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Abstract
Graphs are used in various application areas such as chemical, social or shareholder network analysis. Finding
relevant graphs in large graph databases is thereby an important problem. Such search starts with the definition
of the query object. Defining the query graph quickly and effectively so that it matches meaningful data in the
database is difficult. In this paper, we introduce a system, which guides the user through the process of query
graph building. We propose three approaches for graph definition. First, query by example selection starting
from an overview of the graph types in the database, second query by sketch combining graph building blocks
(i.e., topologic subgraphs) with free graph drawing, and third a combination of both approaches. In all three
query definition ways, we support the user with intelligent, data dependent recommendations. It covers the whole
spectrum of building parameters such as representative examples, frequent building blocks, or common graph size.

Categories and Subject Descriptors (according to ACM CCS): H.3.1 [Information Systems]: Content Analysis and
Indexing—Indexing methods H.3.3 [Information Systems]: Information Search and Retrieval—G.2.2 [ Mathe-
matics of Computing]: Graph Theory—H.5.2 [Information Systems]: User Interfaces—Graphical user interfaces
(GUI) I.3.4 [Computing Methodologies]: Graphics Utilities—Graphics editors

1. Introduction

Finding interesting objects in large databases is a common
problem in many areas such as image retrieval, Internet
search, 3D model retrieval, or biochemistry. In all of these
examples, graphs are an important data type used for repre-
senting structural information and often their visual form is
used in the searching.

The search process can roughly be split into three steps:
1) query formulation, 2) identification of most similar ob-
jects, and 3) presentation of query results. Usually, the most
analytical effort is put into the second step which includes
the calculation of a meaningful description of the query ob-
ject, choosing an effective distance measurement and finding
the nearest neighbors. However, the exact definition of the
query object is the basis for the search process.

In text searches, the query definition part is simply per-
formed by typing in the search term, and the results are often
presented as a list. In other areas, the definition of the query
objects is more complex, for example, in the search for com-

ponents or proteins in biology and pharmacy, in finding sim-
ilar 3D objects in an engineering environment or the search
for music and images. Query definition for graphs usually
employs graph editing. In graph editing, a free addition of
individual nodes leads to very precise results, however it is
very time consuming, especially for large graphs. Template-
based systems create graphs by parameter setups, producing
common graph types such as trees. This leads to fast results,
however is restricted to the pre-defined graph templates.

In this paper, we present an intelligent system, support-
ing the user in interactively constructing query objects for
visual graph search (see Figure 1 for an illustration). The
query graphs can 1) be selected from the data space, 2) be
built from scratch by drawing or using predefined patterns,
or 3) be formed using a combination of these methods. For
building a meaningful query object, it is beneficial that the
user knows the scope of the underlying data space. For ex-
ample, when searching for historical events, the users usu-
ally know the range of the search parameters such as date
span. In contrast, in explorative graph search scenarios, we
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do not know the level of user familiarity with the data space.
This impedes the definition of the query object. To assist the
user within the query definition process, we propose to au-
tomatically analyze the underlying data space. Based on this
analysis, in all three above-mentioned ways of query defi-
nition, our approach supports the user by smart recommen-
dations regarding the range of graph building parameters.
We offer representative examples from the database, the fre-
quency distribution of graph building blocks, and of basic
graph topologic features (e.g., graph size).

This paper is structured as follows. Section 2 reviews
briefly related work. Section 3 discusses our approaches for
defining useful query objects. Section 4 concludes and out-
lines interesting future work.

Figure 1: An illustration of interactive graph search.

2. Related Work

We briefly recall relevant works from interactive graph spec-
ification, retrieval in graph databases, and support for intel-
ligent query formulation.

2.1. Query by Example and Graph Editing

The definition of query objects for search in multimedia
databases typically follows two main approaches: Query by
example, and query by sketch. In these cases, the user pro-
vides either a full example record, or a sketch, outline or
other partial representation of the aspects that the search re-
sults need to cover. It is particularly important in multimedia
retrieval, as there, often no exact search is possible. Some
example search systems include [RHM97, FSN∗95] for the
image domain, and [FMK∗03,PKJ∗07,BBK∗09] for the 3D
model domain.

Sketching approaches depend on the considered type of
query object. In this paper, we focus on creating graph query
objects, i.e., visual graph editing. This is closely related
to visual graph representation. Graphs are typically repre-
sented as either node-link diagrams, adjacency matrices, or
a combination of both [vLKS∗10]. As graph drawing is
not in the focus of the paper, we refer to extensive surveys
on visual graph representation [DPS02,HMM00,DBETT99,
HJ07, vLKS∗10].

Graph editing software tools such as yED [yED] or JUNG
[OFS] rely on node-link representation. In both cases, the
graphs are composed by successively adding low-level graph
elements, i.e., nodes and edges. Adding these items may be
cumbersome and time consuming, in particular for creating
large graphs. yED also offers to create whole graphs by us-
ing pre-defined graph templates including tree and random
graphs. The size of the graph can be adjusted by the user.
The set of graphs is limited and only whole graphs can be
created in this way.

Wong et al. present a system called GreenSketch which
allows for fast drawing of combined matrix and node-link
graphs representations [WFM∗06]. Drawing is performed by
editing the adjacency matrix. The resulting graph is visual-
ized both as a matrix, and as a node link diagram. The editing
of the adjacency matrix can lead to fast drawing of complex
graphs. However, this is a rather complex task and the tool
may not be intuitive for non-experts. Moreover, GreenSketch
is suited only for undirected graphs.

2.2. Graph Retrieval

The graph retrieval problem is an interesting, yet inher-
ently difficult problem. For exact searches, the mathemat-
ical concepts of graph and subgraph isomorphism apply,
for which, however, no efficient solutions exist [ZV08,
RGW02,YZYH06]. Retrieval based on similarity estimation
between graphs is possible by transformation and descriptor-
based approaches. Transformation approaches such as the
Edit-2 Distance for undirected acyclic graphs [ZWS96] ap-
proximate the similarity among graphs by the cost of effi-
ciently transforming one into the other. Descriptor-based ap-
proaches such as the graph histogram approach [PM99] or
motif-based approach [vLGRS09, vLGS09] capture impor-
tant attributes of a graph in form of a vector or histogram
(descriptor); subsequently, the similarity between graphs is
measured by a distance function defined on the descriptors.

2.3. Smart Query Support

A large body of work also exists regarding smart support
for the query formulation process. Similarity queries can be
supported by relevance feedback strategies that by means
of optimization techniques aim to produce more relevant
search results for a given user [FBY92]. Recommending and
collaborative filtering approaches aim to provide additional
relevant results for a query by comparing the query and/or
profile of a given user to historic querying profiles or user-
provided annotation information [AT05]. In the Visual Ana-
lytics context, the concept of intelligent visual querying has
been introduced in [HDK∗07]. In that work, a user selec-
tion of a specific area in a data visualization display triggers
an automatic search for similar data portions, which subse-
quently are displayed to the user.
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3. Interactive Graph Query Definition

We propose three ways of defining the query graph, which
are described in more detail in the following.

• Smart choice of data samples: Using an example graph
from the database, based on search for graph attributes
and the overview of representative graphs in the database.

• Graph sketching supported by data-dependent graph
building blocks: Using a graph interactively created
(drawn, edited, sketched) by the analyst.

• Combining smart sketching with data samples: Using a
graph, or a set of example graphs from the database as a
basis for further editing of the final query graph.

These approaches support flexible, efficient, and data-
oriented query graph definition.

3.1. Smart Choice of Data Samples

In this approach, one interesting graph from the database
is used as query input. There are several ways of choosing
the query graph. First, the graph can be retrieved from the
database by searching for specific node and edge attributes.
For example, the analyst might be interested in a specific
corporation or a chemical structure. The advantage of this
approach is the use of a user-specific object of interest as a
query input. However, sometimes it can be difficult to select
this object from the large set of available objects, in partic-
ular, when facing large unknown databases. Therefore, al-
ternatively, the user can use results from a previous graph
exploration phase as an input. As graph databases may in-
clude a very large number of graphs, their exploration can
be very time consuming.

A selection of an appropriately obtained subset of example
graphs from the whole database helps to get an overview of
the types of graphs available. Usually, a random sample of a
database subset is used for this purpose. More sophisticated
selection strategies have been proposed for sets of numeric
values such as systematic or stratified sampling. These ap-
proaches are however not directly applicable to graph sets.
In order to overcome this drawback, we propose to offer
a set of sample graphs obtained from preprocessing of the
graph data based on the Self Organizing Map (SOM) al-
gorithm [Koh01] as introduced in [vLGS09]. The result of
the SOM algorithm depends on the parameter settings of the
SOM algorithm and the interactively set similarity function.
The result view shows an overview of the graph data space
as a grid of prototype graphs (see Figure 2 top). In particular,
a grid of objects closest to the cluster centers are presented.
One of these objects can be used as a starting point for the
graph search (see Figure 2 bottom). The visualization set-
tings (e.g., graph layout) can be adjusted on demand.

Figure 2: Using SOM clustering results for defining the
query graph. Top: The visualization of SOM clustering re-
sults. It shows a grid of prototype graphs from the database.
The background color indicates the frequency of the graphs
(white to orange: low to high). Bottom: The selected graph
query object from the SOM grid (layout differs). This graph
is highlighted with green circle in the top figure.

3.2. Graph Sketching Supported by Data-Dependent
Graph Building Blocks

The most intuitive option for defining a query object is cre-
ating the object itself. Graph editing usually employs adding
individual nodes and edges one by one. These graph ele-
ments can be additionally detailed by specification of their
attributes. This process can be very time consuming, espe-
cially when building larger graphs. Therefore, we propose to
extend graph editing by adding multiple nodes and edges
at once – so called graph building blocks. This idea was
inspired by several previous works. Firstly, small building
blocks of graphs are called motifs. They have specific func-
tions or are overpresented in graphs. They are often ana-
lyzed in biologic applications [Sch08]. Moreover, recently,
graph substructures (i.e., motifs) have been used for deter-
mining graph similarity [vLGS09]. Second, the yED graph
editor [yED] offers the possibility to automatically create a
graph (e.g., a tree or random graph of a given size). How-
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ever, only a small number of graph types are provided, and
only whole graphs are created in this way. Third, TopoLay-
out [AAM07] decomposes graphs into structural forms for
choosing best layouts for parts of a larger graph.

For graph creation, we propose the building blocks shown
in Figure 3. They can be interactively combined and offer the
user effective control of the graph editing process and sup-
port fast creation of a variety of graphs. All building blocks
are parameterizable to enhance these possibilities. Note that
we have constructed these blocks for directed graphs; when
editing undirected graphs, these blocks can be adapted and
extended. Although the query graph construction method
presented is very flexible and fast, there is a potential draw-
back. Specifically, the user gets no feedback about the poten-
tial relevance of her query object, until she sees the search re-
sults. To help the user building meaningful query graphs, we
analyze the underlying data space to present addition guid-
ance information. For building blocks, we color code the fre-
quency of occurrence and show the frequency distribution as
bar charts (see Figure 4a). On demand, we outline more de-
tails for every motif as diagram or example graph. For stars,
these re star-subclasses described by the number of ingoing
or outgoing edges.

The following building blocks are currently supported in
our system:

• Out-star: A node with a certain number of children.
• In-star: Similar to out-star, a node with a parameterizable

number of parent nodes.
• Chain: A set of connected nodes forming a directed path

consisting of a certain number of nodes.
• Complete bipartite: Two sets of nodes, where each node

from the first set is connected to all nodes from the second
set. The sizes of the two sets determine the shape of the
subgraph.

• Cycle: This building block creates a directed cycle with
parameterizable number of nodes (a closed path of several
nodes). Note that a cycle with two nodes corresponds to
the so-called reciprocity motif, and cycle with three nodes
to the so-called feed-back motif.

• Two-way path: This building block consists of one root
node and one leaf node. Between these two nodes, two
separate directed paths of a certain length exist. It forms
thereby an undirected cycle. The two-way path with three
nodes forms a so-called feed-forward motif. With four
nodes (two and two edges), a so-called caro motif is de-
fined.

• Balanced rooted tree: It is a directed rooted tree of a cer-
tain number of levels, whose all nodes (apart from leafs)
have a pre-set number of children.

The blocks can be combined either by adding a building
block to the existing node or by connecting a block to the
graph by a new edge. The building blocks and the result-
ing graphs can be further edited by adding or deleting in-
dividual nodes and edges on demand. The graph layout is

user-chosen. This approach allows for creating appropriate
and data-oriented query graphs for searching efficiently (see
Figure 4).

(a) (b) (c) (d)

(e) (f) (g)

Figure 3: Building blocks for graph drawing. a) Out-star, b)
in-star, c) chain, d) complete bipartite, e) cycle, f) two-way
path, g) balanced tree.

3.3. Combining Smart Sketching With Data Samples

In order to both avoid cumbersome graph drawing when
searching in unfamiliar databases, and using fixed graph ob-
jects retrieved from the database during the exploratory pro-
cess, we propose to combine both approaches. To give the
analyst the possibility to combine existing objects and mod-
ify them on demand enhances the advantages and decreases
the disadvantages of the before mentioned methods. The
example-based sketching starts from existing objects, which
can be modified by adding and deleting of edges and nodes.
Available building blocks can be adapted as the user sees
fit just as well. Providing powerful, baseline samples, the
sketching process can be significantly improved. Bringing
all techniques together, the user can quickly define a specific
and meaningful query object (see Figure 5).

4. Conclusions and Future Work

In this paper, we presented three methods for smart defi-
nition of a query graph in searching graph databases. The
query by data sample and query by sketch techniques are ex-
tended and interactively combined so that appropriate query
objects can efficiently and effectively be created. Using an
overview of the underlying data space, it is easier to for-
mulate meaningful queries. We address this problem by of-
fering user guidance throughout the whole query definition
process. We analyze the data space in order to provide im-
portant information about key search parameters. Query by
example is enhanced by SOM-based graph clustering. Graph
sketching is enhanced by offering graph building blocks with
respective frequency information regarding their occurrence
in the database to be searched. The selected graph examples
and graph building blocks can be flexibly combined with
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(a) Distribution of building blocks in the data
set

(b) Selection of building blocks (c) Query graph created by connecting
building blocks

Figure 4: Smart query object definition supported by graph sketching and data-dependent graph building blocks. a) Distribution
of building blocks in data set. Both the bar charts and the background colors of the building blocks represent the frequencies
of the corresponding building blocks. b) The selection of data-dependent building blocks for creating the query objects. The
building blocks are highlighted in the frequency view with green circles. c) The final query graph created by connecting and
adapting the chosen baseline building blocks with sketched edges and merged nodes.

(a) The choice of graph sample from the SOM
result and a selection of graph building blocks

(b) Using graph sample and a
building block for graph defini-
tion

(c) Query graph created by com-
bining graph sample and a build-
ing block

Figure 5: Combining smart sketching with data samples for leveraging the advantages of both techniques. a) The proposal for
graph samples using SOM clustering and graph building blocks with frequency indication. b) The selection of a graph sample
and a building block for creating the query graph. The selected sample and the building block are highlighted with green circles
in the proposal view. c) The final query graph combining both graph samples and building blocks with sketched edges.
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fully interactive graph editing to leverage advantages of both
approaches.

These novel interactive query definition methods can be
used for graph search in various application areas such as
biology, chemistry, social science, finance, computer net-
works. It can be used for querying databases of graphs,
where the user determines the query object.

In the future, we will improve the visual interface for
query definition with more functions, including wildcard
queries and node labels, and enhance the visualization of
additional data information. We like to expand this system
with graph search using feature-based similarity, visual ex-
ploration of search results. In this paper, we have introduced
the basic concept and presented illustrative results. An eval-
uation for different use cases needs to be performed in the
future.
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