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Figure 1: We present a descriptive framework for building applications for embedding contextualization that connects data, models,
tasks, and users. In the interactive version of the framework (https://embedding- framework.lingvis.io), we give examples of
various case studies from the related work and support researchers in specifying new analysis setups.

ABSTRACT

Contextual word embeddings — high-dimensional vectors that en-
code the semantic similarity between words — are proven to be
effective for diverse natural language processing applications. These
embeddings originate in large language models and are updated
throughout the model’s architecture (i.e., the model’s layers). Given
their intricacy, the explanation of embedding characteristics and
limitations — their contextualization — has emerged as a widely in-
vestigated research subject. To provide an overview of the existing
explanation methods and motivate researchers to design new ap-
proaches, we present a descriptive framework that connects data,
features, tasks, and users involved in the word embedding expla-
nation process. We use the framework as theoretical groundwork
and implement a data processing pipeline that we use to solve three
different tasks related to word embedding contextualization. These
tasks enable answering questions about the encoded context proper-
ties in the embedding vectors, captured semantic concepts and their
similarity, and masked-prediction meaningfulness and their relation
to embedding characteristics. We show that divergent research ques-
tions can be analyzed by combining different data curation methods
with a similar set of features.

Index Terms: Human-centered computing— Visualization—
Visualization application domains—Information visualization

1 INTRODUCTION

Masked language models (LMs) such as BERT [8] or generative
models like GPT-3 [5] are state-of-the-art for natural language pro-
cessing (NLP) and understanding tasks. These models generate
contextualized word embeddings — high-dimensional (HD) vectors
that encode a word’s context information, e.g., surface, syntax, and
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semantics [29]. Contextualized word embedding interpretability is
relevant for various tasks, e.g., not only to understand the model’s
strength [29] and limitations (e.g., [10, 22]) but also encoded bi-
ases [23] and information relevant for making decisions on, e.g.,
which layer’s embeddings to use for analysis [39] or how to adapt
the model for the end user and task [17]. Furthermore, embeddings
are commonly used as features for diverse visual analytics applica-
tion scenarios (see a broad overview of applications in [13]). It is
important to understand embedding characteristics to apply them to
a specific use case effectively.

Continuously new computational and visual approaches are cre-
ated to gain insights into embedding properties. The most common
method is probing classifiers through which, e.g., Tenney et al. [37]
have shown that BERT follows the typical NLP pipeline. The high-
dimensional vectors [9,38] or low-dimensional coordinates (2D) are
commonly used to cluster words according to embedding similarity
and analyze properties in their local neighborhoods [2, 11]. In ad-
dition to features, also the data used for explanations play a crucial
role in insight generation. Most of the tasks require a variety of
contexts, i.e., multiple contexts per token, to see the context’s influ-
ence on embedding vectors [9]. Some tasks require more careful
curation, e.g., specific contexts for bias detection [19] or syntac-
tic/semantic structures for linguistic analysis [16]. Although most of
the explainability tasks are tailored toward expert users (e.g., with
machine learning (ML), NLP, or linguistic background), some tasks
are relevant for laymen to gain a basic understanding of popularity-
gaining language models. An overview of potential methods for data
curation, features, potential tasks, and users and their interplay is
currently missing.

In this paper, we present WEC-Explainer, a descriptive frame-
work! that brings the different aspects involved in the explanation
process, i.e., data, models/features, tasks, and users into relation.
Furthermore, we use the descriptive framework as a theoretical
groundwork to implement a data processing pipeline and use it for
three case studies for visually explaining contextualized word em-
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Figure 2: We use the descriptive framework as a groundwork to build a data processing pipeline that solves multiple embedding contextualization
tasks. We extract both raw features coming directly from the model’s architecture (e.g., contextualized embeddings) as well as representations

curated by NLP researchers (e.g., contextualization scores).

beddings. These instances show how a variety of data input on a
similar set of features can support different users and tasks.

2 RELATED WORK

Various methods have been used to explore embedding contextual-
ization (see a survey by Zini et al. [40] on LM explainability and
a recent survey paper on utilizing embedding vectors in visual an-
alytics applications [13]). It is shown that embeddings generated
by deep-learning LMs are contextualized, i.e., words have different
vector representations across different contexts [9]. Diverse computa-
tional and visual methods are used to explore embedding properties,
i.e., characteristics encoded in vectors. One strand of research uses
probing classifiers [14,20] and adversarial testing [10, 22].

Another widely used method is embedding similarity. The sim-
ilarity task is prevalent for visual exploration approaches. Early
approaches analyze static embeddings, such as word2vec [25] and
Glove [27], facilitating word analogies [21]. Reif et al. [28] and
Wiedemann et al. [38] show that contextualized embeddings clus-
ter with respect to word senses. Berger [1] explores correlations
between embedding clusters in BERT. For instance, related work
visualizes word embeddings in a scatterplot and applies metrics to
measure local neighborhood changes [2, 11] or use animations and
visual augmentations to show changes in the embedding spaces [34],
just to name a few.

3 DESCRIPTIVE FRAMEWORK

In this paper, we focus on contextualized word embeddings and
emphasize the potential of their combination with additional fea-
tures and data curation methods for interpretability purposes. By
following the design by Miksch and Aigner [26], we bring data and
models into relation in a descriptive framework and highlight the
role of users and their knowledge for diverse analysis tasks.

Data: A set of sentences is a typical input for word embedding
exploration tasks. This set can be randomly generated or purposely
curated to answer specific analysis questions. The questions related
to contexts’ impact on embedding change require a sufficient number
of context variations per token [9]. For semantic similarity tasks, we
can sample data representing concepts through predefined wordlists
to answer questions related to gender-related stereotypes for ana-
lyzing biases [19]. We can use templates to prepare data systemati-
cally [18] to test embedding changes on minimal context alternation.
By aggregating data based on ontologies, we can explore how the
model encodes different categories [24]. We can create annotated
ground-truth data containing labels for diverse tasks (e.g., senti-
ment) and analyze embedding specificities for different classes [35].

For linguistically motivated analysis, we can prepare samples that
represent diverse linguistic phenomena, e.g., function words such
as negation [16], or different aspects of linguistic theory [33], and
analyze whether the model behaves as the theory expects. As shown
in Fig. 1, methods can be combined to create the desired data format.

Models/Features: Features that can be used in combination
with contextualized word embeddings can either be extracted from
the black box model or produced when some NLP knowledge is
available. Depending on the model’s type (e.g., masked or genera-
tive) and analysis task, we can combine embeddings with classifica-
tion outcomes, masked word-, or next-word predictions to analyze
aspects like the main (semantic) concepts inherited in the model.
We can also apply external knowledge and produce new features by,
e.g., measuring embedding similarity [9] or applying further scoring
techniques to explain linguistic properties encoded in embedding
vectors [32]. We can train probing classifiers on embedding vec-
tors [14,20] to analyze encoded linguistic phenomena, as well as
explore attributions [7] that get computed on embedding vectors to
gain insight into word importance for a classification task. We can
also compute static embeddings from contextualized ones for their
better interpretation [3]. Theoretically, an endless number of features
can be placed on this spectrum that requires some NLP knowledge
for their curation, whereby some of them are more interpretable
than others. One must be careful, though, because even in a sense
interpretable features may require LM understanding for a correct
interpretation (see, e.g., Sevastjanova and El-Assady [31]).

Tasks and Users: User groups for embedding contextualiza-
tion tasks are similar to those of language model explainability (see,
e.g., Brath et al. [4]). We describe them as users with general lan-
guage-, ML/NLP-, and linguistic knowledge. There is not a clear
cut between the groups, though. Depending on the users’ knowl-
edge and expertise, they have different interests and goals. Laymen
typically explore the embedding space out of curiosity. There is no
further objective to use the knowledge in a particular way. ML/NLP
experts want to understand embedding properties and compare them
among layers and models to apply the knowledge in future tasks,
e.g., to select an embedding layer for an NLP task or improve the
models’ performance. Linguistic experts try to verify linguistic the-
ories, e.g., whether LMs learn linguistic structures (e.g., syntax) or
word functionality. Typically, they investigate a concrete hypothesis
on a specific dataset. Theoretically, one can use the same features
to test both linguistic theories and produce interpretable insights for
a layman. Hence, this m:n relationship between features and tasks
generates a huge space for exploration.
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Figure 3: Data and features for analyzing context properties. To
analyze linguistic phenomena, we can extract embedding vectors,
compute their similarity as well as assess diverse contextualization
scores and use them to compare the model’s layers and gain insights
into the learned properties in the different layers.

4 DATA PROCESSING PIPELINE

We use the descriptive framework as a theoretical groundwork for
building a data processing pipeline, as depicted in Fig. 2.

Data curation: A text corpus for the analysis is determined
based on the use case at hand. The corpus contains a list of sen-
tences; however, the specific use case controls whether sentences
are grouped based on semantic concepts/wordlists (e.g., for bias
detection tasks) or linguistic properties (e.g., for linguistic analysis).

Black box features: We first extract the raw features from the
black box model for a given text corpus. If the use case includes
model comparison tasks, the features are extracted from a set of
models, respectively. The main feature for all use cases is contextu-
alized word embeddings. We extract these embeddings layerwise,
allowing us to investigate how information gets propagated through
the model’s architecture. We additionally extract context-0 (decon-
textualized [3]) embeddings by using the model’s special tokens and
the word itself as the input to the model (e.g., [CLS] word [SEP]
in BERT). These can be used as a baseline, i.e., to learn what gets
encoded in embeddings when no context is available. They are com-
monly used for the Word Embedding Association Test (WEAT) [6].
If required, the model computes masked word or next-word pre-
dictions. We combine these predictions with embedding vectors
to describe the strongest word associations and potentially ignored
context aspects (e.g., negations).

NLP features: After extracting the raw features, we build rep-
resentations on top of embeddings in means of similarities (in 2D
and HD) and scoring techniques. We compute several scores that
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describe the degree of contextualization using cosine similarity be-
tween layerwise embeddings of different reference tokens (e.g., to-
kens within the same context, nearest neighbors), initially introduced
in [32]. We also compute scores that capture common characteris-
tics of tokens and their nearest neighbors. These are measured on
token string representations and context properties. For instance, we
compute the inverse edit distance between a token and its nearest
neighbor tokens to see whether the model captures a token’s lexical
representation. To see whether the model learns the token’s word
class, we measure the occurrence of nearest neighbors having the
same POS tag. This information aggregated for a word group, or the
whole corpus shows properties encoded in embeddings in different
layers. For more details, see Sevastjanova et al. [32].

5 APPLICATION SCENARIOS

‘We present an instantiation of the descriptive framework through
three application scenarios. In particular, we use the data processing
pipeline in combination with visualizations to solve three different
tasks related to word embedding contextualization, recently pub-
lished as separate works (see [16,30,32]). We show that divergent
research questions can be analyzed by combining different data
curation methods with a similar set of features.

5.1 Encoded Context Properties

First, we analyze different linguistic phenomena (i.e., semantic,
syntactic, and surface features) learned by LMs [32].

Task and users: The task is to gain an overview of properties
encoded in embedding vectors in different model layers. This task
is especially relevant for users with NLP expertise (see Fig. 3).

Data curation: Since the goal is to generate insights into var-
ious context properties, the only requirement for the text corpus
is a sufficient number of sentences with different (semantic and
syntactic) context variations.

Feature curation: We begin by extracting the layerwise contex-
tualized word embeddings for all words in the corpus and use these
to obtain words’ nearest neighbors in the HD space using cosine
similarity. Finally, we compute contextualization scores described
in Sevastjanova et al. [32].

Data aggregation: We aggregate the scores in two levels to
support two degrees of exploration. First, a corpus-level score aggre-
gation highlights the layerwise changes, i.e., layers in which specific
properties (e.g., lexical information) are more expressed in embed-
ding vectors. Second, a token-level score aggregation computed as
the average score of the same word used in multiple contexts enables
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Figure 4: The embedding similarity in the form of contextualization scores shows context properties that get encoded in embedding vectors, which
are relevant insights for linguistic experts. In BERT, surface features such as the word lexical similarity (i.e., edit distance) are highest in the early
layers. The model learns syntactic context properties, such as the POS tag information in the middle layers. In the upper layers, word embeddings
for words within the same sentence become more similar. Further explorations reveal that numbers stay similar to other numbers within all layers.

More examples under https://lmfingerprints.lingvis.io/.
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Figure 5: Data and features for concept similarity task. We can use
wordlists describing different human-interpretable concepts, such as
gender, and positive and negative human qualities, to define the
corpus for analysis. For words and sentences in this corpus, we
can extract embedding vectors, compute their inter and intra-concept
similarity, and use it to explore concept similarity as well as gain
insights into models’ biases.

comparing words with different roles in the sentence (e.g., function
words and content words).

Visualization: We use visualizations to gain insights into the
encoded properties. A matrix shows contextualization specificities
and highlights characteristics captured in different models’ layers
(see the golden circles with stars in the matrix in Fig. 4). The
columns in the matrix represent scores; the rows depict layers of the
particular model. Additionally, we use a radial layout to provide an
overview of contextualization specificities for different token groups,
e.g., proper nouns, function words, etc. We visually group tokens
based on their POS tag to ease the word comparison task.

A single layer is displayed as a line that connects the score values
for all tokens in the corpus (i.e., 12 lines for a model with 12 layers).
‘We color the lines according to a sequential color scale (i.e., from
purple representing layer 1 to orange representing layer 12). To
facilitate readability, we additionally color the area between two suc-
ceeding layers and decrease their opacity to see overlapping layers.
The design is similar to a braided graph visualization, whereby each
braid has transparency, and thus, the overlapping layers are visible.
We support several interaction techniques to ease the interpretation
of the shown patterns. First, to analyze token groups in more detail,
the users can select POS tag(s), and the corresponding tokens are
filtered. Second, the users can sort tokens according to different
properties: alphabet, maximum score value among all layers, and
score value in a specific layer.
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Findings: Our approach allows reproducing insights obtained
using probing classifiers concerning encoded properties in embed-
ding vectors [29]. Among others, the scoring functions, similar
to probing classifiers, show that the syntactic information is most
prominent in the middle layers, and surface features are captured
best in the early layers of BERT. In addition to these known insights,
we observe that some named entity categories (e.g., geographical
locations) and numbers have relatively poor contextualization. The
self-similarity and the POS tag similarity score of year numbers
stay high throughout all layers (see Fig. 4). It means that embed-
dings of these tokens do not change within the model’s architecture
independently in which context they are used.

5.2 Semantic Concept Similarity

In addition to the analysis of encoded properties, our framework
enables the comparison of multiple model instances to determine
which one creates embeddings that fit user expectations regarding
word semantic similarity [30].

Task and users: The task is to understand how well semantic
concepts are separated in the (HD or 2D) embedding space and it is
relevant for users with general language knowledge (see Fig. 5).

Data curation: We use pre-defined wordlists to sample sen-
tences that contain keywords representing different semantic con-
cepts (e.g., human characteristics, person names). To ease the anal-
ysis of bias-related tasks, we represent one concept by two sub-
concepts, each having a specific polarity (e.g., positive and negative
human characteristics, female and male person names, respectively).

Feature curation: To understand whether the model learns to
separate the semantic concepts in the embedding space, we first
represent words by their context-O and layerwise contextualized
word embeddings. The contextualized embeddings get aggregated
for each unique word (e.g., one average embedding from all occur-
rences of a word per layer). Next, we obtain embedding similarity
in both HD and 2D space. The latter is done using a dimensionality
reduction method (e.g., PCA [15]).

Visualization: Finally, we use visualization techniques to show
the similarity between concepts in HD and 2D space. Two example
visualizations are shown in Fig. 6. In both, we use color encod-
ing and area (contour lines) to group words belonging to the same
sub-concept. The Concept Embedding Similarity visualization (see
the left side of Fig. 6) displays the cosine similarity between two
concepts. Here, one concept is used as an anchor for explanation
purposes, whereby its two sub-concepts (here: female- and male
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Figure 6: The embedding similarity between semantic concepts such as person names and pronouns shows whether models encode gender
information. This is particularly relevant for bias detection tasks. Here, the context-0 embeddings in the pre-trained BERT and the debiasing
adapter by Lauscher et al. [19] do not encode the gender information in person name vectors. For instance, context-0 embeddings of person
names (both male and female) are slightly more similar to male pronouns. However, the contextualized embeddings in pre-trained BERT encode
person names and pronouns, both separated by gender; however, the debiasing adapter removes the gender information. There, embeddings are
separated for the different POS tags. More examples under https://adapters.demo.lingvis.io/.
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Figure 7: Data and features for the masked prediction task. We
prepare the ground truth data on diverse linguistic phenomena (i.e.,
function word classes) by using several wordlists and ontology-based
approaches.

pronouns) define the two axes in the visualization. The similarity
to these sub-concepts defines the second concept’s word positions
in the visualization. In the Concept Embedding Projection (see the
right side of Fig. 6), on the contrary, the 2D positions are obtained
using a dimensionality reduction technique. The two visualizations
can be used standalone or combined to detect artifacts produced by
a single method.

Findings: Using our framework, we reproduce findings by
Lauscher et al. [19] who have introduced an adapter model [12]
for gender bias elimination. In particular, the authors show that the
model removes gender biases according to diverse evaluation meth-
ods except for the WEAT. WEAT results show that the model does
not reduce the bias but instead inverts it. The same insights provide
our Concept Embedding Similarity visualization on context-0 embed-
dings (Fig. 6 left side) where person names (both male and female)
are more similar to the female gender than in the pre-trained BERT.
This bias inversion is visible for context-0 embeddings, though.
In contextualized embeddings, there is no separation between the
person-name and pronoun concepts (Fig. 6 right side). Exploring
further models, we observe that the gender information is typically
obtained from the word’s context, and it generally is not encoded
in the word (e.g., person name) itself. Such a visual exploration
also helps to understand the properties and limitations of context-0
embeddings used for semantic analysis tasks since these vectors
often do not match the properties of their contextualized versions.

5.3 Masked Prediction Quality

Extending the data and feature curation steps, we can gain insights
into linguistic phenomena (e.g., function words) that have a smaller
impact on the models’ performance [16].

All insects have [MASK]. No insect has [MASK].

Task and users: The task is to gain insight into masked pre-
diction meaningfulness when it comes to contexts involving various
function word classes, i.e., the task is to detect how an LM captures
a word’s functionality. This task is especially relevant for users with
linguistic expertise (Fig. 7).

Data curation: For this approach, the data curation requires
more linguistic input than the previous use cases. In particular,
since the goal is to analyze the quality of masked predictions, the
data needs to carry ground truth — a descriptor that specifies which
predictions are more or less likely to occur in the real world. We
thus combine several approaches. We use templates, pre-defined
wordlists, and ontologies (e.g., ConceptNet [36]) to curate sentences
for the analysis. We prepare sentence pairs that vary only by a
function word from a specific type (e.g., quantifiers all and no
in Fig. 8). The last word of each sentence gets masked. Using
linguistic knowledge, some of the sentences get annotated with
forbidden words according to the theoretical linguistic literature.
For others, our goal is to measure prediction overlap between the
sentence pairs that vary by a single function word (e.g., All insects
have [MASK]. and No insect has [MASK].).

Feature curation: 'We extract the ten most likely predictions
for the masked words and obtain their embedding similarity to all
other words in the particular sentence. We aim to explore similarity
patterns concerning meaningful and meaningless predictions. Using
this approach, we aim to gain the first insights into the potential of
using similarity scores for prediction quality analysis.

Visualization: Masked predictions are displayed as rows in a
matrix visualization (i.e., ten rows for ten predictions as shown
in Fig. 8). We display the prediction’s probability on the left through
a horizontal bar. Next to the probability are placed tokens visualized
as colored rectangles. The rectangle’s color represents its cosine
similarity to the predicted word of the particular sentence. The
darker the color, the higher the similarity. On the right is displayed
the predicted word. To support the analysis of prediction overlaps
and prediction of forbidden words, we color the words that overlap
or are forbidden, respectively, in red color.

Findings: Using this approach, we can not only reproduce find-
ings by Kassner and Schiitze [18] regarding the high number of pre-
diction overlaps that suggest that models potentially ignore some of
the function words when predicting masked tokens, but we can also
see some evidence in the correlation between prediction meaningful-
ness and embedding similarity. In particular, as shown in Fig. 8, for
a sentence pair All insects have [MASK]. and No insect has [MASK].
the three overlapping (and meaningless) predictions for the second

A mom is not a [MASK]. A dadis not a [MASK].
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Figure 8: Embedding similarity can indicate situations where parts of the context (e.g., function words) impact the masked predictions less than
semantically rich content words. In the examples No insect has [MASK]. using the BERT model, the lowest similarity to the function word no is in
semantically wrong predictions. The example A mom is not a [MASK]. shows that predictions are influenced by semantically rich words without
considering the functional role of function words. More examples under https://function-words.lingvis.io/.
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sentence are those where the predicted work has the lowest similarity
to the word no. This might suggest that the negation in these cases
is ignored. This is an interesting future research direction to learn
how embedding similarity can be used as an indicator of masked
prediction quality.

6 DISCUSSION

Although many approaches for embedding explanations have been
developed in both computational linguistics and visualization com-
munities, there are many open research questions related to embed-
ding properties, capabilities, and limitations. With this work, we
aim to motivate researchers to keep working on further explanation
approaches for embedding contextualization tasks. Our descriptive
framework should help to structure new research questions by giving
an overview of potential feature- and data combinations.

The exploration of embedding properties, and the design of new
approaches, is still an open research challenge. Not only do some
current explanations generate contradicting results [29], but many
questions related to embedding contextualization are still not fully
answered. For instance, it is not fully clear how the model captures
the context, which properties are more prominent in embeddings
than others, whether all the learned properties are kept till the last
model’s layer, or whether some information gets overwritten due
to the characteristics of the model’s architecture (i.e., transformers).
One also could extend the embedding contextualization analysis
to single neurons. This is particularly challenging since their in-
terpretation is more restricted than, e.g., semantic concept analysis
presented in this work. Since more and more capable models are pro-
duced every day (e.g., ChatGPT?), the question of how to assess the
generated output quality gains an increased relevance also outside
the computational linguistics and visualization research fields.

7 CONCLUSION

We present a descriptive framework for word embedding explanation
tasks that relates data and features to tasks and users. We use the
framework as theoretical groundwork for a data processing pipeline
that we use to solve three different tasks related to word embedding
contextualization. Our work highlights the huge exploration space
for future research and should help researchers in designing their
embedding explanation interfaces.
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