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Abstract One of the central motivations for visual analytics research is the so-called
information overload – implying the challenge for human users in understanding
and making decisions in presence of too much information [37]. Visual-interactive
systems, integrated with automatic data analysis techniques, can help in making use
of such large data sets [35]. Visual Analytics solutions not only need to cope with
data volumes that are large on the nominal scale, but also with data that show high
complexity. Important characteristics of complex data are that the data items are
difficult to compare in a meaningful way based on the raw data. Also, the data items
may be composed of different base data types, giving rise to multiple analytical
perspectives. Example data types include research data compound of several base
data types, multimedia data composed of different media modalities, etc.
In this paper, we discuss the role of data complexity for visual analysis and search,
and identify implications for designing respective visual analytics applications. We
first introduce a data complexity model, and present current example visual analysis
approaches based on it, for a selected number of complex data types. We also outline
important research challenges for visual search and analysis we deem important.
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1 Introduction

Visual-interactive techniques, combined with intelligent data analysis methods, can
be valuable tools for obtaining useful insights and actionable findings from large
and complex data sources [35]. They are used in many application areas including
biology, medicine, engineering and manufacturing, finance, and scientific research,
just to name a few. While data size relates to the nominal quantity of data under
concern (such as the number of objects), complexity is related to inherent properties
of the data.

The need for visual analysis of large and complex data stems from the general
assumption that the analysis of larger and more complex data may lead to more
insight (i.e., discoveries of new previously unknown knowledge). This assumption
holds if the tools for analyzing these data enable the user to discover all included
insights. However, creating tools scaling up with data size and data complexity is
still a key challenge in the Visual Analytics area [35, 21].
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Fig. 1 Supposed functional dependency between sophistication of Visual Analytics tools and po-
tential insight achievable, for data of different complexity. Research in Visual Analytics for com-
plex data aims at increasing the slope of the assumed functional dependency.

While no generally acknowledged definition for complexity exists, we asso-
ciate with it (a) the data items being difficult to compare based on raw data, and /
or (b) data compound of several base data types. An example of complex data dif-
ficult to compare is multimedia data. Two raster (pixel) images typically cannot be
meaningfully compared based only on the raster representations, but rather, content-
based descriptions need to be extracted beforehand for this purpose. An example for
a compound-complex data set is earth-observation research data, which may com-
prise remote sensing image data, annotated by textual meta data, and connected to
time series of environmental observation parameters such as temperatures, radiation
levels, humidity, or the like.
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Complexity properties affect the data processing throughout the whole analyt-
ical workflow. Both the Visual Analytics reference model [23] and the Informa-
tion Visualization reference model [14] suggest to transform input data for mapping
them to visual representations. For complex data, this transformation is often diffi-
cult and ambiguous. Usually, domain- and data-specific transformation steps need
to be applied, to make the data available for visual mapping and aggregation. More-
over, user interaction methods, visual displays and further automatic data analysis
methods need to be adapted to the complexity characteristics of data.

Given several different notions of data complexity and their implications for the
Visual Analysis workflow, there is a need to more explicitly consider the role of data
complexity in Visual Analytics. We here examine two important key user tasks in
Visual Analysis systems for complex data: Searching for data items of interest, and
analyzing for relationships among and between sets of data items. Searching and
analyzing are very related, and often, a sequence of searching tasks is conducted
that leads to findings on the global analysis level.

Progress in data acquisition, storage, and transmission leads to data repositories
integrating different data modalities. To date, many visual analysis systems focus
on data sets of given complexity, mostly addressing a single complex data type.
The amount of potential insight obtained from data of a given complexity can be
raised by the degree of sophistication of the visual analysis system. A visual anal-
ysis tool of given technological development status will provide increasing insight
potential, as data gets more complex. However, the relation between sophistication
of the visual analysis solutions and the complexity of the data is limited by the tech-
nological state of the art of the tools. We expect that by systematically researching
and improving visual analysis technology, the slope of the relationships between
tool sophistication and data complexity with respect to potential insight can be in-
creased. Figure 1 sketches the basic functional dependencies as we assume them.
By pushing the limit in visual analysis tool support for complex data, the slope of
the functional relationships between the two variables can be made more steep. Fo-
cusing on improved approaches for addressing data complexity in visual analysis
tools, we hope to be able to push the limits. In the following, we give a definition of
complex data sets, provide an overview of approaches to visual search and analysis
therein, and identify future research challenges. We state that if the raised challenges
are addressed appropriately, future visual analysis tools will be able to derive more
potential insight from a given type of complex data.

The remainder of this paper is structured as follows. In Section 2, we identify
two main sources for complexity, and discuss their role in relationship to Visual
Analytics applications. In Section 3, we discuss tasks and problems when dealing
with complex data. Section 4 then provides proposed Visual Analytics solutions to a
number of example problems from various data and application domains. Based on
this, in Section 5, we identify a number research challenges considered important
and interesting. Finally, Section 6 concludes.
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2 Definition of Complex Data Sets

The term complex data is often used in a loosely defined way. In our view, data
complexity can be attributed to two fundamental dimensions. Complexity may stem
(a) from intrinsic properties of a given single kind of data (type complexity), or
(b) from the data being structured based on a mix of different types, either simple or
complex in turn (compound complexity) (see Figure 2). Both dimensions impact the
difficulty of algorithmic and visual processing of the data. For searching and analyz-
ing, a key fundamental data operation involves calculation of similarity properties
among data items.

Complex

Type‐
complex dataComplex 

Data Compound‐
complex data

Fig. 2 Categorization of complex data. In our definition, we distinguish between complexity stem-
ming from inherit properties of a given single data type (type-complex data), or from the data being
compound of multiple base data types (compound-complex data).

In the first type of complex data (type-complex data) the specific properties of
a single given data type incurs difficulty to algorithmically process the data for sim-
ilarity in a straightforward way. In particular, for these data types it is difficult to
measure similarity meaningfully between data instances based on the raw data rep-
resentation. For example, image data, audio data, video data, biochemical molecule
data, 3D object data, or graph data are data types of this category. In all cases, the
raw data needs to be transformed by specialized preprocessing steps for further algo-
rithmic and visual analysis. The difficulty can be explained in the following example
showing the difference between multivariate numeric data (considered simple here)
and image data (considered complex here). For multivariate data, we can usually
compute the similarity of data records based on forming sums of absolute differ-
ences of the respective field values in the records. In contrast, consider the task of
comparing a query and a candidate image. For most practical purposes, it is not
possible to calculate the similarity based on the raw image pixel arrays. Rather, a
preprocessing step which extracts relevant information from the images, such as
the presence of specific object types, or color and texture patterns, is needed. Then,
query processing can take place on this extracted information [30].

In the second type of complex data (compound-complex data) the data items
are aggregated from multiple “base” data types, each of which could be complex
or non-complex in turn. Again here, it is difficult to calculate similarities, because
it is a priori not clear how to aggregate the similarities between the individual data
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components. Depending on the application context, either one of the base data types
could be the relevant perspective, or also, a combination thereof. Moreover, the data
components may be complex themselves, raising the complexity by the number of
involved base data types. As an example, consider research data from the earth ob-
servation domain. Here, measurement data can be compound of several complex
data types. A realistic example includes multivariate time-dependent measurements
of environmental parameters. Additionally, geo-locations, trajectories, and image
data may be available for the specific data. Even further, the particular observation
experiment which lead to the acquisition of this data my be described in a research
paper, which is relevant to understanding the data. An earth observation scientist
might be interested to search and analyze for each of these aspects simultaneously.
Nowadays, large repositories of such data are set up and made publicly available.
While access to the data per se is given, in absence of appropriate search and analy-
sis tools, often these repositories are not accessible to the best possible extent. Earth
observation data is just one example for compound-complex data. Others include
compound graphs, biologic experimental data, spatio-temporal data, intelligence
data compound by textual reports, intelligence findings and image documentation,
and so on and so forth.

3 Tasks and Problems of Visual Search and Analysis in Complex
Data

We next describe two fundamental user tasks in visual analysis systems - search-
ing and analyzing. We then outline the key problems of supporting these tasks in
presence of complex data.

3.1 Visual Search and Analysis

Searching and analyzing are key user tasks in information systems. Searching relates
to finding information entities of interest to a user on a more local level, based on
specific query formulation. Analyzing, in its generic sense, can be defined as finding
structures and abstractions on the set level, adding to the understanding of a data set
as a whole.

Search is an inherent part of the data analysis process and can take several forms.
Although it may not be seen at the first sight, search tasks are comparable to the
basic information visualization tasks defined by Shneiderman [32]. Search includes,
e.g., identification of the data needed for the analysis, searching for similar data
items among a set of items, detection for recurring motifs in a sequence or network,
or discovery of outliers or exceptional events. For visual support of these tasks,
appropriate user interfaces are needed. These interfaces need to include e.g., visual
means of query specification and results presentation.
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By analysis we understand tasks related to identification of global relationships
and structures in the data. Questions of interest relate to the number of groups exist-
ing in the data, the similarities and differences between them, and how they relate to
each other. Cluster analysis and association rule mining are two examples of analy-
sis methods. Visual support for analysis tasks require the appropriate visual steering
of the analysis algorithms, and expressive visual displays to present the output of
the analysis methods. Also, navigation facilities to allow overview and details-on-
demand are important ingredients in respective systems.

Searching and analyzing are often interrelated, with cycles of corresponding ac-
tivities. For example, evidence for a hypothesis may be collected by issuing a series
of queries, which select subsets of the data for some aggregation purpose. Often,
sets of searching subtasks, each of relative short duration, are nested within longer-
running, overarching analysis processes. thinas

3.2 Problems in Presence of Complex Data

Complex data imply specific problems for visual search and analysis. These prob-
lems depend both on the task (searching vs. analyzing) and on the type of data
complexity. For searching, Figure 3 illustrates a process model of visual search in
complex data. Based on visual query specification, and by means of appropriately
selected and configured descriptors, similar objects to the query are identified. Vi-
sual overview displays are useful for showing search results in context of the whole
data set. In our model of the analysis process (see Figure 4), first the suitable data
set needs to be found for further processing. After determining the appropriate sim-
ilarity function and selecting an analysis method, the results are visually inspected.
This process includes several feedback loops creating an incremental process. In
both cases, each process step poses problems for developing visual analysis meth-
ods.

For type-complex data, sophisticated data transformation needs to be applied be-
fore data items can be queried, compared, grouped, and visualized. Typically, cus-
tom similarity functions, for example, based on descriptors (or feature vectors) need
to be defined. However, for many type-complex data sets, multiple alternating de-
scriptors are possible, and it typically is not clear which one suites the current task
best. Furthermore, descriptor extraction is a non-trivial, parameterized process, and
analysts are often not aware of its implications. On the other hand, meaningful anal-
ysis (interpretable results) requires the user to understand the specific notions of
similarity which lead to search results or object groupings. Also, query specifica-
tion is difficult if descriptors cannot be easily interpreted - direct numeric feature
specification is typically not useful for average users. How can querying be visually
supported, visually representing the relevant similarity concepts and thresholds for
which objects are considered similar by the system? How sensitive are query and
analysis results with respect to parameterizations of the similarity function? Such
questions need to be addressed by ideal visual analysis systems.
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Fig. 3 Visual search process. By means of a visually specified query, and relying on a selected
descriptor, similar objects are retrieved and visualized, often in context of the whole data repository.
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Fig. 4 Visual analysis process. After specification of the data for the analysis and their similarity
function, the selected analysis function is executed and the results are visually inspected.

These problems are potentially multiplied for compound-complex data. In these
data, searching and analyzing tasks need to be based on a joint similarity function
which appropriately reflects similarity concepts for each included base data type.
All base types have possibly different similarity functions. These similarity notions
need to be both configured individually and appropriately aggregated. Consider the
example of compound-complex research data from our example of earth observation
research, where an exemplary task is to analyze for similar observations. Similarity
can be constituted by similarity of respective measurement series, but also, geo-
graphic location, measurement method applied, or researchers involved. How can
an aggregate similarity function be defined for searching in such data? How can
such data be clustered? Clearly, the user needs to be given appropriate visual query
formulation tools which allow to select and weight the involved data perspectives,
and specify a query in all of these relevant perspectives.
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We summarize key design problems for visual search and analysis systems for
complex data as follows. As can be seen from the respective processes, there are
many parallels between the two tasks (search and analysis) but they also have several
specifics.

Visual Search

• Query formulation. The user needs to be enabled to specify the query visually and
interactively. The design problem is to derive visual representations for the query
properties of interest. In case the data has a visual representation, so-called query
by sketch is possible, where the user outlines a draft shape to be searched for. A
problem to address is the level of abstraction, by which the query is specified. In
case of compound-complex data, the query specification is potentially multiplied
by each involved data modality.

• Similarity function. The similarity function to use for evaluating the query needs
to be selected and parameterized. For the user to make an informed selection, the
system should visually represent the implications of the selected similarity func-
tion for the result to be expected. While for type-complex data a single similarity
function needs to be specified, for compound-complex data, possibly for each
base data type one similarity function needs to be selected, and a combination
needs to be found.

• Visual result presentation. The visual search systems needs to present the se-
quence of found results and their potential relevance to the query. Each object
needs to be shown by a visual representation. In case of data with visual repre-
sentation, thumbnail views are common. Visualizing result sets for compound-
complex data involves finding appropriate visual representations for the com-
bined data perspectives, and how each of the base data instance for each data
type relates to the issued compound query.

• User feedback. Effective search systems require the user to quickly converge
to a satisfying result, only using a few iterations of query adaptation and result
inspection. Therefore, it is crucial that the system offers ways for the user to
understand why the found results relate to the user query, both in terms of the
query specification and descriptor selected.

Visual Analysis

• Similarity function. Like in searching, many analysis algorithms rely on a simi-
larity function to be defined for the data objects (e.g., clustering). This should be
also supported by involving the user in an interactive process of defining simi-
larity and evaluating analysis results. It again often involves selection of an ap-
propriate descriptor, and specification of combinations of descriptors, in case of
compound-complex data.



Visual Search and Analysis in Complex Information Spaces 9

• Selection of analysis method. The user needs to interactively select an appropriate
analysis algorithm to apply. This involves selecting the type of analysis algorithm
(e.g., cluster analysis, association rule mining, classification analysis, etc.) as
well as its configuration. This is not an easy task as not all analysis methods can
deal with complex data sets and therefore specific analysis methods need to be
applied or developed.

• Visual result presentation. Presentation of analysis results, similar to presenta-
tion of search results, requires finding an appropriate visual abstraction. While in
search, the level of interest is on the object level, on the other hand in analysis, of-
ten aggregates (e.g., clusters) or abstractions (e.g., hierarchies) are found. These
need to be visualized, reflecting possible visual representations of the single of
compound base data types.

• User feedback. In analysis algorithms, user feedback again plays an important
role. We expect that to arrive at satisfying results, several analysis iterations need
to be performed. Comparison of search results is rather straightforward, as ranked
lists need to be compared. In case of analysis, the problem may become more
difficult, as aggregate and abstract analysis outputs need to be compared, for the
user to understand the differences between the choices. For example, an appro-
priate visualization should allow the user to effectively compare two clusterings
obtained from two difference compound similarity functions.

4 Approaches

In this section, we discuss selected examples of visual search and analysis systems,
which illustrate the variability of the problem. In Section 4.1, we will illustrate key
principles by means of classic example systems from the field. In Section 4.2, we
will discuss some approaches for type-complex data, and in Section 4.3, we will
present examples for support of compound-complex data.

4.1 Generic Examples for Visual Search and Analysis Systems

Generic approaches to visual search and analysis date back as early as to the be-
ginning of Information Visualization as a field. Shneiderman in his Visual Infor-
mation Seeking Mantra [32] proposed to support the search and analysis process
by visual-interactive tools. He and Ahlberg proposed the FilmFinder system [3],
which supported a new way of interactive search (see Figure 5(a)). In this concept,
visual overviews allow to analyze the data set at an abstract level, with interactive
query interfaces allowing drill-down queries to arrive at details-on-demand. Visual-
interactive displays for searching and analyzing aim to provide intuitive access and
navigation. Leveraging the human visual perceptual system, they are supposed to
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provide a high bandwidth interface, encourage explorative analysis and creative pro-
cesses in the users mind.

Another generic example of an exploratory system for complex data is the
well-known INSPIRE system for exploration of document collections proposed by
Thomas et al. [36] (see Figure 5(b)). Text is type-complex data as it cannot be mean-
ingfully compared based on the raw data, but it needs to be preprocessed e.g., using
word frequency vectors. INSPIRE relies on projection of high-dimensional docu-
ment vectors to a 2D display, to overview document corpora for similarity of topics
and for exploration. An appropriate visual design shows documents in a landscape
metaphor which can be readily navigated by the user.

(a) Film Finder (b) Inspire

Fig. 5 Left: The Filmfinder system [4] is an example for visual search in multivariate data (Figure
c©1994 ACM, Inc. Included here by permission.). Right: The Inspire system [36] is an example of

an analysis system, which allows to relate and compare subsets of elements in a visual way (Figure
c©1995 IEEE).

We can learn from examples such as these, that complexity is often dealt with
by simplification: Complex data is transformed to feature vectors; dimensionality
reduction is applied to project data to interactive displays, and large data sets are
sampled to provide overviews. In case of compound-data, projection to a selected
data perspective of interest is a pragmatic approach. However, such approaches of-
ten incur a loss in formation. Visualization also applies a simplification, in mapping
only selected dimensions to visual variables, or visually aggregating many data sam-
ples (such as many documents in INSPIRE) to a landscape, where height indicates
groups of data and position their relationships.

There are general principles that help the user working with complex data. These
include consistency and user guidance. Consistency means the same way of work-
ing with similar data in various environments. This is especially needed when deal-
ing with compound-complex data in multiple perspectives. There, each perspective
should use the same interaction means and mappings, if possible. User guidance
helps the user in the search and analysis process providing her with a set of steps to
follow, or recommendations for suitable parameters in algorithmic analysis.
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4.2 Example Approaches to Visual Search and Analysis of
Type-Complex Data

In the next section, we consider examples for visual search and analysis in type-
complex data including 3D object data, graph data, and biochemical data.

4.2.1 Visual Search in 3D Object Data

Many multimedia data types are of type complexity or compound complexity. An
example of type-complexity is the area of 3D model data. By specific data struc-
tures, the shape and other properties of 3D objects can be modeled with applica-
tions in computer-aided manufacturing, architecture, and simulation, just to name a
few. A widely used data structure to encode the shape of 3D models are polygonal
meshes. While simple in terms of data structure, two mesh models cannot be mean-
ingfully compared based on their polygons. However, a wealth of description extrac-
tion methods has been proposed to date [34]. The idea is to extract descriptor from
mesh models, which allow for meaningful comparison. In the project PROBADO,
we have considered visual search methods to help architects query in 3D building
models. The idea is to allow the users to quickly specify properties of interest in
a building. To this end, we considered two query modalities: Querying by global
3D shape, and querying for room connectivity structure [11]. Querying by global
building shape is supported by the user sketching the coarse outline of a building
by a simple 3D block editor. Having entered a 3D sketch, any global 3D descrip-
tor [34] can be used to retrieve similar objects. A more specialized query modality
suggested by architects included the querying for the structure of rooms in a build-
ing (floor plan). To this end, we devised a method to extract a room connectivity
graph from each building in the repository. The user then enters a query structure by
means of a simple graph editor, and again, the system finds similar objects based on
a graph matching strategy. Figure 6 illustrates a sample 3D building model, and the
two query editors.

From this example, we see that often, many generic descriptors already exist for
a given complex data type. However, not always do the existing descriptors support
all possible domain-specific search modalities. For example, the room connectivity
structure was of interest to architect users, so it needed to be developed anew.

4.2.2 Visual Search in Graphs – Visual Query Definition

Graphs are used in various application areas such as chemical, social or shareholder
network analysis. Finding relevant graphs in large graph databases is thereby an im-
portant problem. Such search starts with the definition of the query object. Defining
the query graph quickly and effectively so that it matches meaningful data in the
database is difficult. In [27], we introduced a system, which guides the user through



12 D. W. Fellner, T. Schreck, T. von Landesberger and J. Kohlhammer

(a) 3D building model (b) Volume sketch (c) Floor plan sketch

Fig. 6 Example visual search modalities for querying in 3D architectural object data.

the process of query graph building. We proposed three ways of defining the query
graph, which support the user with intelligent, data dependent recommendations.
In this way, the query graph is defined more quickly and corresponds better to the
underlying data set.

1. Smart Choice of Data Samples
The first approach employs a query-by-example technique, where one existing

graph is used as a query object. For the choice of query object, we offer a suitable
selection of example graphs from the database. The proposed selection provides
an overview of the available graphs. It is based on the result of clustering by Self
Organizing Map (SOM) algorithm [24] as introduced in [26] (see Figure 7 left top).

2. Graph Sketching Supported by Data-Dependent Graph Building Blocks An-
other approach to query definition is query-by-sketch – creating the query object
itself. Graph editing from scratch by adding individual nodes and edges one by one
can be very time consuming for large graphs. Therefore, we extended graph editing
by adding multiple nodes and edges at once – using the so called graph building
blocks. The building blocks are small sub-graphs that occur often in graphs (i.e.,
motifs). These blocks are interactively combined so they support fast creation of
graphs. Moreover, we analyze the underlying data space to present to the user ad-
ditional guidance, in particular, information on frequency of occurrence of these
blocks in the database (see Figure 7 left bottom).

3. Combination of Sketching and Examples As sketching may be time consuming
and examples may not provide enough flexibility, we combined both approaches.
The query definition starts from an existing object chosen from the proposed set.
This object can be modified by adding and deleting of edges and nodes or adding
building blocks. Combination of these techniques provides a fast definition of a
specific and meaningful query object (see Figure 7).

4.2.3 Visual Search and Analysis of Biochemical Data
– Similarity Function Definition using Visual Comparison of Descriptors

The analysis of biologic and chemical data gains on importance in the Visual An-
alytics community. Biologic and chemical data can be regarded type-complex data
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(a) The choice of graph sam-
ple from the SOM result and
a selection of graph building
blocks

(b) Using graph sam-
ple and a building
block for graph defi-
nition

(c) Query graph
created by combining
graph sample and a
building block

Fig. 7 Combining smart sketching with data samples for leveraging the advantages of both tech-
niques. a) The proposal for graph samples using SOM clustering and graph building blocks with
frequency indication. b) The selection of a graph sample and a building block for creating the
query graph. The selected sample and the building block are highlighted with green circles in the
proposal view. c) The final query graph combining both graph samples and building blocks with
sketched edges.

types. For example, chemical compounds cannot be analyzed directly but need to
be described by their properties such as size, charge, solubility, atom connectivity,
etc. The selection of these properties is used for defining similarity between objects.
The employed description is heavily use case dependent, therefore, user knowledge
is very important for the evaluation of the selections. This evaluation is however
difficult, if different representations of the whole dataset are presented to the user.
For example, in the analysis of high throughput screening (HTS), an overview and
comparison of thousands of molecules is needed.Approach: Comparative 1D ColoringApproach: Comparative 1D Coloring

Input Data Processing Comparison Visualization

Technische Universität Darmstadt | Interactive Graphics Systems Group |  Sebastian Bremm 19

Fig. 8 Two meaningful data descriptors of biochemical data and their comparison. Descriptors:
atom resp. nitrogen count. Left: The input data is sorted according to each descriptor. Center:
Color is mapped to the first ordering. The sorting is compared using connectors. Right: Compact
comparison view based on object identity reveals descriptor correspondence.
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In [13], we presented a novel visual analysis approach for determining data
descriptions suitable for the task at hand. We developed dedicated visualizations
for comparison of sets of multi-dimensional data descriptors. These techniques are
based on low-dimensional data presentation using color for comparison of group-
ings resulting in the different descriptor spaces (see Fig. 8). For large data sets,
we employ adaptive grids with clustering properties (Self-Organizing Maps, [24]).
These views allow for spotting overall similar descriptors and locally similar object
groups in heterogeneous data sets. The finding of potentially interesting descriptors
is supported by an interactive pipeline, which guides the user through the analysis
process. The result of initial automatic data analysis provides recommendations and
offers the user the possibility to interactively refine the results. These refinements
are supported in visual-interactive way.

As an application example, 18 commonly used chemical descriptors for 9989
molecules with 773 dimensions in total were examined. The comparison of two
descriptors in Fig. 9 shows a very homogeneous color gradient representing the
descriptors for weight and number of atoms of the molecules. This validates an
expectation of the coherence between weight and size. Looking at the comparison
of the ExtendendFingerprint with the WienerNumber descriptor, we see that many
cells are homogeneously colored (Fig. 9 right). All of the purple molecules in the
WienerNumber SOM are located in one cell of the ExtendendFingerprint SOM. If
the pharmacologist is interested in these molecules, the WienerNumber descriptor
is preferable. It leads to a higher diversity of the concerned molecules at a lower
dimensionality (1 vs. 26).

Fig. 9 Left: Comparison of the weight to an atom count descriptor. The homogeneous color gradi-
ent validates the expected correlation of the descriptors. Right: The 1-D WienerNumber descriptor
shows a high separability for molecules which are all in one cell in the SOM of the 26-D Exten-
dendFingerprint.
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4.3 Example Approaches to Visual Search and Analysis of
Compound-Complex Data

We next discuss example systems for search and analysis in compound-complex
data. Examples span research data, geo-temporal event data, and security-related
data.

4.3.1 Visual Search in Research Data
– Visual Query Definition and Visualization of Search Results

Science as a domain heavily depends on the timely availability of appropriate infor-
mation. Recently, the need for persistent storage of data produced in public research
has been recognized by data producers, researchers, and public funding agencies
alike. For example, in the earth observation sciences, massive amounts of data are
collected by sensor networks, or by data acquisition campaigns. Currently, large data
repositories, such as the PANGAEA Publishing Network for Geoscientific and Envi-
ronmental Data [28], are being built. Persistent availability and sharing of such data
among the research community can foster scientific progress, allow to reproduce
results, and document present states of the environment for future research.

Visual search and analysis facilities in such data are highly desirable to enable re-
searchers to access the data [5]. The data under concern typically is complex in that
it consists for multiple base data types which together form the observation data.
For example, earth observation data can consist of time-dependent multi parame-
ter measurements for environment factors, in addition to images of multi spectral
satellite analysis and X-ray images of sediment cores, extracted from the area of
measurement. Typically, researchers want to search for content of the data, to com-
pare or formulate hypotheses. To this end, the research data needs to be indexed
by an array of different descriptors; and appropriate visual search interfaces need
to be provided. In [10], we have described an early prototype system which allows
a multi-faceted search in earth observation data. Content-based search is supported
by allowing the user to specify the draft shape of a time series of a given observa-
tion parameter (cf. Figure 10 (left)). Based on curve descriptors, the most similar
curves can be retrieved, and further filtering of result sets based on geo-location,
seasonal and other meta data attributes are possible. The search results and refine-
ments thereof are visualized in context of an overview of a larger data set, e.g., the
given data repository (cf. Figure 10 (right)). To this end, a visual cluster analysis of
the overall data set is performed, and search results are highlighted in their context.

In this system, we have explored the tight integration of searching and analyzing.
A visual catalogue is the central visual element of the system, showing an overview
over the most important time series patterns. Search results can be shown in context
of the overview. Also, curves from the overview can be selected and adapted in
the query editor, for an adjusted search. While the system also allows to query for
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the other involved compound data aspects (textual meta data, geo-location, etc.)
currently the system is oriented towards search in the time series shape space.

05.08.2011 |  EuroVAST2010 | Tatiana von Landesberger et al.  |  2

Fig. 10 Visual query specification (left) and result visualization (right) for searching in time-
oriented research data.

4.3.2 Visual Search and Analysis of Spatio-temporal data
– Identification of Interesting Events

The analysis of spatio-temporal data plays a prominent role in many applications
such as transportation, meteorology, finance or biology. One area is the analysis of
movement (i.e., trajectory) data. For example, car movement for traffic monitoring,
animal behavior in biologic observations, people movement in emergency situa-
tions, or dynamics of stocks on the stock market for financial investment decisions.
Movement data is a compound-complex data type composed of two data types: time
and location. The analysis of these trajectory data is a well studied problem in the
visual analytics area [9, 29, 20, 7, 8, 15]. Movement data can be studied for indi-
viduals or for groups of individuals. In [12] we propose an approach that addresses
the analysis of grouped spatio-temporal data. It is based on the notion of Parallel
Sets [25], extended for automatic identification of interesting points in time that are
suggested to the user for inspection.

Generally, the groupings data may be pre-defined (e.g., by identification of an-
imal herds in biology), or may be a result of previous analysis (e.g., clustering).
When the group membership changes over time, it is necessary to examine these
aspects (e.g., which herds change members and when).

As the number of analyzed time moments may be very large, the group changes
cannot be manually inspected in each time point. Therefore, a good selection of
the points in time for a detailed analysis is important. It should represent the data
well – reveal important movements or outliers. It should highlight overall trends
and identify time periods of high activity (shorter intervals). Moreover, detection of
outliers provides a set of moments with extraordinary group-change events.

As an application example, we can regard the analysis of people movements in
the case of an emergency. As a basis for respective research, the VAST Challenge
2008 data [19] includes the movement data for 82 subjects in a building over 837
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points in time. The grouping is based on areas in the building (Fig. 11 top left). It
assigns subjects into groups according to their location in every time moment. In
this scenario, at a specific time, a bomb detonated and afterwards people die or start
to move towards the exits (turquoise and purple areas).

The automatic analysis of group changes identifies interesting time moments for
detailed analysis. The result puts more emphasis on time periods of high movements
(after the explosion) and identifies behavior of people who move differently from
the rest or in an unexpected way (away from exits). Tracking these people reveals
that despite their odd routing, the majority reaches the exits (Fig. 11 bottom).

Fig. 11 Top: The example of emergency evacuation analysis using dataset from the VAST chal-
lenge 2008 [19]. Left: Trajectory based visualization of the movement of the people [6] with par-
titioning of the building into 8 areas. Right: Coloring of the areas.
Bottom: Analysis of group changes and unexpected movements showing automatically selected
time movements. Tracking of surprising movements reveals that surprisingly most of these people
reach the exit in time.
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4.3.3 Visual Analytics for Security

Starting from the NVAC initiative (National Visualization and Analytics Center) in
the US and its visual analytics research agenda [35], a number of research programs
and initiatives evolved in the direction of visual analytics for security. While in the
United States there has always been an applicable emphasis on homeland security
among other fields, there was no such strong focus in Europe where a large number
of application areas offered a wide range of opportunities [22].

Partly initiated by Jim Thomas and after different transatlantic initiatives and
joint workshops, Germany and the U.S. have jointly started the project VASA (Vi-
sual Analytics for Security Applications) to develop tools that will aid in the pro-
tection, security, and resiliency of U.S. and German critical infrastructures in 2010
[1]. The goal of VASA is to apply visual analytics to disaster prevention and crisis
response, with a focus on critical infrastructures in logistics, transportation, food
safety, digital networks and power grids at the national levels.

VASA works on a fundamental challenge in the analysis of compound-complex
data. After all, critical infrastructures are complex socio-technical systems with
components and sub-systems that are characterized by specific behaviors which
result from the applied rules of physics, from technical specifications, and the es-
tablished control regime. Such behaviors of single critical infrastructures are quite
complex even under normal conditions, based on a variety of base data types. In-
terdependencies between critical infrastructures complicate the resulting behavior
further through potential cascading failures and nonlinear effects. Decision mak-
ing requires pre-processing of data and information which takes the specific con-
text into account and provides the relevant information and the appropriate level of
detail to the decision maker to enable effective and timely decision making. The
main challenge in the VASA project is the interplay between complex information
models, precise simulations, special purpose analytics, and decision making under
uncertainty. All four aspects combined will enable new visual analytics systems for
interdependent critical infrastructures.

Another example for visual analytics of compound-complex data is the project
VIS-SENSE, funded by the EU [2]. The main goal of VIS-SENSE is the research
and development of novel visual analytics technologies for the identification and
prediction of very complex patterns of abnormal behavior in different application
areas ranging from network information security and attack attribution to attack pre-
diction. One important aspect of VIS-SENSE is a decision support system based on
compound-complex data stemming from multiple layers of available information,
ranging from low-level network data, topological network aspects, to results from
network analytics. Again, similarities have to be calculated through aggregations of
multiple base data types, guided by human experts - a challenge and opportunity to
showcase the added value of visual analytics approaches.
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5 Research Challenges

The previous examples served to illustrate the breadth and with of the problem of
visual search and analysis of complex data. We believe that in accordance with in-
creasing volumes of data, also complexity of data arises posing new challenges to
the development of visual analytics tools. These challenges are strengthened by the
emergence of new application areas such as biology, medicine, architecture, emer-
gency management etc. Integrated search and analysis, in a cross-domain, cross-
data-type and cross-data-repository environment will become more and more im-
portant, and will thereby require new appropriate solutions.
As an example, the definition of similarity functions for complex data can be con-
sidered. To date, already many data transformation methods are available, which
allow to extract descriptors for complex data, and make them comparable in this
way. Visual search and analysis systems should rely on these established methods
where possible. However, it is typically difficult for a user to chose for the appro-
priate descriptor, either because there are too many available, or that the similarity
notion required is not covered by the existing descriptors.

We next summarize a number of research challenges we deem interesting and
critical, in the context of the discussed problems and application examples.

Infrastructures

Visual Analytics is a multi-disciplinary discipline, which incorporates research from
various fields. Practitioners in visual analytics have started to implement ad-hoc
systems, such as in-memory databases or user-steerable algorithms. However, these
are still quite isolated attempts and not sustainable solutions in the long term. The
community lacks an infrastructure to allow a flexible interoperability of components
that might be specialized for certain type-complex or compound-complex data [21].
The goal is to allow practitioners from different fields of research to benefit more
from each other’s work.

This corresponds to the challenging task to design a common language, a col-
lection of accepted practices and an architectural model that can be agreed upon by
different fields of research related to data analysis. Current research in data analysis
is dispersed and sometimes virtually isolated in their respective domain. In several
analytics technologies, database researchers, machine-learning and data analysis re-
searchers, as well as visualization researchers focus on specific aspects. However,
visualization approaches, data management procedures, and data mining methods
all have to work together in newly orchestrated ways, leading to a new definition
of interoperable visual analytics building blocks that allow the coherent creation of
visual analytics systems.
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New Data Types

Once the building blocks of visual analytics systems are well understood, more
research on data typing is needed. For example, exposing the semantic type of data
in databases is essential in order to know what kind of analysis can be applied and
what kind of visualization is meaningful. Today’s data classifications (like nominal
or quantitative) are rich enough for most statistical approaches, but it is not sufficient
for visualization. The semantic web is an example of an application domain where
sophisticated data types are being defined, but there are other initiatives and it is not
clear yet how they will converge and how the field of visual analytics will benefit
from it.

Search Problem and Comparative Visualization

Searching and analyzing in complex data require the user to make a number of
profound decisions regarding query specification, descriptor selection, algorithm
configuration, and combining of different data perspectives. Arriving at satisfying
search and analysis results requires also to solve a meta search problem for these
search and analysis parameters. Only visual systems which provide fast response
times and can cope with high data complexity and sizeability allow this process to
be effective. This puts high requirements with respect to scalability of the imple-
mentations.

Furthermore, appropriate visual representations are needed to show the user the
implications of specific choices. How do the search result lists differ, if the descrip-
tor is changed? How does a clustering result change with respect to the algorithm
parameters set? Comparative (or delta) visualization tools could be helpful as a meta
visualization.

User Guidance in the Visual Analysis Process

In the field of information and multimedia retrieval, relevance feedback [30] is a
standard technique to help users indirectly to configure search parameters, e.g.,
choice of descriptors and similarity functions. Based on the user providing rele-
vance votes to candidate results, an optimization problem is solved for weighing
features. We believe the relevance feedback approach is a promising tool to help the
user in an intuitive, indirect way to solve the descriptor and parameter choice prob-
lem. However, to be applicable to the visual search and analysis problem in complex
data, we believe it needs to be adapted to reflect different data structures. Most im-
portantly, choice of descriptors, and weighing of individual similarity functions for
compound-complex data need to be optimized. To this end, the relevance feedback
problem needs to be reformulated. Also, it needs to be considered what is the right
level of relevance feedback judgments. Possibly, new interaction techniques need to
be devised as well. While a difficult problem for visual search, relevance feedback
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for visual analysis is expected to be an even harder problem. A formal model for the
analysis process in complex data is needed to discuss where relevance feedback for
visual analysis can be installed.

Benchmarking

Benchmarking and evaluation play an important role in devising effective visual
search and analysis systems. In the area of multimedia retrieval, benchmark data
sets are available mainly for standard and type-complex data such as multivariate
data [18], 3D models [31] or images [16, 17]. To our knowledge, there are no es-
tablished benchmarks for compound-complex data available, up to the TREC-Video
data set [33]. Measuring the effectivity of visual search systems requires extended
benchmark data sets, which together with user-oriented evaluation approaches are
useful to compare new system designs. Benchmark data sets of general analysis
problems are however expensive and difficult to obtain. The VAST analytic chal-
lenges [19] are a promising starting point to compare visual analysis systems. A
deeper understanding and modeling of the analysis process could be expected to
lead to more analysis benchmarks being devised in the future.

6 Conclusions

Visual search and analysis are important key tasks in making use of data. Besides
nominal data volumes, data complexity is a scalability limit for existing solutions.
We discussed two views on complexity in this article. One is based on the inherent
complexity properties of a given data type (type-complexity), while the other stems
from data being composed of several base data types (compound-complex data).
Supporting visual search and analysis in this data raises several problems, including
choice of data descriptors, parameterization and weighting of similarity function, vi-
sual query specification and result visualization. We aimed at illustrating the breadth
and width of the problem by considering a variety of application scenarios from do-
mains such as 3D object data, network data, scientific research data, and biochemical
data. The presented solutions are just individual solutions in a large problem space.
We believe that approaching a number of identified research challenges, especially
in comparative visualization, user feedback, benchmarking, and infrastructure will
foster further development of new solutions. Given the emergence of data in ever
growing volumes and in increasing complexity, the community requires such novel
approaches and solutions to access and exploit today’s information spaces.
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