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ABSTRACT
Since 3D models are becoming more popular, the need for ef-
fective methods capable of retrieving 3D models are becom-
ing crucial. Current methods require an example 3D model
as query. However, in many cases, such a query is not easy
to get. An alternative is using a hand-draw sketch as query.
We present a structure-based local approach (STELA) for
retrieving 3D models using a rough sketch as query. It con-
sists of four steps: get an abstract image, detect keyshapes,
compute a local descriptor, and match local descriptors. We
represent a 3D model by means of suggestive contours. Our
proposal includes an additional step aiming at reducing the
number of models that will be compared by our local ap-
proach. The proposed method is invariant to position, scale,
and rotation changes as well. We evaluate our method using
the first-tier precision and compare it with a current global
approach (HELO). Our results show an increasing in preci-
sion for many classes of 3D models.

Categories and Subject Descriptors
I.4.9 [Image Processing and Computer Vision]: Appli-
cations—3D Model Retrieval ; H.3.3 [Information Storage
and Retrieval]: Information Search and Retrieval; I.3.8
[Computer-Graphics]: Miscellaneous

General Terms
Algorithms
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1. INTRODUCTION
In the last years there have been wide interest and progress

on computer aided retrieval of multimedia data. The ad-
vances in this area have allowed users to look for a multime-
dia object in large repositories in a more efficient way . As
advances in multimedia retrieval increase, new interesting
applications come up. One of the current interesting appli-
cations is 3D model retrieval with impact extending from
design to medical issues [4].

The simplest way for retrieving 3D models is by means of
textual metadata describing the 3D objects. This requires
3D models to have reliable metadata. However, 3D mod-
els not always come with reliable human tags. Although,
many authors have addressed the multimedia data annota-
tion problem, this is still an open problem [23, 24]. Due to
this fact, the ongoing research on multimedia retrieval relies
on a content-based approach [8].

Although there is a lot of research on content-based im-
age retrieval, the 3D model retrieval problem is still a young
area. In fact, recently the typical question “How do we con-
struct 3D models?”is shifting to“How do we find them?”[11].

In the context of content-based 3D model retrieval, several
approaches to compute similarity between two 3D models
have been proposed [21, 4]. Among these methods are shape
histogram[1], shape distribution, [19], moments, [10], light
field [6], spherical harmonics [11]. Following any of these
approaches, users require a 3D model as an example for
querying.

A 3D model example as query is not always available, re-
quiring some kind of technical expertise to produce it. Even
though some tools for making the 3D modeling task easy
for any kind of users (e.g. Google Sketchup) are coming up,
they are still hard to operate and produce detailed models
on the fly. This fact clearly limits the 3D model retrieval
usability.

An easy alternative for querying is simply drawing a 2D



Figure 1: The Suggestive Contours from two differ-
ent viewpoints of a cup.

stroke-based sketch lacking of color and texture. Although
such a kind of sketch is composed of few lines, it is a coarse
but detailed representation of what the user is looking for,
which includes key features. This leads to the sketch-based
3D model retrieval.

In this work we are interested in rough sketches that novice
users can draw easily. One important issue here is how to
compare a 3D model with a 2D sketch. To this end, some
strategies project and render the model from different view-
points getting 2D representations. Then, they process these
2D representations as in the context of sketch-based image
retrieval using, for instance, HELO [20] or HOG [7] descrip-
tors.

An interesting technique for getting a 2D representation
from a 3D model is suggestive contours [9]. This technique
from non-photorealistic rendering resembles hand drawings
of three dimensional objects very closely. Yoon et al. [25]
showed that this technique performs better than the classical
contour or ridge and valley techniques for retrieval tasks.
Therefore, we use suggestive contours of the 3D models as
2D representations. An example of the suggestive contour
of a 3D model is depicted in Figure 1.

The other critical issue is how to represent appropriately
rough sketches and 3D model projections for the retrieval
task. We claim that different sketches and 3D model pro-
jections from the same object class must share structural
and locality information. This information must be taken
into account for making up a descriptor to boost the re-
trieval performance. Even though there have been proposed
structure-based methods for 3D model retrieval [13, 22], they
work only when the query is another 3D model. To our
knowledge, the structural and locality information have not
been exploited yet when the query is a rough sketch.

In this paper we propose STELA (STructurE-based Lo-
cal Approach), a local approach for sketch based 3D model
retrieval that takes into account structural and locality in-
formation not only of the query sketches but also of the 2D
representations of a 3D model. Detecting the components
which make up an object is an expensive task, so instead of
detecting such components, our method relies on detecting
keyshapes. A keyshape is a primitive shape from which a
complex object is composed of. Moreover, structural infor-
mation allows us to represent an object in a higher abstrac-
tion level with the capability of dealing with noise. This
leads to an improvement on the retrieval task.

Furthermore, we combine our local approach with a global
one to take advantage of the global similarity in order to re-
duce the number of necessary comparisons between a query
sketch and the models of the training database. The global

approach works as a filtering stage, this allows us not only to
increase the efficiency of the proposed local method but also
to improve the retrieval effectiveness reducing the number
of false positives.

The results of our proposal show an increasing in precision
with respect to current strategies applied for sktech-based
3D model retrieval. Particularly, our method achieves sig-
nificant improvement over 3D models with a well defined
structure as explained later in this paper.

The remaining part of this document is organized as fol-
lows. Section 2 briefly present the related work in the area
of 3D model retrieval discussing the current work for the
sketch-based approach. Section 3 describes in detail our lo-
cal approach. Section 4 describes a global descriptor for the
filtering step. Section 5 discusses the conducted experiments
and analyses the achieved results. Finally, Section 6 presents
some conclusions.

2. RELATED WORK
Although a lot of researchers have been working on content-

based 3D model retrieval, the sketch-based approach, where
the input is a rough line-based hand drawing, has not fol-
lowed the same direction.

The 3D shape matching approach is possibly the most
common approach for 3D model retrieval. A comprehen-
sive study of shape-based 3D model retrieval is discussed in
the work of Bustos et al. [4] and in the work of Tangelder
et al. [21]. In those works feature based methods and graph
based methods are discussed. Even though several of the dis-
cussed methods have a good performance on different kind
of applications, they only work when the query is another
3D model, limiting their use in our case.

Since we use 2D representations from the 3D models to
compare them against query sketches, an option is using the
2D shape matching approach. A survey on these techniques
can be found in the work of Loncaric [16]. These techniques
include boundary-based representations, regions-based repre-
sentations, boundary space domain and global space domain.
However, these techniques require to have a closed shape or
a region represented in a binary format, which is far from
our rough sketches. This fact makes the classical 2D shape
matching impractical for our work.

Regarding the use of suggestive contour to get a 2D repre-
sentation from the 3D model, we could use some techniques
used in the context of sketch-based image retrieval (SBIR).
The input sketch and the suggestive contour are formed just
by edges, so the orientation of the edges could be used as
a natural discriminative feature between different 2D ob-
jects. The Histogram of Oriented Gradients (HOG) [7] has
shown being useful for detection and recognition tasks. Fur-
thermore, a variant of this technique has been used in the
work of Yoon et al. [25] to retrieve 3D models from sketches.
More recently, Saavedra et al. [20] proposed a technique for
computing an improved histogram of edge local orientations
(HELO) dealing with noise and increasing the effectiveness
in the context of SBIR. An important drawback of HOG and
HELO descriptors is that they are global representations,
getting easily confused when the sketches and the sugges-
tive contours are depicting simple models as it happens in
our case. Furthermore, they get confused easily if we have
many views for the same 3D model. Figure 2 shows a sketch
and a suggestive contour of a 3D model with their corre-
sponding HELO descriptor. Both the descriptors look very



Figure 2: The behavior of a oriented-based global
approach for comparing an sketch with a 3D model
suggestive contour.

similar although the contours are not.
We claim that a local representation which takes into ac-

count not only the structural information but also the local-
ity information of 2D representations is needed for tackling
the sketch-based 3D model retrieval problem. Structural
information tell us what components makes up a certain ob-
ject, as the locality information allows us to set some relation
between a reference component and those around it. For in-
stance, an sketch representing a human should be composed
of a head, two arms and two legs, this is the structural infor-
mation. On the other hand we know that a head is located
between the arms, moreover, the head is closer to the arms
than to the legs. This is what we call locality information
which takes into account spatial relationship between object
components.

The well known SIFT [17] and Shape Context [3] are two
of the most relevant local descriptors applied for 2D images.
Even though these are local descriptors, they do not repre-
sent appropriately the structural information on the image
as they rely merely on keypoints. In our case both a sketch
and a 3D model are represented as edge maps. Since edge
maps are commonly affected by noise, keypoints could fall
into the noise regions leading into a detriment of the retriev-
ing performance. Thus, we need another kind of approach
that can be deal with noise representations.

Therefore, the main contribution of this work is to present
a local approach for sketch based 3D model retrieval, taking
advantage of the locality and structural information pro-
vided by the input sketches as well as by the suggestive
contours representing the 3D models. Moreover, structural
information allows us to represent an object in a higher ab-
straction level with the capability of dealing with noise. This
leads to an improvement on the retrieval task. Additionally,
we use a filtering step to select candidates with a global
shape similar to the query sketch. This filtering step allows
us not only the retrieval efficiency but also to improve the
retrieval precision.

3. STELA
In this section we describe in detail our proposed local

Figure 3: The pipeline of the proposed local ap-
proach.

approach (STELA) for sketch based 3D model retrieval. It
is necessary to be aware that this method requires 2D rep-
resentations as input. The query sketch is already a 2D
representation, but 3D models are not. To get 2D repre-
sentations from 3D models we will use suggestive contours,
as mentioned before. The main property of our approach is
that it takes advantage of the structural information as well
as of the locality information over the sketches and sugges-
tive contours.

For getting structural information, an object (a sketch or
suggestive contour image) should be decomposed into sim-
pler shapes. A first idea to this end is to decompose an
object into shapes like squares, circles, ellipses, lines, trian-
gles, etc. However, this is a non trivial task because our
objects are formed only by edges and possibly these shapes
are not well defined. An alternative would be to simply con-
sider the most simple shapes such as straight lines, arcs, and
circular shapes including ellipses. Bo Yu [26] proposed an
interesting technique to detect these shapes, although his
method needs strokes to be detected first.

For getting locality information, we need a local descrip-
tor. A local approach requires to define local regions. Com-
monly, this is carried out by means of keypoints [18]. How-
ever, as indicated in the previous section, keypoints do not
represent appropriately structural components. Instead of
using keypoints we propose to use keyshapes, where keyshapes
are defined as simple 2D primitive shapes that form a com-
plex 2D object. keyshapes are close related to the structural
information. In this way, we represent the object using a
higher lever information, allowing us to reduce the semantic
gap in the retrieval task.

Our proposal is composed of the following steps: (1) get
an abstract image, representing in a simpler way a sketch or
suggestive contour image. (2) detect keyshapes, that should
return a set of simple primitive shapes from an abstract im-
age, (3) compute local descriptors, that computes a signature
for each keyshape, and (4) matching, allowing us to set a cor-
respondence mapping between local descriptors of a query
sketch and local descriptors of a suggestive contour image
representing a 3D model from a certain viewpoint. These
four steps are shown in Figure 3. The next subsections de-
scribe each step in detail.

3.1 Abstract Image
To detect keyshapes easily, a preprocessing task is re-

quired. This task aims to get an abstract image from the
query sketch and suggestive contours. The abstract image



allow us to reduce the effect of noise, keeping only relevant
edges. To this end, we apply the thinning operator [12] over
the query sketch, and the canny operator [5] over the sugges-
tive contour. After this, we obtain edge map representations
from both the query sketch and the suggestive contour.

Another important task here is to represent the edges as
strokes. By achieving this, we will be capable of determin-
ing the shape of each stroke. However, detecting strokes in
a sketch or suggestive contour image is a hard task. We ap-
proximate strokes using the edgelink operator [14] over an
edge map representation. In this case, the edgelink operator
returns a set of edge lists.

3.2 Detecting Keyshapes
As mentioned before, detecting simple shapes composing

a more complex object allows us to get similarity between
two objects taking into account structural information. In
this work we only detect straight lines which form the ob-
ject. Lines can be detecting easily and still keep enough
discriminative information. We refer to these simple shapes
as keyshapes following the same idea of keypoints.

To this end, we use the abstract image, detected in the
previous step, which is formed by edge lists. For each each
edge list we could detect one or more straight lines com-
posing the edge list following the next steps for each edge
list:

1. Take the line L joining the end points of a edge list.

2. Finds the value m and position p of the maximum
deviation of L.

3. if m <= µ, add L to the set of detected lines.

4. If m > µ, cut L into new lines L1, L2 and repeat the
process for each line.

where, µ is a tolerance threshold. We set empirically µ = 3.
The resulting set of lines contains lines of different size.

It is worth pointing out that curve strokes will yield a set
of very small lines. So, to get a set of lines representing
appropriately straight strokes we need a threshold Tshort to
reject small lines. In addition, considering the possible dis-
continuities of strokes on the sketches, a process for merging
nearby lines with similar slope is required. We use a thresh-
old Tnear to evaluate nearness between lines. Furthermore,
lines with length above a threshold Tlarge should be split
into smaller ones. We propose to use the following thresh-
old values: Tshort = D ∗ 0.05, Tnear = 5, Tlarge = D ∗ 0.5,
where D is the length of the abstract image diagonal. The
final set of lines represent the set of keyshapes.

Finally, we regard the center of each line as the repre-
sentative point of each keyshape. Figure 4 shows two sug-
gestive contours with their corresponding abstract represen-
tations (second image) and the detected keyshapes (third
image). In our proposal, each keyshape L is represented as a
5-tuple [(x1, y1), (x2, y2), (xc, yc), s, φ], where (x1, y1) is the
start point, (x2, y2) is the end point, (xc, yc) is the represen-
tative point, s is the line length, and φ is the slope. Although
the two first components representing L are enough to com-
pute the remaining three components, we decided to keep
the 5-tuple notation just for making our algorithm easily
understood.

Figure 4: First column shows the suggestive contour
of two 3D models, second column shows the corre-
sponding abstract images, and third column shows
the detected keyshapes.

Figure 5: A synthetic representation of the parti-
tioning to make up the proposed local descriptor.

3.3 The Local Descriptor
Different descriptors could be used in this step. For in-

stance, an extension of Shape Context [3] to work over keyshapes
instead of working over a point sampling is an alternative.
However, this choice could yield a sparse descriptor consid-
ering that the number of keyshapes is much smaller than the
number of sampled points.

Therefore, in our approach we use an oriented angular
8-partitioning descriptor. Figure 5 depicts a graphical rep-
resentation of this descriptor.

Having a keyshape L as reference, this descriptor works
as follows:

• Create a vector h, containing 8 cells. Initially, h(i) = 0,
i = 1 . . . 8.

• Let L be the reference keyshape represented as :

L = [(x1, y1), (x2, y2), (xc, yc), s, φ
′]. (1)

• Let fr : R2 → R2 be a rotation function around the
point (x1, y1) with rotation angle β = −φ. This func-



tion is defined as below:

fr(x, y) = (xr, yr),where, (2)

xr = [(x− x1)cos(β)− (y1 − y)sin(β)] + x1

yr = y1 − [(x− x1)sin(β)− (y1 − y)cos(β)]

• Let (x̂c, ŷc) = fr(xc, yc) be the normalized version of
(xc, yc).

• For each keyshape Q 6= L represented by [(x′
1, y

′
1),

(x′
2, y

′
2), (x′

c, y
′
c), s

′, φ′].

– Get (x̂′
c, ŷ

′
c) = fr(x

′
c, y

′
c).

– Dx = x̂′
c − x̂c and Dy = ŷ′

c − ŷc
– If Dx > 0 ∧Dy > 0 ∧ |Dx| > |Dy|, bin = 1.

– If Dx > 0 ∧Dy > 0 ∧ |Dx| <= |Dy|, bin = 2.

– If Dx < 0 ∧Dy > 0 ∧ |Dx| <= |Dy|, bin = 3.

– If Dx < 0 ∧Dy > 0 ∧ |Dx| > |Dy|, bin = 4.

– If Dx < 0 ∧Dy < 0 ∧ |Dx| > |Dy|, bin = 5.

– If Dx < 0 ∧Dy < 0 ∧ |Dx| <= |Dy|, bin = 6.

– If Dx > 0 ∧Dy < 0 ∧ |Dx| <= |Dy|, bin = 7.

– If Dx > 0 ∧Dy < 0 ∧ |Dx| > |Dy|, bin = 8.

– h(bin) = h(bin)+s′/MAXLEN , where MAXLEN
is the length of the abstract image diagonal. This
is a normalization parameter depending on the
image size.

• Finally, h(bin) =
h(bin)
8X
i=1

h(i)

, bin = 1 . . . 8.

3.4 Matching
In our approach, we treat an object, a query sketch or

suggestive contour image, as a set of descriptors. This set
captures the object shape.

Let P = {p1, p2, . . . , pm} be the set of descriptors repre-
senting a query sketch, and Q = {q1, q2, · · · qn} be the set of
descriptors representing a suggestive contour obtained from
a 3D model from a certain viewpoint. Here, pi, qj ∈ R8.
Without loss of generality, we will suppose n < m. So, we
need to find an assignment from Q to P . This is, for each qj
we need to look for the pi that allow us to minimize an over-
all cost. We define the function π : {1, . . . , n} → {1, . . . ,m}
that map the j-th descriptor from Q with the i-th descriptor
from P .

Furthermore, we define the cost T of the assignment using
a certain mapping function π as follows:

T (π) =

nX
i=1

C(qi, pπ(i)) (3)

where, C(q, p) is the cost of matching a descriptor q ∈ Q
with p ∈ P . This cost function could be thought as the
distance between p and q. In this way, the less similar the
descriptors are, the more expensive the match become. As
our proposal descriptor is, in fact, a probability distribution,
we use the χ2 test statistic:

C(q, p) =
1

2

8X
i=1

[q(i)− p(i)]2

q(i) + p(i)
(4)

Figure 6: Matching between a sketch (top image)
and a suggestive contour (bottom image).

Therefore, the problem of minimizing the overall cost is
defined as:

π? = argminT (π) (5)

This problem may be regarded as an instance of the Bipartite
Graph Matching. Different from the case of classical local
methods for the image context, our number of descriptor
per image is much lower. So, in our case we will resolve the
assignment problem applying the Hungarian Method [15].

After the assignment stage, we need to look for a represen-
tative pose transformation between the matched descriptors.
This will allow us to achieve a more consistent matching.
To this end, we will use the stored information of the cor-
responding keyshape (see Eq. 1). We are only interested in
finding the scale and position transformation. The position
is represented by the center of the keyshape (xc, yc) as the
scale is represented by the keyshape length s.

For estimating the pose transformation, we use the Hough
Transform [2], where each candidate match must vote just
for three parameters (scale, translation in x-axis and in y-
axis). We keep the set of parameter with the highest vote.
This set of transformation parameters characterizes the es-
timated pose. Only the matches which agree with the esti-
mated pose are retained for the next process, the others are
discarded.

Finally, the similarity between a sketch and a suggestive
contour is computed as the average cost of the matched de-
scriptors. The cost of the unmatched suggestive contour
descriptors are set to 1. Figure 6 shows an example of this
matching step.

3.5 Invariance issues
Our local approach is robust under positions, scale, and

rotation changes. The translation invariance is directly de-
rived as our descriptor extract local information. We achieve
scale invariance normalizing the length of the keyshape by
theMAXLEN , a parameter depending on the image size. Fi-
nally, we get rotation invariance making the keyshape be co-
incident with the x-axis of the partitioning system as shown
in Figure 5.

4. AN ADDITIONAL FILTERING STEP
Taking into account that local approach is commonly ex-

pensive in time, we add a filtering step, where a reduced
number of suggestive contour images are selected. In addi-
tion, this filtering step allows us to get an improvement in
precision, reducing the number of false positives that could



arise from the fact that we have 14 suggestive contour images
for each 3D model. That means, having many viewpoints for
each 3D model could make the method get confused during
the retrieval process.

Each chosen suggestive contour represents a different 3D
model. Our filter considers the global shape of the objects,
therefore only 3D model with global shape similar to that
of the query are kept. To this end, we use HELO [20] as the
global descriptor with a slight variation.

In this approach, instead of applying HELO just over the
whole image, we apply it over three kind of zones, leading
to three types of HELO:

1. HELO : This is applied over the whole image, using a
36-size descriptor.

2. HELO V: This is applied over four equal-sized vertical
regions, juxtaposing each descriptor to make up the
global one. In this case, since the HELO V is applied
over smaller regions, we use 18-size descriptors for each
region, generating a 72-size global descriptor.

3. HELO H: This is applied over four equal-sized horizon-
tal regions, juxtaposing each descriptor to make up the
global one. The size of this descriptor is the same as
that of the HELO V.

Each one of the three mentioned descriptors are evaluated
separately using the χ2 distance, producing 3 different dis-
tances, dHELO, dHELOV , dHELOH . The final distance D is
computed as follows:

D = w1 ∗ dHELO + w2 ∗ dHELOV + w3 ∗ dHELOH (6)

where wi are appropriate weights such that

3X
i=1

wi = 1. Em-

pirically, we set w1 = 0.2, w2 = 0.4, w3 = 0.4. We call this
global approach vHELO.

4.1 Handling viewpoint changes
In our approach, we project each 3D model from 14 differ-

ent viewpoints [25] getting the corresponding 14 suggestive
contours. The global dissimilarity between a query sketch
and a 3D model is computed as the minimum distance be-
tween the input and the 14 corresponding suggestive con-
tours.

After selecting the candidates using the global filter, we
keep only one suggestive contour for each selected 3D model.
The local approach explained in the previous section will
give the final rank. A graphical representation of how our
proposal works is illustrated in Figure 7.

5. EXPERIMENTAL EVALUATION

5.1 Dataset Description
For our experiments, we used the benchmark used by

Yoon et al. [25]. This benchmark has been developed using
several 3D mesh models from the Princeton Shape Bench-
mark1, from where 260 models belonging to 13 different
classes were selected. These classes are: ant, bear, bird,
chair, cup, fish, glasses, hand, human, octopus, plane, table,
tool.

1http://segeval.cs.princeton.edu

Figure 7: Combining a global approach with a local
one for 3D model retrieval.

Using the 3D models, 260×14 = 3640 suggestive contours
from different viewpoints are rendered, which we use for our
experiments as training examples. Additionally, the bench-
mark provides 250 user hand-drawn sketches, which are used
as input for the retrieval task evaluation. It is worth men-
tioning that the sketches are, in fact, rough sketches drawn
by users in a free way. No constraint are imposed to the
users for drawing such sketches.

Figure 8 shows examples of the 3D model used as training
data and Figure 9 shows several sketches corresponding to
four different classes.

Figure 8: Examples of 3D models used as training
data.

Figure 9: Examples of sketches used as queries.

5.2 Result Analysis
In this section, we show the results of the retrieved 3D

models from various test sketches. Two examples of the re-
trieval task are shown in Figure 10. In these examples we



Figure 10: Examples of the 3D model retrieval us-
ing the proposed local approach. The first columns
shows a sketch query, the other five images corre-
spond to the first five retrieved models.

depict only the first five retrieved models. We can note that
our proposal retrieves only one false positive among the first
five retrieved objects, the remaining four objects correspond
to objects belonging to the same class of the query. Addi-
tionally, it is important to note that our method retrieves
relevant objects, even though they undergo different kind of
deformation.

To assess the performance of our method we use the first-
tier precision. In this case, each class contains 20 differ-
ent models, so any input sketch, belonging to one of the 13
classes, must retrieve 20 models. This number corresponds
to the number of relevant models for each query. Using the
first-tier precision, we take as evaluation measure the num-
ber of the retrieved relevant models divided by the number
of the overall retrieved models, after retrieving the first 20
models.

To our knowledge, there are no published local-based tech-
niques for 3D model retrieval using a rough sketch as query,
so we compare our method against the performance of us-
ing a global approach. We use HELO, a current method
for sketch-based image retrieval, as the global approach as
described in [20].

In Table 1, we show the results of our method (STELA)
which use the vHELO as filtering method. The database
is composed of 3640 suggestive contour images which corre-
spond to 260 different 3D models. Using the filtering step,
we select only 100 3D models. For each selected 3D model
we keep the suggestive contour image with the most similar
global shape respect to the query shape. The result are pre-
sented independently for each class. We increase the preci-
sion for 8 of 13 classes, achieving significant improvement for
classes that have a well defined structural information such
as bear, chair, human, octopus, and plane. For instance, the
gained precision for bears is 57% better than that gained
by the global method. In addition, we should note that the
precision of our method for the other 5 classes keeps sim-
ilar to that achieved by the global approach. A graphical
comparison is depicted in Figure 11.

The reason for our better achieved performance is the
higher level approach we are using. Instead of relying on
keypoints, that in the case of line-based sketches these points
could be part of noise, we rely on straight lines regarded as
keyshapes. We keep lines of certain range of lengths, discard-
ing those that have a length below a threshold. The retained

Table 1: First-tier precision for each class.
Class HELO STELA
Ant 0.147 0.126
Bear 0.210 0.338
Bird 0.107 0.110
Chair 0.088 0.121
Cup 0.138 0.142
Fish 0.162 0.152
Glasses 0.029 0.079
Hand 0.333 0.319
Human 0.255 0.321
Octopus 0.108 0.150
Plane 0.021 0.117
Table 0.135 0.120
Tool 0.079 0.045

Figure 11: The first-tier precision for each class. We
compare our proposal (STELA) with a global de-
scriptor (HELO).

lines represent the structure of an object, being robust under
noise.

6. CONCLUSIONS
In this work we have presented a novel local approach for

3D model retrieval having a rough sketch as query. Our
approach takes advantage of the structural and locality in-
formation, as well as of the global similarity to increase the
retrieval precision.

Our approach outperforms the state of the art, achieving
significant improvement for the many classes of 3D models.
It is important to note that our test database is composed
of actual rough sketches, turning the retrieval task really a
big challenge.

For keyshape detection we are only using straight lines.
Therefore our ongoing work is to consider other primitive
shapes like arcs and circular forms as keyhapes. In addition,
we are already working in extending our proposal for partial
matching.
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