. Pattern Trails aims to address the unsettled
question: How to identify and relate interesting patterns among
multivariate subspaces, using interactive visual exploration?

Pattern Trails is an interactive visual approach for the exploration
of subspaces of multivariate data. Its main goal is to find and
explain pattern transitions among subspaces. Pattern transitions
can, for example, indicate structural changes in a pattern caused by
dominating attributes. We first apply automatic subspace analysis
to reduce the sheer amount of possible subspaces to interesting ones.
Then, we apply DR, in particular, distance-preserving projections,
to make each subspace visually accessible. The projected subspaces
are depicted in a small-multiple [52] environment using scatterplots.
Furthermore, we highlight transitions between the subspace depic-
tions for tracing structural changes of patterns. A transition connects
a pattern among two subspaces by individual lines each line cor-
responding to one data record. To enable understanding of patterns
and pattern transitions, we make two contributions: First, we provide
a systematization and categorization of pattern transitions among
subspaces of multivariate data. We introduce a pattern trail as a set
of pairwise transitions between subspaces. A trail visually connects
data records that form a pattern across all subspaces along which the
patterns can be meaningfully compared. Thereby, various transition
types occur, each having a different meaning. Second, we provide
a data-driven similarity measure for projections to group subspaces
and overcome redundancy. Because data sizes and tasks differ, we
tightly couple this process and the user who steers the parameters to
obtain an effective aggregation of scatterplots, and thus subspaces.

We integrate the systematization of pattern transitions and the
user-steered similarity between subspaces into our visual approach.
Our visual approach consists of a horizontal view on the objects
and a vertical view on the contributing attributes. The view on both
spaces supports the interpretation and understanding of patterns.

2 RELATED WORK

Patterns trails supports the visual analysis of subspace patterns
by ordering and relating patterns, hence support users to explain
structural changes of patterns among different subspaces. Subspace
analysis and visualization are subtopics of high-dimensional data
analysis that have recently gained research interest. The term

high-dimensional is understood as data with many dimensions
(synonym for attributes), yet we apply our methods to data
with up to 8 dimensions. As we do not consider this amount as
high-dimensional, we keep to the general notion of multivariate
data, but comment that the subspace set is large even for 8
dimensions as 28 (powerset), resulting in an expensive, exhaustive
search. We discuss related work from multivariate data analysis,
DR for visual analysis, and subspace search and visualization.

2.1 Multivariate Data Analysis and Visualization
Multivariate data typically consists of several interdependent at-
tributes [39]. The main goal is to find discernible patterns to draw
conclusions about the structure of and to gain insight into the data.
We thereby distinguish between automatic and visual approaches.
Automatic methods, such as methods from data mining or machine
learning, search for patterns in the form of clusters or classes [18,41].
Resulting patterns are then either presented quantitatively or are ex-
plicitly enumerated as sets of data entries. However, it is challenging
to make sense of results that do not fit the task at hand or are large-
scale. This is where interactive visualization acts as a means to make
the data accessible to the user and foster sensemaking [14].

In recent years, several approaches have been presented to
visualize multivariate data. Common approaches include geometric
projections (Andrew Curves [3], Parallel Coordinate Plots [22]),
pixel-based techniques (Recursive Patterns [28], Pixel Bar
Charts [29]), glyph-based techniques (Star Glyphs [9], or Chernoff
Faces [11]). For further reading, we refer to the comprehensive
surveys carried out by Kehrer and Hauser [27] or Liu et al. [36].
Named techniques are prominent for making an attempt to visualize
all data in one display encoding one up to all attributes. However,
patterns are often only given in subspaces of the data, which
are specific attribute sets, and are not discernible in a global
representation [6]. In the following, we discuss the visualization
and analysis of multivariate subspaces to find relevant patterns.

2.2 Using Dimensionality Reduction for Visual Analysis
Multivariate data consists of multiple attributes, posing a challenge
to identify expressive ones that reveal interesting patterns. DR, there-
fore, transforms the data to a lower-dimensional space. Results are
typically presented in a two-dimensional scatterplot where prox-
imity between points indicates how similar they are. Known DR
methods that enable visual analysis include, but are not limited to,
linear methods such as Multidimensional Scaling (MDS) [12] and
Principal Component Analysis (PCA) [26] or non-linear methods
like t-distributed stochastic neighbor embedding (t-SNE) [38] and
Self-Organizing Maps (SOM) [30].

According to Sacha et al., interaction enables exploratory
data analysis of DR results and adapts to the “human needs and
domain-specific problems” [44, p. 214]. First interactive approaches
to DR include the pioneering work by Buja and Cook [2] and Ward
and Martin [54]. Recent works integrate interaction to steer the
projection and analyze the attribute space to make sense of salient
structures. Recent techniques include iPCA [24], Dimstiller [21],
Brushing Dimensions [53], Data Context Map [10], and Probing
Projections [47]. Additional interactive approaches can be found
in the survey of Sacha et al. [44]. Interactive techniques for steering
and analyzing projections of multivariate data are efficient to
analyze the data at a global scale and to interpret selected patterns.
However, patterns often only occur in subspaces of the data. Using
global views, it remains challenging to identify relevant subspaces.

2.3 Subspace Search and Visualization
Scatterplots are practically the first choice to depict the results of DR.
Proximity between points indicates how similar they are. Computing
similarity or proximity between data, or reducing their dimensional-
ity, is more difficult to do as more attributes are introduced. Typically,



the more attributes are introduced, the less discriminative the projec-
tion result is. As a result, it is challenging to identify patterns, also
known as the curse of dimensionality [6]. Kriegel et al. reason that
as the number of attributes grows, the relevance of attributes can
differ for different patterns [33]. In other words: Not all attributes
contribute to the existence of a pattern, but relevant patterns exist in
different combinations of attributes, namely the subspaces.

Recent advances in visualization build on top of automatic sub-
space analysis [33] or clustering approaches [42], and make the
result accessible for exploration. In doing so, the visualization of
subspaces is either applied to the attribute space of the data, the
object space, or to both combined. The attribute space refers to the
general statistical analysis of the attributes that comprise a given sub-
space. For instance, the approaches of Krause et al. either provide a
sorted frequency-based view on the attribute values [31], or enable
finding relevant attributes (features) based on feature rankings [32].
In contrast, object views present the entities of the data set and allow,
typically in combination with analysis possibilities including the
attributes, to foster understanding of single subspaces or patterns.
Liu et al. [37], for example, provide a comprehensive interactive
view on the projection. Other approaches combine the object and
the attribute view on the data [20, 50, 51, 57, 58].

Purely object-driven approaches are related to the field of pro-
jection pursuit [19], where the overall goal is to find significant
projections of multivariate data; these are projections where points
build unique patterns. Examples include the work by Anand et
al. [1] and Lehmann and Theisel [34]. Related works on multivariate
cluster visualization [8] and comparison [7] do not build on sub-
space analysis. They focus on the presentation of relevant features
to build clusters and enable comparison. There are further related
approaches, but in summary, they do not scale for many subspaces.

The commonality between aforementioned approaches is, that
they either are overstrained by the number of subspaces, miss support
for pattern ordering and comparison or produce an abundant amount
of patterns, which often remain redundant and difficult to relate.
Existing systems typically impose small-multiple [52] alike views
on the data with some ordering of the views, but do not provide an
ordering and linking dedicated to comparing subspaces with regard
to which data points change and which remain stable across the
subspaces. Also, it is not enough to show interesting patterns across
subspaces. Identified patterns require practical support to explain
their occurrence concerning their structural change and the attribute
configuration. In this paper, we improve visual subspace analysis by
imposing meaningful ordering on subspaces, used to group similar
subspaces and help interpreting pattern transitions. In addition,
we directly foster the comparison between subspaces by a linked
representation and a systematization of occurring pattern transitions.

3 BASIC IDEA OF PATTERN TRAILS

Pattern Trails is a visual interactive approach for expert users, en-
abling the exploration and understanding of patterns across sub-
spaces of multivariate data. The main idea is to order a set of
subspaces in meaningful sequences, such that groups of patterns can
be distinguished and their changes effectively traced and interpreted
across the subspaces. Pattern Trails follows a three-step procedure
depicted in Figure 1 (a). First, we derive interesting subspaces of
the multivariate data using a state-of-the-art method for feature se-
lection called SURFING [5]. SURFING searches for subspaces in
which data objects form a (hierarchical) clustering structure. The
algorithm measures the interestingness of a subspace based on the
variance among the kth nearest neighbor of every object. To make
the subspaces visually accessible to the user, we then apply DR and
project each subspace to 2D space. The results are visualized as
scatterplots and arranged side by side in a small-multiple environ-
ment [52]. Tatu et al. [51], for example, also visualize all subspace
projections, but compare them in a 2D MDS layout without tracing

the pattern changes across the subspaces.
Second, we group the subspaces based on their similarity. Sub-

space search algorithms like SURFING often yield subspaces similar
in terms of involved dimensions and/or data relationships, hence pro-
ducing redundant results. We enable the user to group the projections
based on a data-driven similarity measure interactively. Grouping
in our experience is essential in subspace analysis, to reduce the
abundance of subspaces to a smaller number of representative ones
for practical exploration. The projections are also reordered using
the data-driven similarity measure which allows the user to set a
threshold regarding the level of aggregation.

Finally, we highlight the change of a pattern based on a user-
defined selection, which can also be applied automatically using
subspace clustering methods. We connect the data points that be-
long to a selected pattern across all subspaces using lines – we refer
to this connected view as pattern transitions between subspaces.
The transitions describe the structural change of a pattern across
subspaces. Changes in subspaces can be modeled as operations to
insert, delete or replace subspace dimensions. For example, consider
a dense cluster of points spreading over different clusters in the
subspace succeeding it in the determined order. This is a significant
change in the pattern structure which needs to be further examined
in terms of the change of the respective subspace dimensions. This
representation may remind of the highly interactive PCPs [22]. How-
ever, our approach represents further development regarding the
comparison of subspace patterns; it enables to draw conclusions
based on links between subspaces of multiple attributes, instead of
single attribute axes. Using Pattern Trails, one can find and explain
pattern transitions in multivariate data.

Compared to automatic approaches for feature selection (for ex-
ample, optimizing classification accuracy), Pattern Trails does not
search for an optimal set of attributes that form a pattern but rather
analyzes which attributes cause a change in the structure of a pattern.
Pattern Trails enables the user to analyze any selected pattern in one
subspace projection using visual interaction and is not limited by
required class-labels or given cluster structures.

pattern 
transition

Subspace projectionSubspace projection
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Figure 2: The attributes impact the type of pattern transition which
occurs between two subspaces. A transition always migrates from
one subspace to the subsequent. In this image, a cluster splits up into
three clusters, caused by the operation performed in attribute space
coming from the attributes A, B, and C. A pattern alters or remains
unchanged among subspaces based on (1) adding, (2) removing, or
(3) replacing attributes that build the subsequent subspace. Each
operation can be interpreted differently regarding the transition type.

4 PATTERN TRANSITIONS AND THEIR INTERPRETATION

Our Patter Trails approach highlights the change of patterns in
multivariate subspaces. As pattern change, we refer to clusters,
outliers, or correlations that vary structurally across the projections
of different subspaces. To make these structural changes visible and
accessible to the user, we project the data by means of DR into the
two-dimensional space, and represent the results as a scatterplot.
An example is illustrated in Figure 2. In the first projection X , the
pattern corresponds to a cluster that divides into three clusters in the
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Figure 3: Overview of add, remove and replace operations in the
attribute space. Pattern transition between two adjacent subspace
projections can show one of two different states: changing or stable.
Depending on the operation in the attribute space, the affected at-
tributes imply a different meaning. If a pattern changes, the affected
attributes, which contribute to the subsequent subspace, dominate
the change. For a stable pattern transition, the affected attributes
have either no dominating impact or the same dominating impact as
the attributes of the preceding subspace.

second projection X +1. The transition is visualized by connecting
lines. We conceive there exist two fundamental transition types, as
depicted in Figure 3: a changing and a stable transition, leading
to the question: What is the meaning of these transitions? To enable
the interpretation of such transitions, it is of high importance to
consider the attribute space, because it provides information about
which attributes are dominant and influential to the structure change
of subspace patterns, and which have less influence.

We can distinguish between three basic operations which lead to
an either changing or stable transition: Attribute(s) can be added,
removed, or replaced. Each operation impacts the interpretation
of patterns with respect to the dominance of the attribute(s). An
attribute is considered as dominant if it significantly controls the
structure of the subspace, non-dominant and probably redundant,
otherwise. As a result of adding, removing, or replacing attributes,
a pattern alters or remains unchanged in the subsequent subspace.
The combination of domain-specific knowledge and the visual rep-
resentation is paramount to explain pattern transitions. Figure 2
and Figure 3 provide an overview of operations and interpretation
regarding the attribute space. Note that the geometry of the transition
enables us to identify the transition type and the topology enables us
to interpret it in terms of the attribute space. Based on the distinc-
tion between transition states (changing or stable), we next derive a
taxonomy of occurring pattern transitions. The combination of all
transitions among all subspaces builds the pattern trail. Following,
we discuss the interpretation of pattern transitions with regard to the
attribute space and the transition classes (see Figure 4).

4.1 Single Point or Cluster Pattern

The first class of transition patterns refers to single point/cluster
transitions.
Static Single Pattern (P1): Within the transition to
another subspace, a single point or cluster remains in its
consistent/static state. In the case of a single point, the
point does not become a member of another pattern, and in the case
of a cluster, the cluster does not split or merge with other clusters.
The interpretation concerning the attribute space is as follows: Added
or removed attributes are non-dominant and have no impact on the
subspace structure. Replaced attributes, however, can be dominant if
the pattern remains stable. But it is also possible that the untouched
attributes are the dominant ones, which impacts the structure.

converging fan
Multi Points/Clusters:

diverging fan star/mirror static

Cluster Point Cluster or Point Cluster-to-Cluster v Point-to-Point

...
...
...
...
...

redundant single cluster redundant multi points/clusters

Single Point/Cluster:

Figure 4: Taxonomy of pattern transitions grouped into transitions
between single and transitions between multiple points/clusters. The
icons are a conceptualization and represent a simplified version of
the real connected subspace views; this means many cluttered lines
connect clusters in neighboring subspace views, similar to PCPs.

4.2 Multi Points or Clusters Pattern

In the second class of pattern transitions, we consider all transitions
that involve more than one point or cluster. Furthermore, we
introduce pattern developments among several subspaces leading to
the identification of possibly redundant attributes and subspaces.

Converging Fan Pattern (P2): Points and/or clusters
merge into a single cluster. This transition type
indicates a major change by means of the subspace
structure. As a matter of fact, the subsequent subspace contains
information that reinforces the similarity between patterns and
causes them to merge. That is, in attribute space added attributes
contain information that reinforces the similarity and thus dominate
the creation of a cluster. Removed attributes take away information.
The remaining attributes share more similar information causing the
points/clusters to merge. Replaced attributes can be interpreted as
either dominating or non-dominating, depending on whether they
take off or add information causing the patterns to merge.

Diverging Fan Pattern (P3): The diverging fan
corresponds to the inverted converging fan P2. This
means, information is added or removed causing a
cluster to split; similar patters reorganize in different groups. Added
and Replaced attributes dominate the subsequent subspace structure
and append information so that the cluster content regroups.
Removed attributes take away information that caused the formation
of a cluster at first. Without this information the overall similarity
within the cluster decreases.

Static Pattern (P4): Similar to P1, the static pattern
describes a stable transition without changes between
sets of patterns. Added or removed attributes are non-
dominant and have no impact on the subspace structure. Replaced
attributes can be either dominant or non-dominant, depending
on whether the untouched attributes dominate the subspace structure.

Star/Mirror Pattern (P5): The interpretation of this
transition pattern is identical to the static pattern P4.
The effect of mirroring can be traced back to the
creation of the two-dimensional plots. They are created using a
planar projection strategy, such as MDS or PCA, that are known
for not being mirror/rotation invariant. Whenever this pattern tran-
sition appears, the projection technique mirrored the underlying data.

Understanding the impact of attributes is key to interpret the
subspace structure as well as the meaning of a pattern. Consider one



pattern (e.g., cluster or outlier) that occurs in an arbitrary subspace.
The attribute space provides details in three general scenarios:
First, the same pattern occurs in various subspaces. Second, the
pattern only occurs in one subspace. Third, the pattern occurs
in different structures in various subspaces. For each scenario,
we need to draw conclusions in the attribute space to determine
dominating, non-dominating, and redundant attributes. This way,
we can determine expressive attributes that steer the structure of
subspaces. The following two patterns describe combinations of
pattern transitions among several subspaces and open the space for
attributes that can be considered as being redundant; that is without
significant impact to the subspace structure.

Redundant Single Cluster (P6): First,
points/clusters converge to a single
cluster. Then, the single cluster remains
stable among subspaces and finally diverges again to different
points/clusters which are not necessarily identical to the initial ones.
The interpretation is as follows: The attributes causing patterns
to merge and split impact the subspace structure so that patterns
regroup. Since these attributes have an impact on the structure, they
are likely to hold information that is interesting for further analysis.
For all transitions between the subspaces 2nd and (n− 1)th, the
added, removed, or replaced attributes do not show specific impact
on the structure of the subspace and the formation of patterns.
Therefore, we consider these attributes as being redundant in terms
of their impact or expressiveness.

Redundant Multi Points/Clusters (P7):
This pattern represents the inverse situation
to P6. First, a cluster diverges. Then,
multiple points/clusters remain stable among several subspaces,
before they finally converge to a single cluster. As for P6, added,
removed, or replaced attributes that do not show specific impact on
the subspace structure between subspaces 2nd and (n−1)th, can be
considered as being redundant. The information they take away or
bring in is not expressive enough to cause the structure to change.

Different pattern transitions can occur within one transition be-
tween two subspaces. However, it becomes challenging to interpret
the visual depiction. For example, an attribute can be dominant
for one pattern transition but redundant for another one such as the
combination of the patterns P1 and P2 within one single subspace
transition. Furthermore, many combinations are possible.

4.3 Automated Support for Interpreting Patterns

One major challenge of Visual Analytics is the automatic support
of users in interpreting patterns [43]. In our approach, we consider
transitions between subspaces and aim to identify structural changes
in patterns based on operations in the attribute space. This leads us
to the question: How can a visual analysis system support the user
in understanding pattern transitions?

Based on the two abstract transition types, depicted in Figure 3,
we are able to provide interpretation aid. Generally speaking, if a
pattern changes with the transition, the affected attributes dominate
the subsequent subspace structure, whether they are added, removed,
or replaced. This is different for a stable pattern. Either the affected
attributes have no dominating impact (add, remove) or they may
have the same dominating impact as the attributes of the preceding
subspace (replace). This gives us a powerful tool. In combination
with the automatic detection of pattern transitions (see Section 6.3),
we can suggest a valid interpretation. Even for combinations of tran-
sitions, we can provide a compound of possible interpretations, yet,
it is up to the user to employ this information and to gain new insight.

This approach is applicable for verifying hypotheses about the
data, and also for explorative tasks such as identifying interesting

subgroups and changes. However, the identification and interpreta-
tion of a pattern transition depend directly on a meaningful ordering
of the subspace representations. In the next Section 5, we discuss
the similarity-based ordering of the subspace representations.

5 SIMILARITY-BASED ORDERING OF SUBSPACE VIEWS

We make use of distance-preserving projections as a means to visu-
alize subspaces of multivariate data. A visual representation makes
subspaces accessible and enables the efficient identification of pat-
terns, such as clusters and outliers. To understand how a pattern
evolves among different subspaces, we consider their pattern tran-
sitions. While a pattern transition is unique between a pair of sub-
spaces, it is challenging to find relevant transitions beyond multiple
subspaces, in particular using a visual representation. Simply lining
up all subspaces one after another raises the question for a meaning-
ful ordering, which enables us to efficiently identify relevant pattern
transitions, so that we can draw conclusions regarding relevant and
redundant attributes (consider, e.g., the patterns P6 and P7). A
meaningful ordering for multiple subspaces is key for this task.

The issue of finding a meaningful ordering is a known NP-Hard
problem and well-known in the parallel coordinate plots [22] domain.
It is still subject of ongoing research on how to re-order the axes
to obtain expressive results. Examples of ordering goals include an
ordering based on maximum pairwise correlations or image-based
metrics like reducing the number of line crossings [13]. The main
problem of finding a meaningful ordering is that each axis has at
most two neighboring axes, as it is the case for our representation;
each subspace can be visually connected to at most two neighboring
subspaces. However, the problem is different. In contrast to parallel
coordinate plots, we handle transitions between two-dimensional
projections of multivariate data that are built by more than one
attribute. To find an optimal predecessor and successor, we like to
consider the notion of similarity between subspaces, in particular,
the similarity between their visual representations. This is due to the
visual representation of transition types that enables us to interpret
on which level patterns are similar or different among subspaces.
Expressing the similarity between subspaces is possible in many
ways, but two natural ones are based on the similarity between the
attribute sets that make up the subspaces, as well as based on the
visual similarity between subspaces. We discuss in this Section the
application of an attribute-based similarity and introduced a new
similarity measure based on the multivariate projection.

5.1 Attribute-based Similarity
It seems apparent that the similarity between two subspaces can
be expressed by the similarity of the attribute sets. Two prominent
examples used by state-of-the-art approaches are the Jaccard
similarity [23] and the Szymkiewicz-Simpson [49] coefficient
(compare, e.g., Tatu et al. [51] and Hund et al. [20]). Both
coefficients are based on the set of attributes rather than the subspace
structure. While the Jaccard similarity provides a ratio of common
attributes, the Szymkiewicz-Simpson coefficient considers the exact
amount of overlapping attributes among subspaces. However, the
attribute-based similarity poses a suboptimal solution, which is why
we omit its application in the context of Pattern Trails. Just because
the same attributes are used to some extent does not provide any
information about the similarity of the data and the projection.

5.2 Projection-based Similarity
A common approach to compute the similarity between pairs of
subspace projections is to apply image-based similarity measures to
the visual depiction of each projection. For example, Lehmann and
Theisel [34] investigate the affine transformations between pairs of
projections with the goal to find the most expressive, discriminative
projections. However, projections transform the data to a lower-
dimensional space and thus inevitably introduce a bias, the projec-
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Figure 5: Similarity computation between two subspace projections.
A possible solution to the question how to compute the similarity
between two subspace projections? using the example of MDS. We
transform the point-wise distance matrices (input for the subspace
projections) to 1D feature vectors. Compared to the projection results,
the matrix is invariant to rotation, scaling, and translation. We derive
the similarity based on standard distance measures between vectors.

tion error, interfering with the notion of similarity. Furthermore,
projections are not invariant to rotation, scaling, and translation.

In this section, we provide a solution to the question: How to
compute the similarity between two visual projections of subspaces,
namely the scatterplots? Even though there exist approaches to over-
come the named issues, we aim for a solution that is invariant to rota-
tion, scaling, and translation. To do so, we look at how a data projec-
tion is computed. In our approach, we apply MDS to the data in order
to derive a visual representation of the underlying subspace. Thereby,
the MDS derives the final layout by computing a distance matrix
and then preserving the distances in a two-dimensional manner. The
commonality between projection techniques such as MDS [12], PCA
[26], or t-SNE [38] among others is, that they derive the final layout
based on an input matrix: either a distance matrix, a covariance ma-
trix, or a probability distribution matrix. We propose to consider the
matrices rather than the visual representation, because no projection
error is yet introduced, and matrices are known to be invariant to
rotation, scaling, and translation. Also, the ordering of rows and
columns is not of major concern when computing distances.

We elaborate the question of how to compute the similarity be-
tween two projections of subspaces in Figure 5 with application to
MDS. Each depiction of a subspace projection is based on a distance
matrix that consists of the aggregated distances between pairs of
data records. In order to linearize the matrix, we traverse the matrix
row-by-row. This way we build an n-dimensional feature vector,
whereas n describes the number of data records. Based on the feature
vectors, we can compute the distance between two projections using
distance functions like Euclidean or Manhattan distance. Visually,
our similarity approach orders the subspace projections in terms of
the spread between data points in the projection, which is due to the
content of the distance matrices. Consider two distance matrices
with very different data variances. Naturally, the distance between
both matrices is significantly large, which is also reflected by the
visual representation. This distance computation is based on the data
rather than the sets of contributing attributes and overcomes projec-
tion errors introduced by the visual representation. However, the
visual representation can still suffer from the projection error. As a
result, subspaces may be very similar, but their visual representation
significantly differs. One way to overcome this issue is to vali-
date identified patterns with different projection or complementary
analysis techniques, which we leave for future work.

Ordering Computation. Based on the derived similarity, we
compute all pairwise distances between subspaces to determine

an ordering. This means we compute a distance matrix of
distances/similarities of all pairwise subspaces. The distance matrix
can serve as input to any technique that linearizes the distances, or
in other words, preserves the proximities between subspaces in a
linear manner. This way, we cannot only provide an ordering of
subspaces but also visually point out how close subspaces are to
each other. This ordering is special in a sense that it is interpretable
in both directions: from left to right and from right to left. The most
dissimilar subspaces are located at opposite sites. The closer the
subspaces move, the more similar they are. We present results for
the well-known iris data set [35] in Figure 6. In this depiction, we
compare the (2) Jaccard similarity and the (3) data-driven similarity
based on the input matrix. In comparison, the attribute-driven
(2) Jaccard similarity performs worse because it ignores the
underlying data. The (3) similarity based on the input matrices
clearly separates the Petal Width and Height, which are known
for steering the clusters in this data set. The bottom row shows
the results after applying user-steered Agglomerative clustering
between subspaces. For each cluster, the projections are replaced
with a new projection taking into account all clustered attributes. An
interesting observation is that the similarity between projections also
reflects the spread in the data. From left to right, the point clusters
move closer while the transitions remain static. In this example,
no prior subspace analysis is applied, yet we can find relevant
subspaces and explain their meaning regarding the similarity and
the contributing attributes. The displayed pattern transitions in the
bottom row furthermore reveal a static development (pattern P4)
suggesting that in combination with the similarity ordering, the
attributes Petal Width and Height control the subspace structure.

6 VISUAL IDENTIFICATION OF PATTERNS

A key task in multivariate data analysis is the identification of rel-
evant subspaces and patterns. Patterns, however, can change their
overall structure among subspaces, and thus express a different
meaning. To explore subspaces and the pattern transitions, we in-
troduce a visual approach based on Sections 4 and 5. The general
goal is to integrate the categorization, as well as the similarity-based
ordering and clustering of subspaces. Our visual approach comprises
a horizontal perspective on the objects and a vertical perspective
on the contributing attributes. That is, the visualization of the sub-
space projections in a horizontal manner side-by-side, and below
each projection (vertically), an overview of contributing attributes
(compare to the visualization of projections in Figure 6). Thereupon,
we employ interaction as means to explore pattern transitions.

6.1 Subspace Cube
Pattern transitions represent an interpretable structure imposed to
order and compare patterns between subspaces. The basic idea is
to visualize subspaces side-by-side, enabling the identification of
changes between adjacent patterns. To visualize the subspaces, we
project each subspace to two-dimensional space using the distance-
reserving projection MDS [12]. A 3D cube, similar to space-time
cubes [4], is a clear choice for visualizing pattern changes across
2D subspace projections, leading to the name of this representation:
the Subspace Cube. Figure 1 depicts the application to the 2012
University Ranking data set. From a visualization point of view,
Pattern Trails looks similar to PCPs. Johansson et al. [25] argue that a
2D representation of PCPs is more effective than a 3D representation,
which is why we transform the Subspace Cube to 2D in such way
that the main structural pattern changes are preserved. Tufte [52],
therefore, introduced Small Multiples as an efficient way to visualize
discrete changes in the data. Using small multiples, we depict the
side top view of the cube by rotating the small multiples by 0.5π .
These two views on the cube differ the most from one another, thus
preserving the main structural changes.

Compared to the approaches of Fanea et al. [16] or Yu et al. [55],
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Figure 6: Ordering of the iris data [35]. (1) All subspaces without
specific ordering. (2) Application of the Jaccard similarity. (3) Appli-
cation of our data-driven similarity for projections based on the input
matrix. Distances between projections encode similarity, which are
linearized using MDS. Very similar projections overlap. Petal Length
and Petal Width steer the clustering and are clearly separated to
the rest, compared to the Jaccard similarity. For each ordering the
color encoding is re-computed in respect of the first projection. To
reduce overlap, we cluster the projections and select a pattern in the
visualization, resulting in a static set of pattern transitions.

the Subspace Cube visualizes projections and pattern transitions
disregarding advanced interaction concepts. Rotating, as well as
zooming and panning, are the only available interactions in the
hope that the Subspace Cube provides data contexts, which are lost
using the small multiple representation. For example, the Subspace
Cube provides different angles, which are not available in the small-
multiple representation. The projections are equally ordered in the
cube as well as the small multiple representation.

6.2 Linked Multiple View

We combine two visual methods to point out the structural change of
a pattern across subspaces in the small-multiple environment. The
first method color-encodes the projected data points based on a 2D
colormap. The idea is to lay all projected points out on a predefined
2D color plane and assign each point the color with identical x−
and y−coordinates [48]. To point out pattern transitions, we color-
encode the data of the first subspace projection and reuse this encod-
ing for all succeeding projections. If the colors mix in a projection,
one can draw conclusions regarding the similarity between points –
different points are considered to be more or less similar than before.

Color-encoding, however, introduces problems regarding the iden-

Figure 7: Visualization of the Standardized fertility measure and socio-
economic indicators for French-speaking provinces of Switzerland at
about 1888 after the application of the subspace analysis algorithm
SURFING [5]. The data consists of 6 attributes (Fertility, Agricul-
ture, Examination, Education, Catholic, Infant.Mortality), of which
the combinations of Fertility, Education, and Infant.Mortality cause
the patterns to merge. The pattern is static for multiple clusters with
adding the attribute Catholic. This attribute is numeric, but the content
is discrete, which causes the pattern to split into two separate clusters:
People who are catholic, and people who are not. If this attribute is
not considered, then the pattern merges (compare Pattern P6). Top:
static pattern development. Bottom: view rotated by 0.5π, we see
converging, diverging and static patterns. The black points indicate
the selection and the lines are colored with regarding the point colors.
The diverging fan pattern is highlighted via a red-green connector.

tification of certain pattern transitions as introduced in Figure 4. For
example, it is challenging to differentiate between pattern transitions
if many points overlay. Therefore, we additionally visualize the
transition between adjacent subspace projections via lines; same
points are connected in adjacent projections by single lines. Figure 7
depicts the transitions from a static to a converging, and from a
static to a diverging pattern, which is challenging to identify without
visual links. The Figure 7 visualizes an additional small multiple
row of projections. In the top row the converging and diverging
patterns are not visible. Rotating all projections by 0.5π enables the
identification of such patterns, which is why we provide both views.

The representation using lines follows the work of Dasgupta and
Kosara [13], in which they classified lined-based patterns between
axis in parallel coordinates [22]. The interpretation of patterns is
different for transitions between adjacent projections, because each
subspace projection consists of multiple attributes and is visualized
in a way that pattern translations, or mirror images, do not affect the
structure of a pattern. This is different for parallel coordinates, where
each axis reflects exactly one attribute. Yuan et al. [56] developed
a visually similar approach to Pattern Trails which also enables the
comparison of multiple attributes. The authors propose to seamlessly
integrate scatterplots into parallel coordinates. Thereby, the scatter-
plot reflects the relations between manually selected attributes (axes)
thus allowing a visual inspection of complex patterns. This approach,
however, requires the manual selection of subspaces and presents a
continuous switch between the PCP and scatterplot representation,
posing a challenge to find interesting subspaces and patterns. Pattern
Trails relies on small multiples that enable the effective comparison
of patterns across many subspaces at a glance.

Similarity-based Ordering and Clustering. The effectiveness
of our small multiple representation is highly influenced by a
meaningful ordering to make sense of patterns efficiently. In
addition, small multiples are limited by the horizontal display
dimensions, causing inevitable overlap between multiples, like e.g.
depicted in Figure 6. Therefore, we order the small multiples in
terms of visual similarity and apply a user-steered Agglomerative
clustering: the user is given control over the distance parameter and



can interactively change the size of clusters.
In accordance with the ordering computation described in Section
5.2, we use the input matrices of all subspace projections and
compute all pairwise similarities. Using a 1D MDS [12], we
horizontally reassign the positions of all projections. Distance
indicates how similar or dissimilar respective projections are. To
reduce overplotting and visual redundancy between projections,
and thus subspaces, we apply clustering. Agglomerative clustering
has the advantage of only one operating parameter, which reflects
the notion of distance between clusters. The user can interactively
cluster overlapping subspace projections by steering the distance
parameter. A prototype representation then replaces all clusters, this
is a new projection including all attributes of the cluster.

6.3 Supporting Pattern Detection
So far, pattern transitions are visualized and found interactively.
That is, the user first selects an interesting projection from the small
multiples. Then she selects a pattern in the selected projection, for
which the full set of transitions is displayed across all subspace
projections. Identifying interesting subspaces and patterns is
challenging for increasing amounts of data and thus subspaces.
We provide automated support for finding interesting patterns
and transitions by narrowing the representation down to pairwise
transitions between adjacent subspace projections. We provide
an overview of possible transition patterns in Section 4, Figure 4.
The general idea is to point the user to these transition occurrences
between subspaces as a starting point for further exploration.

The automatic identification of possibly interesting transitions
is based on three criteria: the transition type, the number of affected
points that form the transition type, and the minimum distance
between affected points. Based on the taxonomy in Figure 4,
we distinguish between five transition types. For each type, we
automatically detect its occurrence between adjacent pairs of
subspaces using heuristics based on the Density-based spatial
clustering of applications with noise (DBSCAN) algorithm [15].
The core understanding of DBSCAN suits the exploration workflow
because it depends on two parameters: the minimum amount of
points, and a minimum distance between points that form a cluster.
The user can interactively set the size and density of the expected
patterns. Based on the user input, we compute the clusters for both
subspace projections (following, let us call them projections A and
B) separately, and identify the transition type as follows:
Single Point/Cluster: We iterate all clusters in A and check

whether a significant amount of points remain in the same
cluster in B.

Converging Fan: We iterate all clusters in B and check whether a
significant amount of points end up in at least two different
clusters in A.

Diverging Fan: Similar to the Converging Fan, we reverse the di-
rection and check whether the points emerge from A to B.

Star/Mirror: We iterate all clusters in A and check if a significant
amount of points remain in the same cluster. Then, we check
if the cluster centroids are mirrored concerning their y− order.

Static: We iterate all clusters in A and check whether a significant
amount of points remain in the same cluster in B. Then we
check if the clusters are not mirrored.

Based on our experiments, we consider a significant amount
of points as 95%. If the relevant condition is met, the transition
between two subspaces is detected and highlighted. We include the
visualization of visual cues to detected pattern changes, for example,
in Figure 1 and Figure 7: A red line with a green starting and a red
ending circle indicate an interesting transition. Clicking on this line
opens a detail view containing only the affected subspace projections
in a scrollable list with all transition occurrences. Our approach does
not yet support the identification of multiple transitions between two
subspaces, which we leave to future work.

7 USE CASES

We demonstrate the usefulness of Pattern Trails by application to
two real-world data sets. We first apply our approach to a University
Ranking data set, and discuss our findings in view of automatic
subspace analysis applied prior to the visual analysis. Furthermore,
we apply Pattern Trails to the well-known Forest Fires data set [35]
and report on the analysis workflow, as well as on gathered findings.

7.1 University Rankings
We visually analyze the 2012 World University Rankings 1 data,
which suits the general idea of Pattern Trails and comprises seven
numerical attributes (scores): Overall, Academic Reputation, Em-
ployer Reputation, Faculty Student Ratio, International Faculty,
International Students, Citations per Faculty. The data was studied
by Gratzl et al. [17], who presented a comprehensive system to rank
the data including customized preferences. In this work we seek for
interesting attributes in terms of subspaces of the data. One can inves-
tigate interesting attribute combinations (i.e. subspaces that contain
salient patterns) before applying statistic-driven analysis of patterns.

Following, we first examine the data without the use of automatic
subspace methods. Then, we perform the analysis again, using an au-
tomatic approach before the visual analysis. We show that we come
to the same conclusions. A resulting strength of our approach is that
it can also be applied without prior automatic subspace analysis.

Manual Analysis of Pattern Transitions
In manual analysis, we load the data, calculate all possible combi-
nations of subspaces, and project them into the 2D space. The data
comprises seven attributes. This means, we have to compute 120 (cal-
culation: (2n −1)−n, with n attributes) combinations, if we ignore
all subspaces that consist of exactly one attribute. We then apply our
data-driven similarity measure, which is based on the input matrices
of the projection. To reduce the 120 subspace projections, we apply
agglomerative clustering in addition to the similarity calculation.
The result is depicted in Figure 1. A known side effect of clustering
is the inherent, continuous information loss because subspaces are
combined and replaced by a prototype representation to reduce over-
lap, and thus cognitive load. Figure 1 points out an example: the
same attribute combinations are projected multiple times. Although
the subspaces are different in terms of the attribute space, they can
result in the same sets of attributes when clustering. However, the vi-
sual representation indicates that these prototype representations are
dissimilar to each other asking for looking into detail. Clustering is a
trade-off between massive overlap at full detail and partial informa-
tion loss. Interaction is key to overcome this limitation. We enable
the user to go back and forth during clustering to alter between
overview and detail. Also, one can apply subspace analysis to re-
duce the sheer amount of subspaces as described in the next section.

We start to read the subspaces depicted in Figure 1 from right to
left because the subspaces on the right are clearly separated based
on their similarity. The last two subspaces differ by the attribute
Overall Score and show a static pattern (P4). This means, this
attribute has no impact on the pattern structure. This behavior repeats
between the subspaces 10 and 11, thus not adding new insight. Note
that the same attribute sets generate the next three subspaces 8, 9,
and 10 and show static (P4) or mirror (P5) patterns. Again, we
cannot reason regarding the attribute space. Between the subspaces
7 and 8 (highlighted in Figure 1), the selected pattern diverges (P3)
indicating a structural change caused by dominating attributes. To
find about which attributes cause this transition, we need to consider
the transition between the subspaces 6 and 7. The transition is static
(P4), meaning that no dominating attribute exists between them.
This allows us to compare subspaces 6 and 8 directly. They differ
by only one attribute, which is the International Faculty Score.

1US News/QS 2012 World University Rankings: https://goo.gl/t8zzMe
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Figure 8: Results of the US News/QS 2012 World University Rankings
after application of the SURFING [5] algorithm. (1) The subspace
analysis results are shown without any specific ordering. One obser-
vation is that the InternationalStudentsScore and the CitationsperFac-
ultyScore attributes do not contribute to any interesting subspaces.
Applying our (2) data-driven similarity measure as well as (3) cluster-
ing reveals pattern transitions that show only one split caused by the
attribute InternationalFacultyScore. The results are consistent with
our analysis without the application of prior subspace analysis.

We can consider this attribute as being dominant. Furthermore,
the attributes International Students and Citations per Faculty are
removed between the subspaces 6 and 7 and have no impact on the
transition, which is why we can consider them as being redundant.
The remaining subspaces 1 to 5 show static patterns (P4), hence
their transitions do not reveal additional insight.

Automatically Aided Analysis of Pattern Transitions

We aim to confirm the results from the previous manual analysis
and show how the automatic support helps to improve the analysis.
We load the data and then apply the SURFING [5] algorithm. The
resulting 16 subspaces are depicted in Figure 8 (1). It is striking that
the attributes International Students and Citations per Faculty play
no role, which is in line with the results of the purely manual analysis.
(2) We first apply our data-driven similarity and then (3) cluster the
results. We select the data points which are separated from the rest
by color (blueish color). To reason about dominating attributes,
we read the visual representation from left to right. The selected
pattern immediately diverges (P3) indicating a dominating impact
of attributes. However, the first and second subspaces only differ by
the attribute International Faculty Store. We consider this attribute
to cause the pattern transition because the subsequent subspaces
are connected by static patterns (P4), thus not adding insight. This
observation finally confirms the purely manual analysis. Note that
we get the same result, but faster, with less effort.

No specific ordering:1

Data-driven similarity (input matrix):2

Clustering of ordering & pattern trails:3
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Figure 9: Results of the Forest Fire data set [35] after application of
SURFING [5]. (1) Without specific ordering, we identify alternating
static and mirror pattern transitions. To expose the role of the attributes
in producing patterns, we apply (2) our data-driven similarity and then
(3) cluster the subspace projections. The set of pattern transitions
reveals a dominating impact of the attributes Drought Code (DC),
Relative Humidity (RH), and wind.

7.2 Forest Fires

Based on the visual analysis of the Forest Fires [35] data set, we
further elaborate the strengths of our approach. The data comprises
seven attributes: Fine Fuel Moisture Code (FFMC), Duff Moisture
Code (DMC), Drought Code (DC), Initial Spread Index (ISI), Tem-
perature (temp), Relative Humidity (RH), Wind, Rain. To begin with,
we load the data and compute interesting subspaces using the SURF-
ING [5] algorithm. Then, we project and visualize the resulting 24
suggested subspaces, as depicted in Figure 9. We see the subspaces
with no specific ordering and the pattern transitions for a cluster in
(1), which we selected in the very last projection. We can see several
static patterns that develop into each other by means of diverging
and converging patterns. We identify 5 interesting transition patterns
from left to right. The first 9 subspace projections are combinations
of static (P4) and mirror (P5) patterns, converging (P2) into a dense
line bundle (P1). The converging transition is caused by omitting the
attributes wind, RH. The line bundle diverges when again considering
the attribute wind. This behavior is repeated two more times. Also,
we can identify the attribute DC as being present, except for one time,
in the pattern P1. Identifying these relations is time-consuming.

To speed this process up, we apply our (2) similarity-based or-
dering and then (3) cluster the data to avoid artifacts regarding the
pattern transitions. The visualization shows that the attributes DMC
and temp do not play a major role because they are not consid-
ered at all. Furthermore, the attribute DC visually separates the
left subspace from the rest. However, we cannot reason about the
dominance of this attribute because at no time it causes a pattern to
change. Following, we read the transitions from left to right. The
first three subspaces are connected by static patterns (P4), which
do not provide insight regarding the attribute space. The transition
between the subspaces 3 and 4 diverges (P3), enabling us to reason
about dominating attributes. The transition is caused by removing
the attributes RH and wind. The interpretation follows a logical
structure because the relative humidity (RH) and the wind most



definitely have an effect on the forest fires. The drought code (DC)
has most likely the highest impact on the fires. This is held true for
the real world, but also for the data.

8 REFLECTION AND DISCUSSION

Pattern Trails is a visual interactive approach that includes the user
to identify and explain interesting attributes, and thus subspaces, in
possibly large multivariate datasets. Introducing pattern transitions,
we enable the user to analyze the structural changes in subspaces
and also provide interpretations for these changes. Pattern Trails
can be considered as an extension to the statistic-driven analysis
of clusters, outliers, and correlations that occur in a subspace. The
design space of our approach opens questions regarding different
analysis steps that we aim to discuss at this point.

Pattern Selection Given a number of subspace projections,
there exist different strategies to identify a pattern (e.g., a cluster)
as a starting point to analyze its transitions. An effective approach
is to select all points within a subspace. The data is encoded by a
2D colormap, and the connecting lines take on these colors. Thus,
the selection of all data points enables the identification of the main
structural changes across subspaces. This approach can be applied to
discover interesting pattern transitions and then to reduce the clutter
by selecting promising identified data subsets (patterns). The main
problem remains the number of subspaces. If subspaces overlay
too much, the transitions cannot be kept apart; thus one can not
reason about the attribute space. Using our data-driven similarity and
applying Agglomerative clustering reduces the number of subspace
projections. Aggregation reduces the displayed data, yet at the
expense of information. The more attributes are combined, the less
expressive the subspace projection can get. It is up to the user to
strike the balance between aggregation and aspired information.

Another strategy is to provide automatic support like, for example,
the application of data-driven clustering algorithms that point out the
salience of patterns in subspaces. However, such algorithms do not
point the user to structural changes across subspaces, which is why
we go one step further and provide automatic support for identifying
meaningful transition pattern.

Attribute Redundancy The notion of redundant and dominant
(or expressive) attributes raise the question for: Should users omit
redundant attributes? That may depend. On the one hand, we seek
for attributes which determine the structure of the subspaces, which
is why we can argue that all other attributes may not sufficiently
contribute in terms of information. On the other hand, attributes
considered to be possibly redundant can still be classified by domain
experts as important with respect to their task at hand. Consider
for example 10 attributes, of which 3 attributes determine the
structure of the subspace. The remaining 7 attributes are not of
major concern regarding the subspace structure, however, contain
information that can be relevant to get insight and bring attributes
into context. For this reason, we included Pattern Trails into the
Visual Analytics process, so that it is up to the user to decide
whether certain attributes and subspace structures are of interest.

Expressiveness of Subspace Projections The visual rep-
resentation of subspace projections brings in challenges regarding
the expressiveness and uniqueness of the subspaces. First, MDS is
known to be not invariant to rotation, which is why we introduced
the mirror transition patterns. This transition is salient (e.g. in Figure
1), but holds the same interpretation as the static pattern. In addition,
we rotated all small multiples to provide an extensive view on the
subspace projections and not to leave the user with ambiguities. Sec-
ond, visualizing the structures in a subspace by a distance-preserving
projection is an intuitive way to see the relations between different
data points. However, projection techniques introduce biases and
do not correctly represent the underlying data [45]. This can signif-
icantly influence the interpretation of the perceived patterns. This

poses the key challenge of Pattern Trails because the interpretation
depends on the patterns generated by the projection. We plan to
extend the visual representation of the projection by encoding its
quality as suggested, for example, by Martins et al. [40].

We further applied the SURFING [5] algorithm, because it is
parameter-free and proposes interesting subspaces based on their
structure. We are aware of a variety of other algorithms, but like
to leave their integration to future work because they are not an
essential part of our claimed contributions.

Subspace Ordering Using Pattern Trails, we layout all sub-
space projections side by side and encode similarity between projec-
tions via distance. This approach introduces a meaningful ordering
in terms of groups of subspaces that are clearly separated. Incorpo-
rating different distance functions, however, can introduce diverse
orderings that may affect the interpretation of patterns. Although our
approach is invariant to orderings, we may come to different con-
clusions when applying clustering to similar subspace projections.
This is due to different groups that comprise different attributes.
Therefore, it is of highest interest to confirm findings using state-
of-the-art statistical analysis methods or to also investigate attribute
combinations without clustering.

Different orderings also introduce possibly arbitrary combina-
tions of transition patterns. We consider the taxonomy presented in
Section 4 as complete in terms of single transformations and the iden-
tification of redundant attributes, but plan to extend the taxonomy
for arbitrary combinations and their interpretation in the future.

Scalability To assess the computational and visual scalability
of Pattern Trails, we consider both, the number of data records n
and the number of visualized subspace projections m. For each sub-
space, we compute the MDS to determine the visual representation,
which lies in O(n3) due to the eigendecomposition. This computa-
tion is parallelizable. The interactive sorting of the subspaces using
Agglomerative clustering or the 1D MDS projection adds to the
complexity by O(m · log m) or O(m3) respectively. From a visual
perspective, the scalability of Pattern Trails is highly influenced by
the number of displayed subspaces. To optimize them, we propose
to apply our data-driven similarity followed by Agglomerative clus-
tering, which is a trade-off between a detailed view on the data and
a condensed view on possibly interesting parts.

To tackle a number of data records, we apply a 2D colormap to
identify overall structural changes but are aware that this is not an
optimal solution. For future work, we imagine including scatterplot-
based aggregation techniques such as heatmaps, and bundling tech-
niques for the transition connectors. We applied Pattern Trails to
datasets with 8 attributes. However, our technique can also be ap-
plied to datasets with a much larger attribute space. This poses
a challenge to the computation of interesting subspaces and their
visual representation. The number of possible subspaces grows ex-
ponentially with the number of attributes. While heuristics such as
SURFING determine subspaces with potentially interesting struc-
tures, we cannot guarantee that the algorithm keeps all important
patterns. Especially in high-dimensional spaces, parameterization
and/or interpretation of distances becomes challenging and influ-
ences the quality of the analysis results. As for the visual scalability
of an enormous amount of subspaces, we refer to the possibility
of clustering. We implemented our prototype using a client-server
architecture, which allows to handle large amounts of data. However,
the computation and results of subspaces and projections are affected
by the data characteristics (e.g. amount of attributes), traced to the
curse of dimensionality [6], the data types, and the data size.
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