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A B S T R A C T

Compact visualization techniques such as dense pixel displays find application in display-
ing spatio-temporal datasets in a space-efficient way. While mostly focusing on feature
development, the depiction of spatial distributions of the movers in these techniques
is often traded against better scalability towards the number of moving objects. We
propose SpatialRugs, a technique that can be applied to reintroduce spatial positions in
such approaches by applying 2D colormaps to determine object locations and which
enables users to follow spatio-temporal developments even in non-spatial representations.
Geared towards collective movement datasets, we evaluate the applicability of several
color maps and discuss limitations. To mitigate perceptional artifacts, we also present
and evaluate a custom, time-aware color smoothing method.
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1. Introduction1

The visual exploration of spatio-temporal data can be tedious2

due to the need simultaneously regard space and time. Besides3

established techniques such as animation or space-time-cubes,4

some recent approaches aim to employ abstract, static, and dense5

representations to enable an efficient overview of spatio-temporal6

datasets (see Section 2). Such techniques order data points7

seamlessly in the visualization space to create a space-efficient8

representation, coming at the cost of reducing or even completely9

giving up a user’s ability to relate the displayed objects to their10

actual spatial positions.11

We propose SpatialRugs, an approach to encode spatial posi-12

tions using mappings of real space to 2D color maps. Our tech-13

nique is intended for the visualization of collective movement14

data, leveraging common behavior to create visually salient pat-15

terns that also allow the identification of outliers. We expect that16

∗Corresponding author
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our technique can be used for further movement datasets, but the 17

saliency of the resulting patterns will degrade with fewer or less 18

coherent movers. 19

Bellman’s Curse of Dimensionality [1] does not only affect 20

computational problems, but also the visualization of high- 21

dimensional data on the two-dimensional display surface of a 22

computer screen. Spatio-temporal data, in particular, contains 23

two or three dimensions to represent the position of data points 24

and one additional time dimension if one wants to oversee tem- 25

poral developments. In the specific case of collective animal 26

movement data [2], e.g., in schools of fish or flocks of birds, 27

uncovering these spatio-temporal patterns is challenging due to 28

large numbers of entities moving simultaneously over longer pe- 29

riods of time, close to each other in a similar fashion. 30

Most state-of-the-art techniques do not scale well to large 31

amounts of movers and elongated datasets and traditionally re- 32

sort to complex linked views in this case (refer to Andrienko 33

et al. [3] for a comprehensive survey). Especially coordinated 34

behavior as to be found in collective movement poses another 35

challenge, as similar behavior can not so easily be discriminated 36

compared to random, unrelated behaviors of movers. 37

http://www.sciencedirect.com
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Fig. 1. SpatialRugs (A+B) and MotionRugs (C), all with the same underlying dataset of 151 fish moving in a tank for about 90 seconds. Excerpts 1-4 show
static snippets of the fish turning from the upper right over the lower right to the lower left. Part A shows unmodified SpatialRugs, where colors can be
related to spatial positions (compare colors to Parts 1-4). Part B shows color-smoothed SpatialRugs that mitigate distorted patterns (outlined in red boxes).
Part C shows mover speed encoded in the colors instead of the position. In conjunction, SpatialRugs and MotionRugs can be applied to relate space to
features (e.g., in which areas of A movers are fast or slow as indicated in C.)

Nevertheless, recently several visualization techniques that ab-1

stract spatial relations have been proposed to facilitate the analy-2

sis of complex and large-scale spatio-temporal structures, such3

as collective movement or dynamic graph data (discussed in Sec-4

tion 2). For collective movement, in particular, the MotionRugs5

technique displays all movers in a static, compact fashion [4].6

The MotionRugs approach provides the ideal canvas for explor-7

ing our spatial color feature encoding. Thus, we employ it and8

the used dataset to generate the base representations to which9

we apply the spatial coloring. In short, the principle of the Mo-10

tionRugs ordering technique is based on the idea to linearize the11

positions of movers from 2D positions to a one-dimensional or-12

der in each time step. These 1D orderings, generated by space-13

filling curves, are then aligned sequentially along the x-axis and14

colored according to feature values. For example, in the Mo-15

tionRug representation in Figure 1 C, each pixel represents one16

mover, while the X-axis denotes time and the Y-axis represents17

the 1D order of all movers derived by the spatial linearization.18

Several numeric features of interest, such as the speed of the en-19

tities, can then be encoded by color, evolving over time. In our20

example in Figure 1 C, mover speed is encoded from blue to red.21

Several trends of slowing down (red) and speeding up (blue) of22

the movers are visible at a glance, while the curvature reveals23

spatial dynamics of the collective behavior (e.g., changes in24

group orientation and position). The dataset used is taken from25

the MotionRugs approach to be able to compare and evaluate the26

retention of the underlying visual structures generated by the 1D27

ordering. It encompasses 151 fish moving in a tank, as shown in28

the excerpts at the top of Figure 1 over the course of about 9029

seconds. For the remainder of this work and all generated visual-30

izations, we employ the MotionRugs approach with the Hilbert31

Curve spatial linearization to generate the 1D orderings. We32

color the ordered pixels by relating the real positions of a mover33

in 2D space with a color from the 2D color map. Note that the34

order of the pixels within the visualization is not changed, and35

thus, MotionRugs and SpatialRugs can be directly compared.36

Such “dense pixel displays” as introduced by Keim [5] typi- 37

cally sacrifice the representation of certain spatial data proper- 38

ties, like the precise location or the distance between moving 39

entities. That way, the visualization enables the detection of pat- 40

terns otherwise hidden in sparse representations or animations 41

and provides better scalability towards larger datasets. Yet, with 42

spatial properties fully or partially distorted, relating data points 43

to their original position in space and time can be difficult, as 44

the MotionRugs visual results prove, where the spatial aspect 45

only shows spatial dynamic, but not position or direction as is 46

possible with other techniques like simple static plotting or ani- 47

mation [6]. This is a drawback since retaining the spatial context 48

is necessary in many use cases. To explain mover behavior, it 49

is often essential to identify spatial positions to relate them to 50

areas with semantic meaning like foraging grounds. 51

To enhance spatial awareness while preserving a compact dis- 52

play for collective movement analysis, we combine the space- 53

efficiency of MotionRugs with the space-awareness advantages 54

of other advanced techniques for trajectory visualization [7, 8, 9]. 55

We introduce SpatialRugs (Figure 1 A and B), a technique that 56

applies 2D color maps to dense pixel visualizations by encoding 57

the spatial locations of movers as colors within the chosen color 58

map. To design SpatialRugs, we conduct a systematic analysis 59

and comparison of various state-of-the-art color spaces. Note 60

that our work focuses on representing spatial relations of the 61

movers themselves and their progress through space. We do not 62

regard contextual spatial features such as regions or borders with 63

semantic context (e.g., foraging grounds or territorial boundary), 64

since there is no more room for further features in the design 65

space. We discuss and exemplify an alternative approach for en- 66

coding such features in Section 7. We observe that the use of 67

color can introduce perceptional complications, which may lead 68

users to misinterpret salient color differences. These issues are 69

caused by color map intrinsics in combination with individual 70

color perception. As an approach to mitigate these perceptual 71

issues arising from color space transformations (see Figure 1 B), 72
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we refine SpatialRugs with a time-aware color smoothing. Our1

proposed color correction process focuses on preserving the vi-2

sual saliency of patterns in the generated visualizations by en-3

abling users to parameterize the smoothing process according to4

their individual needs. We provide heuristics and an approach us-5

ing edge detectors for estimation of the very use-case-dependent6

parameter settings. To validate the time-aware color smooth-7

ing, we evaluate the corrected result using descriptive statistics.8

Throughout this work, we use the same real-world dataset used9

in [4] to illustrate results and to enable comparison and contextu-10

alization with the MotionRugs feature encoding. As illustrated11

in Figure 1, the dataset contains 151 golden shiner fish, which12

were tracked moving through a shallow water tank for about 90s.13

The examples of moving clusters in Section 6.3 are generated14

using a collective behavior generation model [10, 11].15

2. Spatio-Temporal Visualizations16

This publication is an extension of a previously published17

work [12]. We have extended different aspects of our work: In18

Section 5, we have extended the explanations of the smoothing19

parameterization and provide examples for sensible parameter20

choices. In the same Section, we also introduce a new approach21

for estimating parameters for the time-aware color smoothing.22

We updated and extended Section 2 with further related ap-23

proaches and elaborated on the construction process in Section 3.24

Finally, in Section 7, we applied our technique to a new dataset25

with more movers moving in several clusters as opposed to only26

one before, together with a discussion of implications.27

The visual analysis of movement capitalizes on human per-28

ception to reveal patterns in space and time [6]. Andrienko et29

al. [7] provide an approach using spatial abstraction for collec-30

tive movement, transforming mover trajectories to group-based31

reference points in time. However, such trajectory-based visual-32

izations do not scale to large-scale collective movement due to33

the visual clutter caused by potential overlaps in space and time.34

Space-efficient visualizations are proposed to produce a com-35

pact visual summary of long sequences of movement data. Mo-36

tionRugs [4] reduce the space of the moving entities from a 2D37

to a dense 1D representation while still reflecting physical dis-38

tances between the movers as accurately as possible. To cre-39

ate the 1D order from a set of 2D positions, spatial lineariza-40

tion strategies such as space-filling curves or spatial index struc-41

tures [13] are used to retain neighborhoods as close to the origi-42

nal neighborhoods as possible within the limitations of a 1D or-43

der. In a MotionRug, every mover in one frame is represented by44

a single pixel that is colored according to a feature (e.g., speed in45

Figure 1 C). The process is repeated for each time frame order-46

ing the slices on the x-axis by time. This method creates wave-47

like patterns, which allow the identification of spatial dynamics.48

The result is a static dense pixel display [5], showing the feature49

development of the movers over time.50

ParaGlide [14] is another example of a dense representation51

for spatiotemporal relations that helps to understand biologi-52

cal aggregations in the field of collective behavior, such as the53

zigzagging of flocks of birds. ParaGlide allows experts to ex-54

plore multi-parameter spaces of simulation models and display-55

ing 1D projections of marginal densities in the form of a his- 56

togram (space and time). Likewise, Luboschik et al. [15] show 57

features in a dense visualization to provide an overview of simu- 58

lated movement data. The authors propose an overview visual- 59

ization that presents the relationships between simulation model 60

parameters and the resulting movement characteristics, visual- 61

ized as color-coded cells sorted by time. In this paper, we ap- 62

ply the spatial linearization approach of MotionRugs to create 63

the 1D spatiotemporal order of movers, as in contrast to other 64

visually related approaches, MotionRugs are primarily used to 65

provide an overview of feature distributions. The core concept 66

of SpatialRugs is to employ colors mapped to spatial positions 67

using a 2D color map. Essentially, this enables us to use color 68

as visual variable to encode position, making our approach ideal 69

for spatial feature encoding for the continuous, dense Motion- 70

Rugs visualizations. 71

Dense representations have also been proposed in the context 72

of dynamic graphs. Burch et al. [16] introduced parallel edge 73

splatting, a technique that displays a sequence of graphs as a 74

series of narrow stripes. The parallel edge splatting technique 75

visualizes a weighted dynamic graph in a single static view, pro- 76

viding a scalable overview of the temporal dimension. Van den 77

Elzen et al. [17] extend massive sequence views for the analy- 78

sis of dynamic graphs. The authors propose multiple reordering 79

strategies for 1D graph layouts to highlight and interpret tempo- 80

ral patterns, such as trends and anomalies. Another pixel-based 81

visualization for dynamic graphs is GraphFlow [18], which visu- 82

alizes evolving graph metrics to provide an overview of struc- 83

tural changes in the temporal data. Contrary to these techniques 84

for dynamic graphs, SpatialRugs aims to present the evolving 85

spatial distributions in collective movement and leverages the 86

space-preserving properties of MotionRugs, which retains spa- 87

tial distances to large degrees in a 1D linearization, allowing an 88

overview of evolving characteristics (e.g., speed or acceleration) 89

in a dense pixel-based representation. 90

Conclusively, most techniques for trajectory visualization 91

[7, 8, 9] lack scalability for larger amounts of conformingly be- 92

having movers. On the other hand, dense pixel methods like Mo- 93

tionRugs lack spatial awareness by omitting to display accurate 94

spatial locations of the movers; they capture changes in space 95

and mover orientation over time but do not expose whereto enti- 96

ties are moving exactly. This limitation is critical for many use 97

cases where analysts need to know the regions in which the en- 98

tities are moving. To enhance spatial awareness while preserv- 99

ing the scalability of MotionRugs, we propose SpatialRugs, a 100

technique that reintroduces spatial positions into dense spatio- 101

temporal visualizations, eliminating the necessity for tedious 102

analyses with, for example, clutter-prone static trajectory plots 103

or time-consuming animations. 104

3. SpatialRugs Main Design: Retaining Spatial Readability 105

SpatialRugs is a compact movement visualization technique 106

that enhances spatial awareness by projecting the positions of 107

movers in a 2D-color space to assign each position a color in a 108

continuous space. Figure 2 at the top illustrates our approach: 109
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Fig. 2. Top: In SpatialRugs, a color space is transformed into a 2D cubic form, then adapted to the extent of the moving area. A position is then encoded
using the corresponding color from the color space. Below: Application examples of different colormaps [19] applied to a real-world dataset containing
151 golden shiner fish expressing collective behavior. Left of each visualization, we see the underlying transformed 2D color space.

(I) We transform a given color space from its original dimen-1

sions to a 2D cubic representation as a base for the second step.2

(II) We transform the 2D color space to cover the maximum ex-3

tent of the spatial dimensions used by the mover dataset.4

(III) We assign the 2D position of a mover to the corresponding5

color of the transformed color map. The assigned color is then6

applied to the respective data point in the dense pixel display.7

Spatial positions are now represented by color, which can be8

used in conjunction with pixel-based visualizations of movement,9

such as MotionRugs, to encode mover locations. With the col-10

ormap reference, users are able to identify the spatial distribution11

of entities at a given time. Figure 1 shows that the movers come12

from the upper right corner (green, first excerpt), take a right turn13

towards the lower right (blue, second excerpt), move through the14

lower middle of the represented space in purple to the lower (red,15

third excerpt) and finally the middle left in orange color tones16

(fourth excerpt). The resulting patterns allow perceiving the17

movers’ spatial distribution, while viewers can also estimate how18

the movers progress within the color zones. For example, be-19

tween excerpts 1 and 2, just a few movers start to move towards20

the blue until everyone follows. This behavior is shown as a cone-21

shaped transition from green to blue. Consequently, the color22

mapping enables to see patterns over long periods of time com-23

pactly, also relating the spatial development to the feature devel-24

opment by comparing the excerpts (e.g., by relating Figure 1 A25

and C). In this example, we use SpatialRugs to encode spatial re-26

lations, whereas another feature, speed, is encoded using a blue-27

to-red colormap as initially described in [4]. It is possible to28

stack even more views on the same data with other colormaps en-29

coding further features, for example, acceleration or heading. If30

these views are aligned, users can compare different features and31

put them in context, with the spatial relations being one of them.32

We have implemented a Java-based prototype that takes CSV-33

based movement data and applies a selected 2D color map. The 34

input data has to provide ids and positions of all movers in regu- 35

larly sampled intervals and needs to be free of gaps. For trans- 36

forming the chosen color space to a raster image with cubic 37

dimensions, we refer to the individual and widely differing ap- 38

proaches described for each color map as referenced in Section 4. 39

The resolution of the resulting image needs to cover the full co- 40

ordinate space of the 2D movements to ensure that each location 41

can (potentially) be encoded with a different color. We use this 42

base representation of a color space and apply bicubic interpo- 43

lation for transformation to reflect the minimum and maximum 44

coordinate extents the input data shows. Finally, coordinates in 45

the movement space and in the color space are matched and can 46

then be applied as spatial colormap. 47

4. SpatialRugs Color Space Selection 48

With color perception being a very individual property differ- 49

ing from person to person [20], selecting the appropriate color 50

map is a critical design choice for the SpatialRugs approach. Sev- 51

eral previous works apply color space mappings to represent spa- 52

tial or temporal relations: Northern Lights Maps [21] by Janet- 53

zko et al. map spatio-temporal properties of movers to a contin- 54

uous RGB-color scale. PhenoVis [22] presents color-coded nor- 55

malized stacked bar charts to allow comparative analysis over 56

longer time spans. MotionExplorer by Bernard et al. [23] em- 57

ploys a projection-based view displaying human motions in a dis- 58

cretized 2D color-coding to highlight temporal patterns. Spatial- 59

Rugs employ color spaces, which are continuously and linearly 60

transformed in each dimension to accommodate the available 2D- 61

space to the fullest. Yet, it is important to consider that, given the 62

individuality of color perception, different individuals will judge 63

the same colors to be at slightly different positions. Still, Emery 64
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and Webster [20] state that at least the color perception within an1

individual person remains quite stable under varying conditions.2

A thorough quality assessment of two-dimensional color3

spaces has been conducted by Bernard et al. [19] with respect to4

multivariate data. We consider our use case to be within a spe-5

cific subset of their study and consequently apply their findings6

to identify suitable colormaps for SpatialRugs. However, it is im-7

portant to keep in mind the specific nature of the dense pixel rep-8

resentations we intend to enrich with spatial information, where9

every pixel encodes a spatially annotated data point. In contrast,10

multivariate datasets of general purpose with two or more fea-11

tures, as regarded by Bernard et al., are usually sparse to varying12

degrees. Thus, the visual representations of space-efficient tech-13

niques are continuous in nature, opposed to the gaps which can14

be observed in scatterplots for example.15

In a widely recognized article, Peuquet introduced a concep-16

tual framework for geospatial dynamics with the fundamental17

concepts of time (When), space (Where) and context (What), and18

how these concepts are connected to each other [24]. In con-19

cordance with this approach, we derived three requirements for20

SpatialRugs: (1) identify individual spatial positions of movers21

or mover groups (Where) from the color space, (2) track the tem-22

poral evolution (When) of movers or mover groups continuously23

through the color space, and (3) judge the relative distances be-24

tween movers or mover groups over time by comparing two25

given colors (When+Where). The listed requirements include26

the spatial-temporal (When+Where)-aspects of Peuquet’s model27

in a dense representation. As a result of this, a user can explore28

What happens between the movers, as shown in a recent exten-29

sion of Peuquet’s framework by Andrienko et al. [3].30

We can translate these requirements (1-3) to the elementary31

tasks (ER 1-3) of color map assessment by Bernard et al. [19].32

The first elementary task states that a viewer should be able to33

locate and identify a single object in color space accurately (I).34

For instance, if we have n movers at distinct positions in space,35

then the color space ideally also provides n visually separable36

colors to encode the movers. In the second elementary task, a37

viewer must maintain and link equally salient colors with spatial38

positions (II). For example, the utilized color space should not39

highlight particular movers due to perceptual color differences,40

such as bright colors on a rather dark color map. The third41

elementary task describes the need for accurate comparison of42

two or more locations to identify similar or dissimilar objects43

(III). For instance, the distance between movers or mover groups44

in space should be perceptually similar to the distance in the45

color space. Overall, possible color space candidates need to46

enable users to accomplish these three tasks (I-III).47

These tasks and requirements constitute ideal conditions for a48

color map, which in reality can not be fulfilled completely. For49

example, the amount of visually distinguishable colors is limited,50

and thus, the amount of encoded movements is limited, too.51

Yet, our use case concerns collective movement, where accurate52

movement representations stand back against the analysis of the53

similar movements of many movers and possible outliers.54

In addition, standard color spaces, e.g., CIELAB, HSV, or55

sRGB, are mostly organized in three dimensions and usually do56

not form a symmetrical shape. Yet, SpatialRugs needs to rep-57

resent the 2D positions of the observed movers. Consequently, 58

a chosen color space should be mappable to 2D space without 59

compromising so much uniformity of color distribution that the 60

requirements cannot be kept anymore. As well, color percep- 61

tion is individually different in viewers [25], resulting in differ- 62

ent abilities to identify fine-grained differences. Thus, a sensible 63

color space choice is critical for the effectiveness of SpatialRugs. 64

In their survey, Bernard et al. [19] investigate the capabilities 65

of 22 state-of-the-art 2-D color maps with respect to these analyt- 66

ical tasks and perceptual properties. They compare spatial distri- 67

butions of color space properties and then evaluate several qual- 68

ity assessment measures for each color map. Finally, they judge 69

how well an approach can fulfill their defined requirements using 70

a basic grading system. Importantly, they judge independently 71

between having a black and white background for data points 72

represented by the compared color spaces. This is the main dif- 73

ference to our approach, which, due to the density of the repre- 74

sentation, does not feature any background within its canvas. Be- 75

low, we discuss the criteria we consider for adequate color map 76

choice at the hand of a selection of candidate color maps in three 77

categories. In Section 7, we argue for a suitable color map that 78

fulfills the requirements in the context of the applied datasets. 79

Task assessment: Figure 2 shows a comparison of color maps 80

taken from Bernard et al. [19] generated with the data described 81

in Figure 1. According to the task assessment table of Bernard 82

et al., colormaps taken from Bremm et al. [26] (labeled as “Cube 83

Diagonal Cut B-C-Y-R” in [19]), Ramirez et al. [27], Steiger 84

et al. [28] (labeled “Mittelstädt et al.”) and Teuling et al. [29] 85

(labeled “TeulingFig4a”) receive high ratings for the tasks ER1- 86

3 and either or both background conditions, and thus, would be 87

best suitable given our defined tasks I-III. 88

Yet, the task-based recommendations [19] are made for sparse 89

distributions of the colors with gaps in between. They are not 90

designed to regard the perceptibility of visual structures within 91

the visualization space - in other words, visual structures which 92

are entirely created by the seamless order of the colored data 93

points themselves without background interference. As retaining 94

these structures is important to our approach, we consider further 95

color maps and turn to the quality assessment measures provided 96

by Bernard et al. to do so. 97

Quality assessment: The JND measure describes the “Just No- 98

ticeably Different Colors” [19], indicating how well a colormap 99

exploits a color space. Here, the colormaps by Simula and Al- 100

honiemi [30] and Guo et al. [31] perform best but iterate over 101

black or white. Such color maps with a low black- or white dis- 102

tance score work well only in conjunction with backgrounds of 103

the opposite color. As dense pixel technique, SpatialRugs does 104

not feature intermediate spaces between the data points. Hence, 105

using color maps with black or white color ranges could inter- 106

fere with the perceived brightness and saturation of the surround- 107

ing colors due to contrast effects difficult to measure [32], ren- 108

dering the color map not applicable for our case. The next best 109

color maps according to the JND feature are the Cube Diagonal 110

Cut B-C-Y-R [26] (labeled “Bremm et al.1 in Figure 2”) and 111

the Four Corners R-B-G-Y color map (“Ziegler et al.”) [33]. 112

Transformation assessment: The visual outcome of Spatial- 113

Rugs is also determined by the amount of applied transformation 114
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Fig. 3. Pooling-based color correction. One matrix dimension determines the size of the regarded neighborhood, the other the time ahead to be considered
for the correction. After selecting a use-case appropriate shape and size (step 1), the matrix is shifted over each pixel in every time step (step 2). In step 3,
the colors of the matrix cells are sorted by Euclidean distance in the RGB space. The median color is then applied to the original pixel in step 4.

to the color space. Changing the ratio of an original color space1

in one axis affects the color discriminability along the same axis.2

This holds even if the ratio is changed on both axes. In both3

directions (either shrinking or enlarging the color space), color4

discriminability suffers since either there will be less space to5

represent all colors a color space can provide, or the same col-6

ors are stretched over a larger space. Yet, since color perception7

is not necessarily linear, such effects can only be measured in8

perceptual studies.9

While we acknowledge these effects, we expect our technique10

to be applicable to uniformly distributed spatio-temporal data in11

space. However, movement data that is not evenly distributed in12

space is more challenging to interpret, for instance, in datasets13

with a few spatial outliers that expand the size of the coordinate14

system. In such cases, we recommend preprocessing the data ap-15

propriately by removing outliers and using spatial regularization16

methods.17

As the visual outcome is more dependent on movement distri-
bution instead of the physical size of the movement space, we
propose to estimate the amount of regions users can visually dis-
tinguish by applying the JND metric as discussed by Bernard
et al. [19]: They count the “Just Noticeable Different Colors”
for a colormap, which consequently also denotes, how many re-
gions a user can distinguish within a color map. By dividing the
available space by the JND metric, we receive the average size
of regions that users can visually distinguish (JND-region-size).
Due to the non-uniformity of color perception, this region size
can vary locally, which Bernard et al. provide a standard devi-
ation measure σJND−region−size for. In our case, we also have to
factor in the possible distortion caused by a changing aspect ra-
tio (e.g., 16:9 or 1.78:1). As the amount of JND colors and thus
also regions does not change with the aspect ratio, the following
formula details how users can calculate the size of these areas:

size = σJND−region−size ∗ far

With far being the change of aspect ration (e.g., 1:1 to 1.78:1 /18

16:9, so 1.78). As we only distort the color space, the scaling19

incorporates such a distortion factor into the standard deviation.20

The result is the maximum area in which a user is not able to21

further distinguish the colors in and can be considered the worst22

case for parts of the 2D color map.23

5. SpatialRugs Color Design: Pooling-based Time Aware 24

Color Smoothing 25

We observed adverse perceptual distortions for certain use 26

cases, especially in the transition areas between primary color 27

tones. Our use case of collective movement analysis has a strong 28

focus on group coherence. However, perceptual artifacts can oc- 29

cur in SpatialRugs, when a part of an otherwise homogeneous 30

group of movers partially protrudes into another color area. Fig- 31

ure 1 shows a case of perceptual distortion in excerpt 1, where 32

most movers are in the green quadrant, with a few extending 33

into the transition area to the blue quadrant, resulting in a salient 34

blue line (outlined in the red box). The same effect can be ob- 35

served in Figures 4 and 6. Here, the perceived color distances 36

appear larger than the actual distances of the blueish movers to 37

the rest of the green group, possibly creating the false impres- 38

sion of two independent groups moving around. Such percep- 39

tual distortions are artifacts of the color map showing movers 40

already crossing color borders, perturbing real-world situations 41

by presenting these movers as outliers. 42

To mitigate such perceptual distortions, we propose a time- 43

aware color smoothing technique. Our method regards the mover 44

distribution of the current and subsequent steps to determine 45

a color correction factor. If entities close to each other are 46

located in different color areas, their respective color is corrected 47

towards the majority. Such a correction enables smoothing 48

artificial borders introduced by a selected color map to focus on 49

the movers’ general behaviour. After applying the smoothing, 50

we do not intend to reflect locations as good as in the original, 51

but to enable a focus on the movement of the group by removing 52

color map artifacts and artificial outliers. Such artificial outliers 53

can lead non-expert analysts to incorrect hypotheses based on 54

issues arising from a distorted color schema, e.g., wrong leaders. 55

Figure 3 shows our method consisting of three steps: color 56

collection, pooling, and adaption, which are repeated for every 57

pixel. During initialization (Figure 3, Step 1), users adjust the 58

pooling matrix, selecting three parameters: neighborhood size, 59

time frames ahead, and matrix shape. Step 2 applies the user- 60

defined pooling matrix around the target pixel and collects the 61

colors of included pixels. In step 3, the collected pixels are 62

ordered with a stable sorting algorithm (e.g., mergesort) on 63

the RGB values individually. At first, the blue values of the 64

RGB will be sorted, then the green and finally the red values. 65
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Fig. 4. Comparing an unmodified SpatialRug (A) to a smoothed one (matrix size 15x15) (B) and Gaussian blur (sigma y, x) (D). C provides a difference
image between A and B and highlights the areas our smoothing focuses on in red. The table shows quantitative assessment results for time-aware color
smoothing (TACS) versus standard Gaussian blur (Gauss).

Through the stable sorting algorithm, the ordering includes a1

hierarchy for the RGB values and enables a better comparison2

in the color schema. Outlier pixel colors will be sorted to both3

ends of the list, while more similar colors move to the middle.4

In Step 4, after the sorting, the median of the array yields the5

most prominent color value of the collected pixels, and the index6

pixel is corrected using the color generated by taking the median7

values of each sorted color channel. In comparison to calculating8

an RGB distance value from the combined color channels, this9

approach minimizes unwanted color channel effects in which the10

ordering neglects the possibilities of similar colors belonging to11

each other. Note that in this process, no pixels are reordered in12

the visualization. The color ordering process in step 3 is used to13

determine the color median to apply to the index pixel to correct,14

but it has no impact on the order of pixels in the result.15

Next, we discuss the implementation of the parameters and16

provide initial guidelines on how to select them. Yet, we expect17

that optimal parameterizations depend on the specific movement18

behavior expressed by the movers. In the following discussion,19

we outline the relation of the parameters and different kinds20

of mover behavior. It is important to note that our proposed21

approaches for determining parameters should be regarded as22

initial recommendations. Given the large range of applicable23

use cases as outlined in Section 7, optimal parameters need to24

be further tuned according to the specific dataset.25

5.1. Neighborhood size26

The neighborhood size parameter determines the number of27

its direct neighbors affecting the resulting color correction area28

for each data point at hand. The neighborhood size is the most29

use-case-dependent parameter. It relates to both the visually30

apparent neighbors in the image space and to the original spatial31

domain. By setting the neighborhoods, the algorithm is steered32

to include the specific characteristics of a dataset that an analyst33

weighs heavier than others. Knowledge about the typical size of34

neighborhoods is necessary to select an appropriate size. Thus,35

an analyst can include her domain knowledge about typical36

neighborhood size in the smoothing process for specific types of37

collective movements.38

To illustrate, when the behavior between the movers tends to
be more coordinated, the color smoothing should reward com-
mon behavior by grouping the movers together. In contrast, for

more individualistic movers, less neighbors should be consid-
ered to prevent smoothing differing behavior away. Due to the
case-dependent nature of collective movement behavior, find-
ing a general heuristic might not be feasible, and a user-driven
exploration of the parameter space is essential. To initially de-
termine default values, we recommend a simple initial heuristic
towards the max neighborhood size (n mover) by taking a fixed
percentage of ten percent as our initial neighborhood size.

n nb = n mover ∗ 0.10

39

5.2. Time Frames Ahead 40

Together with the neighborhood, the movement and frames 41

looked ahead parameters hold information necessary to under- 42

stand collective movement patterns (e.g., how neighborhoods 43

change over time). Looking ahead facilitates to further smooth 44

color artifacts and incorporates long-term neighborhoods. How- 45

ever, detecting such long-term neighborhoods is rather difficult 46

and needs domain knowledge to include the often hidden un- 47

derlying information into the algorithm. For example, domain 48

knowledge about observed movers could tell about the foreseen 49

neighborhood coherence over time. If it is known that the movers 50

only form loose groups which do not stay together for long, not 51

many time frames ahead should be regarded and vice-versa. 52

We propose a basic heuristic that considers the length of the se-
quence with an incorporation of the neighborhood size. E.g., as-
suming that only one-third of the neighbors of a mover stay with
it within a given period, we first take one-third of neighborhood
size (n nb). Next, we take one percent of the number of frames
(n f r). If one-third of the neighborhood size is smaller than the
short one percent length, we subtract this value from the one
percent of the sequence to incorporate a weighting of the neigh-
borhood size into the frame ahead. Such a weighting enables to
balance the frame ahead with the neighborhood parameter.

n t f a =

n f r ∗ 0.01 − n nb
3 , if n nb

3 < n f r ∗ 0.01
n f r ∗ 0.01, otherwise

5.3. Matrix Shape 53

Developing neighborhoods can be challenging for a general 54

smoothing as a rectangular matrix assumes static importance 55
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Fig. 5. Results of the TACS smoothing with parameters determined by the heuristics described in Section 5.4. On the right, edges detected by the edge
detector for the original and TACS smoothed version with a decrease of about 25% in edges compared to the original.

of neighborhoods over the time frames ahead. Thus, we argue1

for another important parameter, the matrix shape. Especially2

a matrix in the form of a triangle pointing into the future with3

steps like the ones shown in Figure 6 enables a focus on chang-4

ing neighborhoods, since the further we look ahead, the fewer5

original neighbors exert influence on the data point to correct.6

Yet, the matrix shape can also be applied for other scenarios:7

A rectangular matrix ignores changes over time in the neighbor-8

hoods and uses all possible neighbors over the frames with the9

same importance, which is useful for movers with strong and on-10

going group coherence. A less steep, triangular matrix incorpo-11

rates the neighborhood another time frame ahead to the smooth-12

ing. Such a matrix helps to include slowly developing neighbor-13

hoods and enforces a smoothing with an influence of the neigh-14

bors over time, which is useful for detecting initial group for-15

mation. Finally, a more steep matrix only incorporates the cur-16

rent neighborhood and the developing movement of the focused17

mover over the time frames ahead. Such a matrix enables to fo-18

cus only on specific movers and their direct neighbors,which is19

useful for more individualistic movers (e.g., car traffic).20

5.4. Assessing quality using edge detectors21

Edge detectors enable another way to further investigate pa-22

rameter choices for TACS. As described before, especially for23

grouped behavior, visual artifacts in the color space can occur24

when parts of a group leap into spatially closer, but perceptually25

more distant color areas, resulting in misleading edges in the26

result image. Edge detectors like the Canny edge detector [34]27

are able to detect and quantify these edges in color transitions,28

a circumstance we can exploit to find suitable parameters: Un-29

der the assumption that a smoothing algorithm applied does not30

create additional edges, the general idea is to compare the num-31

ber of edges found in the original image to the amount in the32

smoothed output image. Depending on the number of edge pix-33

els we found through an edge detector, we then calculate a score.34

For instance, we can find around 13% edge pixels in Figure 435

(A) of the overall pixels while the smoothed version of Figure 436

(B) reduces the edge pixels to around 4%. A reduction of edge37

pixels is in general favorable as it smooths the image at a global38

scale. However, our comparison against a Gaussian blur in Fig-39

ure 4 leads to around only 1% of retained edge pixels. Thus,40

only decreasing edge pixels as much as possible is not a suit-41

able heuristic to identify appropriate default parameters since42

prominent visual structures would be destroyed in the process.43

A balance between edge pixels and smoothing needs to incorpo-44

rate the percentage of edge pixels towards the overall image and45

a minimum of edge pixels. Preliminary results examining the46

results of various parameter options suggest a minimum of one- 47

fourth of the initial percentage of edge pixels. For instance, with 48

the 13% edge pixels in Figure 4 (A), we can smooth to 3.25% 49

edge pixels, both reducing unwanted artifacts while keeping vi- 50

sual structures intact. For further analysis and investigations, a 51

complete user study is necessary to investigate the limits of the 52

smoothing in order to determine which parameterizations consti- 53

tute sensible choices for the best outcome. 54

Our preliminary results using the edge quantification show 55

promising results for most smoothing parameters, which use 56

the one-fourth rule of thumb. In our experiments, smoothing 57

parameters which retain major edges from the original image 58

are favorable towards others. Especially, smoothing parameters 59

that reduce edges near each other lead to promising results with 60

a focus on the goal of the smoothing itself in mind; reducing 61

color transitions of spatial artifacts. Figures 5 and 7 show the 62

two use cases with the original SpatialRugs and the smoothed 63

versions edges. Both use cases benefit from the smoothing, 64

showing clearer transitions between different areas, while clutter 65

and fuzzy areas are notably reduced. In our use cases, we find 66

promising recommended parameters based on such an edge 67

detection metric to be rather small. For instance, 15 and 17 are 68

both promising default parameters for the smoothing in Figure 5 69

for neighbors and frames with the matrix shape as a triangle. 70

5.5. Discussion 71

Visual artifacts can mislead viewers due to the non-linearity 72

of applied color maps, individual perception, or both. With the 73

TACS, we propose a mitigation strategy for such artifacts, which 74

can be parameterized to a user’s specific needs: Based on the 75

analyst’s domain knowledge on the dataset and task specifica- 76

tions, the analyst can modify the parameters in Step 1 to her 77

needs. The neighborhood size parameter describes the spatial re- 78

gion around the focused pixel in the vertical axis. For analyzing 79

movers of coherent behavior (e.g., fish as opposed to monkeys), 80

the analyst can adjust the neighborhood size so that stronger (or 81

weaker for monkeys) relationships are incorporated. 82

The time frames ahead incorporate the spatial movement into 83

the future to smooth in the horizontal direction. For observa- 84

tions that include fast-changing movements (e.g., in insect move- 85

ments), the analyst chooses to capture fewer steps in time ahead 86

to cover fast changes of color as opposed to slower changes in 87

movement (e.g., for larger animals). Lastly, the matrix shape 88

offers a way to reduce the amount of neighborhood lookahead 89

in space and time, limiting the importance of the neighboring 90

movements. For movers tending to behave more coherently over 91

time, such as schools of fish, a rectangular matrix shape is rec- 92

ommended, while less coherent behavior requires a triangular 93
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Fig. 6. Comparison of parameter effects to the original. Second to fourth result: Low, medium, and large lookahead. Fuzzy features are smoothed and
sharpened, but large values shift and distort patterns. Also, larger values shrink the result in size since the lookahead cannot be larger than the remaining
time frames. Fifth to seventh result: Increasing neighborhood size smoothes artifacts as discussed in Section 5 but introduces more blur for higher values.
The marked area corresponds to the perceptual artefact also highlighted in Figure 1.

matrix shape, focusing more on temporal than exact spatial and1

orientational coherence (e.g., cow herds). The comparison in2

Figure 6 shows the impacts of different parameter settings. The3

parameter choice recommendations should be seen as initial sug-4

gestions. Their optimal choice relies on mover properties such5

as size or average group density and even behavioral features6

like the number of neighbors influenced by actions of a single7

moving entity. These factors can not be generalized in a single8

parameter choice formula. Thus, we recommend extracting pro-9

totypical use cases with experts using real-world data to identify10

parameter boundaries individually.11

The code for the color smoothing is publicly available as12

Python notebook [35]. Each of the notebooks shows an imple-13

mentation of TACS with the parameters chosen according to the14

discussed heuristics. The runtimes for the creation of one Spa-15

tialRug using the dataset described in Section 1 average at 2716

seconds. They were generated on a desktop PC with Intel Core17

i7-8550U CPU and 32 GByte RAM. The first notebook contains18

the image as a matrix of RGB values, the second as the neighbor-19

hood size, the third as the frames ahead, the fourth as the steps (in20

this case, the matrix shape), and lastly, a switch where the steps21

should start. The initial matrix (image) gets enlarged by ones in22

height by half of the size of the neighbors at the top and the bot-23

tom (one-padding in y-direction). We employ this padding to be24

able to start at the first pixel at the top left with the whole slid-25

ing matrix. Afterward, we slide over the x and y directions and26

apply our matrix to get all possible colors, sort them, and take27

the median to derive the new color value. To aid with parame-28

terization, we suggest several basic strategies, including a result29

estimation using edge detectors. We also provide all results and30

base images in the code repository to reproduce our own results.31

6. Results: Assessing Visual Outcomes 32

We next elaborate on the choice of appropriate 2D color maps 33

for SpatialRugs and provide statistics on the results of our TACS 34

smoothing method illustrated by examples generated using our 35

technique. As well, we showcase SpatialRugs with another 36

dataset with multiple moving groups. 37

6.1. Color Map Choice 38

In Section 4, we proposed an initial set of color maps using the 39

work of Bernard et al. [19] and defined the tasks I-III. We fur- 40

ther narrow down the selection of well-applicable color maps by 41

visually investigating color space properties (see Figure 2). First, 42

derived colors should be well distinguishable to relate them to 43

an accurate spatial location, satisfying task I. The color maps of 44

Bremm et al. 2 [26], Steiger et al. [28] and Teuling et al.[29] are 45

clearly inferior to their competitors for this property, which is 46

also expressed in their JND value as stated by Bernard et al. Sec- 47

ond, task II states that the viewer has to maintain a mental map 48

to associate particular colors with spatial positions. Here, the 49

color map provided by Simula et al. [30] introduces a black/dark 50

area between neighboring colors in the corners, impacting the 51

perceptual continuity and potentially introducing false percep- 52

tions of brightness and contrast in the dense pixel visualizations 53

we employ here. The color regions by Ramirez et al. [27] and 54

Bremm et al. 1 [26] are also not linearly distributed, thus dis- 55

torting the distance perception if used as intended by Spatial- 56

Rugs. This leaves the colormaps by Ziegler et al. [33] and Guo 57

et al. [31] as candidates. Ziegler et al. anchor four distinctive 58

colors, amongst them three primary colors, to the corners of the 59

color space, creating a semantic notion of spatial orientation re- 60

sembling the natural division of four cardinal directions. Guo et 61

al. extend the color space radially around a white center. Both 62
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approaches scale well to different aspect ratios, satisfying task1

III. Guo et al. enable to encode the center area in white, as2

well. Yet, this could interfere perceptually if an additional fea-3

ture should be encoded as modification of the color brightness or,4

again, cause issues with brightness and contrast perception, and5

it would only work if no black or white components are present.6

In conclusion, we expect the color maps by Ziegler et al. and7

Guo et al. to fulfill our tasks, while we expect that Ziegler et8

al. works better for most cases. Consequently, we use this color9

map in this publication to illustrate our approach. In addition,10

as described above, the four-sided anchoring of the color space11

by Ziegler et al. is a unique feature that can be easily related to12

four cardinal areas or directions. This is very intuitive for repre-13

senting spatial areas, and transitions between the clearly distin-14

guishable color areas can also be identified easily. This recom-15

mendation is based on the most fundamental tasks for encoding16

spatial relations with colors in dense pixel visualizations. Yet,17

more specific use cases could possibly profit from using other18

color maps. The key decision factor are the user’s specific infor-19

mation needs. The suggested color maps enable users to distin-20

guish spatial positions of movers in a 2D cartesian coordinate21

system. If a polar coordinate system would be applied, encod-22

ing the pole region in addition to the cardinal directions can gain23

importance, favoring color maps with a central reference area24

such as the one provided by Guo et al. [31]. In another potential25

use case, not the absolute spatial positions of the movers are re-26

garded, but the change in spatial arrangement over time between27

the movers as observed from a given reference point. Here, a cir-28

cular monochrome color map starting from the reference point29

could enable users to estimate distances, without having to com-30

pare different color hues. A tradeoff between the readability of31

the spatial position versus the encoding of distances becomes32

apparent. If the user intends to encode spatial context, linear33

color maps as presented could not be applied anymore, and dis-34

tance information would be lost. Still, we discuss this possibility35

briefly in Section 7 and show an initial example in Figure 8.36

6.2. Color smoothing37

The time-aware smoothing tries to mitigate the effects of38

neighboring colors (outlined in red Fig 4 A) by including the39

temporal color distribution. In Figure 4 A and B, we see that40

the methods reduce visible outliers while retaining the tempo-41

ral structures. The difference image between (A) and (B) (see42

Figure 4 (C)) provides preliminary evidence for the value of the43

applied smoothing method as it only affects the color transition44

areas, leaving the visual patterns still crisp and visible. In con-45

trast, the Gaussian blur (D) creates a fuzzy impression, aggra-46

vating the accurate interpretation of colors at a given point by47

blurring visual structures.48

A quantitative assessment of our color-smoothing (table in49

Figure 4) shows results of applied quality measures by measuring50

the distance to the original, unsmoothed image. The measures51

include the root mean squared error (RMSE) [36], the mean52

squared error (MSE) [36] and the structural similarity index [37]53

(SSIM). We compare our time-aware color smoothing (TACS) to54

a standard Gaussian smoothing (Gauss). Similar reference area55

parameters are chosen to allow the comparison of the smoothing56

methods. Lower RMSE and MSE values indicate better results, 57

and a higher value for SSIM indicates better similarity between 58

original and smoothed images. The results indicate that our 59

pooling method outperforms the Gaussian blur even for small 60

sigmas and large window sizes. 61

6.3. Applicability to other collective movement datasets 62

The dataset used for the SpatialRugs in Figures 1, 2, 4 and 6 63

employs only one group of 151 movers expressing coherent 64

movement behavior. As the application scope of SpatialRugs is 65

not limited to single groups of movers, we also evaluate the ap- 66

plicability of our technique to datasets containing more than one 67

group of movers. For our demonstration purposes, we use a syn- 68

thetic dataset generated using a collective movement data gener- 69

ator [11] which relies on established behavioral models such as 70

the Reynolds model [38] in combination with path following and 71

obstacle avoidance features. The visual representation is created 72

using the spatial linearization provided by MotionRugs [4], the 73

spatial colormap refers is the one argued for in Section 6.1 and 74

referenced in the excerpts on the lower left in the background. 75

The dataset we generated, shown in Figure 7, displays the 76

movers moving in three independent clusters (see the excerpts 77

on the lower left of the Figure), following a counter-clockwise 78

movement pattern. In the rug representation, the three groups 79

are clearly distinguishable as three stripes moving in different 80

areas of the dataset. The transitions of the groups between 81

the regions of the 2D color map can be observed very well, 82

generating visible transition patterns between yellow, orange 83

and red, red, purple and blue, and blue and green. Due to the 84

intrinsics of the applied spatial linearization, the clusters switch 85

positions vertically in the last quarter of the visualization. This 86

is an artifact of the spatial linearization technique as provided by 87

MotionRugs [4] and not related to our spatial coloring approach. 88

Techniques to alleviate such artifacts have been proposed in [39]. 89

Since the movers are moving continuously, the observed 90

stripe-like transition patterns originate from two factors: First, 91

the movers do not necessarily move in a uniform distribution 92

through the color space. Second and more important, the trans- 93

formation of the original square-shaped colormap to adapt to the 94

mover’s space lead to a horizontal distortion. This distortion in- 95

creases the distances between two arbitrary points in the red to 96

purple, purple to blue, and green to yellow areas, meaning more 97

space for more continuously perceived color interpolation. Be- 98

tween yellow and red and between blue and green, on the other 99

hand, the distances between the colors remain short, and visu- 100

ally well distinguishable colors lie closer to each other. 101

Again, we compare Gaussian smoothing and our TACS and 102

observe difference images in Figure 8. The clear original repre- 103

sentation allows to easily distinguish the three groups of movers 104

and their transitions between the color regions. Gaussian smooth- 105

ing again blurs the visual result and decreases the saliency of 106

the encoded patterns. The TACS version instead smoothes color 107

transitions and some coarseness in areas such as the blue area 108

in the middle group at the end of the rug. By looking at the dif- 109

ference images comparing Gauss and TACS to the original, a 110

remarkable effect becomes apparent: While the gaussian blur- 111

ring mostly affects the borders between the moving groups, thus 112
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Fig. 7. SpatialRugs generated with a dataset of three groups of about 65 movers each, moving counter-clockwise (compare excerpts in the lower left). While
the Gaussian smoothed version in the middle blurs the clearly visible borders between the three groups, the TACS smoothed version corrects mostly within
each group and sharpens the visible edges instead of fuzzing them. This becomes especially apparent when comparing the difference images in the lower
row, outlining large differences in the areas affected by the two smoothing approaches.

worsening their visual delimitation against each other, TACS ig-1

nores these areas and instead turns to correct the color space tran-2

sitions within individual groups, which is exactly the expected3

and desired behavior. This way, the applied TACS parameteriza-4

tion ensures that the correction only applies with respect to close5

neighbors, ignoring further off entities of other groups, while6

the lookahead eases the sharpest transitions created by a single7

group transiting perceptively distinguishable color areas.8

In summary, our approach also works for datasets with multi-9

ple moving groups. We were able to demonstrate that the param-10

eterization of TACS is suitable to specifically define which areas11

should be affected by the smoothing and to which degree while12

retaining the visual saliency of patterns.13

7. Discussion and Initial Expert Feedback14

We collected more feedback by informal interviews from four15

domain experts (two on PhD level, two PostDocs) from the area16

of behavioral ecology to further understand their specific needs17

when it comes to the representation of spatial features. All are18

involved with research on collective animal behavior, with a19

focus on different aspects. The main aspect of their work is the20

analysis of tracked animal movements yet in largely differing21

scales ranging from observing the behavior of a rather small22

group of monkeys in the African desert to large swarms of23

locusts. Still, the common analysis tasks are very similar: The24

experts try to understand how the animals coordinate between25

themselves and how they interact with their environment.26

The experts state that two principle approaches are applied27

in their research: Lab experiments and tracking animals “in28

the wild”. For the former, the animals are observed in a con-29

trolled environment to determine how they move or react to pre-30

cisely specified stimuli. These experiments focus on analyzing31

how reactions propagate spatially through mover groups, e.g.,32

in schools of golden shiner fish [40]. The latter kind of experi-33

ments involve tracked animals in their original, natural environ-34

ments and thus, draws more attention to the interaction between35

movers and their surrounding spatial surroundings to learn about36

behavior specific to certain areas. For example, it is of interest 37

where animals sleep, forage, or roam. 38

The focus of SpatialRugs is to support the exploration and 39

analysis of collective movement, helping users to retain spatial 40

context and identify areas of interest. Thus, on the one hand, it 41

serves use cases where the semantic spatial context can be disre- 42

garded. On the other hand, especially for unexplored datasets, 43

SpatialRugs can be applied to identify areas of interest previ- 44

ously unrecognized by presenting users a static representation 45

of spatial mover distribution over time. 46

The SpatialRugs approach could even be applied to identify 47

movements with respect to semantic spatial context by encoding 48

areas using a color mapping that directly reflects these seman- 49

tically important locations. Figure 8 shows an illustrative ex- 50

ample: By coloring by semantic contexts such as sleeping area, 51

travel paths, POIs, and foraging areas, the resulting map can be 52

used to identify when movers have been at which position for 53

how long and how they transited between these locations. While 54

we acknowledge the fundamental applicability of SpatialRugs 55

also in semantic spatial contexts such as the described ones or 56

others like administrative areas and boundaries, the resulting de- 57

sign space is complex and requires its own elaboration: The ap- 58

proach would shift the analysis focus from an explorative per- 59

spective (i.e., discovering spatial developments and patterns) to 60

a process more oriented towards hypotheses testing, as one has 61

to define points and areas of interest beforehand and assign spe- 62

cific colors. Both approaches could be combined, but the per- 63

ceptual implications for choosing visually distinguishable color 64

spaces for both semantic areas and non-labeled space are com- 65

plex and lie beyond the scope of this work. 66

Initial feedback on the SpatialRugs principle we demonstrated 67

using the data and visualizations shown in Figure 1 was largely 68

positive, and the approach considered a useful extension of the 69

MotionRugs principle, alleviating the shortcomings of the spatial 70

linearization. According to their statements, the experts were 71

generally able to match the colors to a general region. One expert 72

stated that he thinks that the colormap by Ziegler et al. [33] could 73

possibly be memorized due to the four corner-anchored, leaving 74
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Fig. 8. The principle to encode spatial positions using color can also be applied to define semantic regions. This simulated image shows an example where
the different colors encode several predefined areas with semantic meaning. Using the reference map on the left, one can read from the SpatialRug on the
right how the movers moved from the blue sleeping area via the green travel area to the foraging area (orange) and back on another route (grey), while
some visit a certain POI (red). Unencoded positions appear in white.

it interpretable even without reference to a 2D image. One expert1

raised concerns about the number of features that can be put2

into context meaningfully. Another comment was to introduce3

interactive quantification aids to enable users to measure the4

distribution of movers in different areas at the same time. With5

this initial brief feedback, it becomes apparent that the range6

of possible use cases is broad and covers different aspects of7

spatial information, varying group sizes, and different grades of8

expected behavior. Given this degree of complexity, we focus9

on introducing the SpatialRugs approach for the most basic and10

universal aspect these use cases share, which is the elementary11

movement exhibited by the observed moving objects.12

8. Conclusion and Future Work13

SpatialRugs uses 2D color mapping to allow users to perceive14

spatial relations in space-efficient visualization designs. The15

intended use of SpatialRugs is as an overview in conjunction16

with other pixel-based movement visualizations that display17

further features of interest, enabling to relate space and feature18

developments. In the MotionRugs context, SpatialRugs can be19

considered a spatial feature encoding (compare SpatialRug and20

MotionRug in Figure 1).21

We compared several color spaces and discussed perceptual22

issues following color artifacts, where movements appear to be23

more distant to each other than their physical distance actually24

accounts for. To mitigate such distortion effects, we proposed25

a color smoothing approach (TACS), which we illustrated in26

examples with different parameterizations and we evaluated27

TACS using several quality metrics. To find suitable parameter28

values, we also propose emplyoing edge detectors to find a29

compromise between excessive smoothing and potential visual30

artifacts. Our results can be reproduced using our code [35] and31

base images provided there. We expect that our approach can32

be applied to non-spatial 2D point distributions as well, e.g., to33

projections of dynamic datasets. Yet, due to possible contrast34

effects with the background, a re-evaluation of 2D color spaces35

would be necessary if such point distributions would be sparse.36

The SpatialRugs color-coding comes at the cost of several lim-37

iting factors. Foremost, the visual interpretability of SpatialRugs38

depends on the ordering technique applied to create the pixel vi-39

sualization in the first place. For example, the visual outcome40

deteriorates with increasingly independent movement behavior,41

which does not create salient visual patterns [39]. As well, we42

expect that large amounts of individual clusters are harder to43

interpret due to the (individual) amount of colors an observer 44

can meaningfully distinguish. Since SpatialRugs encodes spa- 45

tial positions in dense pixel displays using the full range of a 46

color map, further properties can hardly be encoded on top of 47

the visualization. To do so, we suggest using MotionRugs en- 48

coded with features of interest in conjunction with a SpatialRug 49

of the same data. The same perceptual limitations and the color 50

smoothing process also introduce spatial errors when trying to 51

read precise positions, and balancing the parameterization of 52

the color smoothing for specific use cases can be difficult. As 53

well, in cases where the spatial context of the observed move- 54

ment plays an important role, we discourage the application of 55

the TACS smoothing due to possible loss of information. 56

Our approach is not suited for users suffering from limited 57

color perception, who would be severely limited by the amount 58

of perceivable space. We also expect contrast effects as described 59

by Mittelstädt et al. [32], which cannot be measured so far. These 60

aspects need to be evaluated, while guidelines for the correct 61

parameterization have to be explored. In future work, we intend 62

to quantify the viewer’s perception of our technique and choice 63

of color spaces. Also, the perceptual implications of our color 64

correction process have to be tested thoroughly. Instead of using 65

a single color map, we anticipate that SpatialRugs can benefit 66

from an adaptive color map approach adjusted to the specific 67

movement distributions, user task, covered area and aspect ratio. 68

We expect SpatialRugs to be applied as an overview visual- 69

ization for users to identify interesting developments. Here, it 70

seems natural to introduce interactions for the user to link areas 71

in the SpatialRug with detail views in more traditional represen- 72

tations, enabling an overview-to-detail workflow. This selection 73

could show the current situation at a point in time on the Spatial- 74

Rug the user points to, e.g., in a classical 2D plot. More sophis- 75

ticated selections could be applied, such as a spatio-temporal 76

clustering around the selected position to be displayed in more 77

detail to only focus on spatially close moving entities at a given 78

time. Finally, we would like to investigate visualizing spatial 79

context features as described in Section 7. 80
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