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Fig. 1: Our workspace enables users in comparing text outputs generated by causal language models. We utilize a unified, ontology-
driven embedded space, where words are represented as dots and the generated sentences as trajectories connecting the words. We
follow the design guidelines by Gleicher [12] for comparative visualizations, and design visual multi-layer summaries of the generated
sequences and their clusters that allow the comparison of outputs created for two prompts or by two models.

Abstract—Causal language models have emerged as the leading technology for automating text generation tasks. Although these
models tend to produce outputs that resemble human writing, they still suffer from quality issues (e.g., social biases). Researchers
typically use automatic analysis methods to evaluate the model limitations, such as statistics on stereotypical words. Since different
types of issues are embedded in the model parameters, the development of automated methods that capture all relevant aspects
remains a challenge. To tackle this challenge, we propose a visual analytics approach that supports the exploratory analysis of text
sequences generated by causal language models. Our approach enables users to specify starting prompts and effectively groups the
resulting text sequences. To this end, we leverage a unified, ontology-driven embedding space, serving as a shared foundation for the
thematic concepts present in the generated text sequences. Visual summaries provide insights into various levels of granularity within
the generated data. Among others, we propose a novel comparison visualization that slices the embedding space and represents the
differences between two prompt outputs in a radial layout. We demonstrate the effectiveness of our approach through case studies,
showcasing its potential to reveal model biases and other quality issues.

Index Terms—Causal Language Models, Text Generation, Prompt Output Comparison

1 INTRODUCTION

Causal language models, such as the GPT (Generative Pre-trained
Transformer) family (i.e., GPT-2 [30], GPT-3 [4]), utilize self-attention
mechanisms and context windows to predict the most likely next token
given the preceding tokens in a sequence. These models learn statistical
patterns from large amounts of training data and use that knowledge to
generate text. These models have become state-of-the-art for diverse
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Natural Language Processing (NLP) applications. With the recent
advances of chat-based models such as ChatGPT1 or GPT-4 [28], they
have gained significant popularity, even among the general public.

Causal language models generate text sequences by relying heavily
on patterns seen in the training data, even if the information is incorrect
or misleading [7, 11, 41]. Due to quality issues in the training data,
the models are also prone to generate hate speech [41] and text that is
biased [22] toward social and gender-related stereotypes, which may
cause harm when used inappropriately. Thus, effective methods are
needed that provide insights into the generated text characteristics, to
enable the users detect potential issues, assess encoded stereotypes and
biases, and gain awareness of causal model potentials and limitations.
The assessment of model limitations, especially in the context of bias
analysis, is typically performed using comparative methods often fo-
cusing on the word-level granularity. In particular, the most common
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approaches for bias detection in causal language models (e.g., [22]),
similar to masked language models (e.g., [20]), are lexicon-based meth-
ods, i.e., the analysis is performed on pre-curated wordlists containing
stereotypical words such as “beauty” or “intellect.” The method com-
pares whether inputs describing one gender, e.g., female persons, are
more related to specific stereotypical words than those describing an-
other gender, e.g., male persons. Often, the bias becomes obvious only
through the relative comparison of multiple outputs (i.e., something is
encoded in one concept but not the other).

Since a wide range of issues can occur in model outputs, NLP
researchers might find it challenging to maintain a comprehensive un-
derstanding of the navigable patterns and their entirety. Visual analytics
methods are a powerful tool that can assist the exploration of such
patterns interactively and, potentially, help in detecting new, interesting
research questions for a deeper investigation. Although many visual
analytics methods exist that support language model investigation (e.g.,
their embedding spaces [3, 21, 34, 35], or attention mechanisms [6, 40]),
there is a lack of methods that visually compare outputs produced by
causal language models. To address this research gap, we introduce a
novel visual analytics approach supporting exploratory analysis of auto-
matically generated text sequences and their comparison. Our approach
allows the users to specify starting prompts interactively, effectively
groups the generated text sequences, and provides an overview of the
main themes associated with the input prompt. Following the NLP
research on bias analysis [5, 20], the comparative analysis is done on
the word-level granularity.

Our approach utilizes a unified, ontology-driven embedding space
as a shared foundation for the thematic concepts present in the generated
text sequences. We use this embedding space to create interpretable
sentence representations that are automatically grouped according to
their semantic similarity. Visual summaries are employed to pro-
vide insights into multiple levels of granularity in the generated data.
A global comparison layer offers a high-level view of the primary
themes associated with the input prompts. Here, we propose a novel
comparison visualization that utilizes the superposition design [13],
splits the embedding space into slices, and presents the differences
in two prompt outputs in a radial fashion. The cluster comparison
layer groups the generated sequences according to shared thematic
relationships. Finally, the close-reading layer presents the generated
sentences for close-reading.

To summarize, we present a visual analytics approach for exploring
text sequences generated by causal language models. Our approach
utilizes an ontology-based embedding space, incorporates multi-layer
summaries of the generated text and their clusters, and supports the
comparison of outputs created for two prompts or by two models. We
show the applicability of our approach through case studies.

2 RELATED WORK

In the following, we describe the prior work in sequence completion
analysis, word embedding visualizations, and visual approaches for
language model comparison tasks.

Sequence Completion Analysis Prior research has examined
biases and instances of generated texts that violate language norms [17,
27]. For instance, Nozza et al. [27] use a systematic template- and
lexicon-based bias evaluation methodology for six languages and finds
that models replicate and amplify deep-seated societal stereotypes
about gender roles. Lucy and Bamman [22] use topic modeling and
lexicon-based word similarity to explore gender bias encoded in the
GPT-3 model. They find that stories generated by GPT-3 exhibit many
known gender stereotypes, e.g., “feminine characters are more likely
to be associated with family and appearance, and described as less
powerful than masculine characters, even when associated with high
power verbs in a prompt.” Recently, Cheng et al. [5] have proposed
Marked Personas, a prompt-based method to measure stereotypes in
causal language models for demographic groups without using a pre-
defined lexicon. They show that GPT-3.5 and GPT-4 [28] contain a
high amount of racial stereotypes.

Embedded Space Visualization This paper introduces a visual
analytics tool designed to facilitate the comparison of text sequences
generated by causal language models. To accomplish this, we establish
an embedded word space as a theoretical and visual foundation for
our tool. Similar embedded spaces have been utilized by Bandyopad-
hyay [2], Liu et al. [21], and Boggust et al. [3]. A broad overview of
visual approaches utilizing a projection of word embeddings is given
in the recent STAR paper by Huang et al. [16]. The partitioning of the
embedded word space into semantic concepts through clustering draws
inspiration from the work of El-Assady et al. [8].

Visual Model Comparison Lately, there’s been a growing fo-
cus on tools that highlight the comparison of language models by
offering visualizations that display multiple models or outputs at the
same time. One such example is LMDiff, introduced by Strobelt et
al. [37]. This tool facilitates the visual comparison of probability dis-
tributions of language model predictions. Heimerl et al. [15] present
embComb, a tool that employs various metrics to assess dissimilar-
ities in the local structure surrounding embedding objects. Boggust
et al. [3] present Embedding Comparator, which compares models by
calculating and visualizing similarity scores for the embedded objects
based on their shared nearest neighbors. Sivaraman et al. [36] introduce
Emblaze, a tool that utilizes an animated scatterplot and incorporates
visual enhancements to summarize changes in embedding spaces. In
our previous work [34], we propose visualization methods that enable
the comparison of various human-interpretable concepts encoded in
adapted language models’ parameters. Additionally, our recent work
LMFingerprints [35] visualizes properties encoded in the vector repre-
sentations and supports comparisons between models and model layers.
According to our knowledge, there is a lack of visual methods for a
semantic comparison of causal language model outputs.

3 REQUIREMENT ANALYSIS

To design a visual analytics workspace, we gathered requirements
through a literature review and interviews with NLP and visual analytics
experts on text comparison tasks. We describe the gathered information
through Models and Data and Users and Tasks [25].

3.1 Models and Data
Causal language models are widely used to generate text outputs for a
given prompt (i.e., input sequence). The state-of-the-art models for text
generation are Transformers [39] that apply the attention mechanism to
create meaningful word representations. A typical input for a generative
language model is a starting prompt, i.e., a starting text sequence. The
model then predicts the most likely words to follow the prompt.

To analyze the generated text quality and potential issues, it is com-
mon to apply comparative analysis methods (see, e.g., [5, 20]). In
particular, it is common to juxtapose two models or two prompts that
have slight variations (e.g., by changing the gender) to analyze the
differences in their produced outputs. Such analyses are typically per-
formed by applying computational methods, where statistics on the
produced outputs are measured and evaluated (see, e.g., the related
work on bias analysis [17, 22, 27]). The evaluation is usually done
on word-level granularity, i.e., the methods measure whether specific
words occur in the text output. Since issues in text outputs may occur
in diverse forms, a fully automated assessment can be challenging. It
has been shown that slight variations of the input prompt can have a
substantial impact on the resulting text [1]. As Alnegheimish et al. [1]
show, simplified prompt sentences may increase bias. This motivates
the necessity for visual comparison techniques that help to explore the
generated text with respect to prompt output or model differences.

3.2 Users and Tasks
With the release of the ChatGPT model, the user groups that utilize
language models range from expert NLP/ML users to the general public.
The evaluation of the model outputs is particularly relevant for the for-
mer group of NLP and ML researchers, who aim to understand model
potentials and limitations. Thus, our target audience are researchers
who compare model outputs for, e.g., selecting the right model for a



Fig. 2: To design a unified embedding space that can be used to visualize the generated sentences, we represent words through (contextual) word
embeddings, project them in a 2D space, and apply a DBSCAN clustering algorithm to detect groups of words with similar embeddings. We then use
an ontology to label these clusters with common hypernyms. In the visualization, we display a subset of 4000 words, and by default show cluster
labels that do not overlap. The users can zoom in the space; the cluster labels are updated and the literal words are displayed in the final zoom level.

task or analyzing issues in the models’ inner workings. The analysis of
causal language model outputs includes two main tasks:
Task 1: Select the model(s) and provide starting prompts for the analy-
sis. The users define the inputs to the model, often tailored to specific
analysis questions (e.g., how models encode gender).
Task 2: Compare the generated outputs and their semantic/thematic
differences. The comparison can potentially be performed on different
output properties (e.g., syntax, word positions, parse trees). However,
most commonly, the analysis methods that assess model limitations
(e.g., biases [17, 22, 27], hate speech [41]) focus on semantic aspects,
i.e., which semantic concepts are represented in the prompt outputs.

4 DATA PROCESSING & VISUAL DESIGN FOUNDATIONS

In the following, we describe the data processing steps necessary for
building the visual analytics workspace for causal language model
output comparison and the main visual design considerations.

4.1 Unified, Ontology-based Embedding Space
Our goal is to create an interpretable representation of the generated
text sequences, i.e., the users should be able to interpret sequence
similarities and differences. For interpretability purposes, we build
a unified embedding space for encoding words’ relative positions to
each other and one global color encoding. Following the NLP research
on bias analysis [5, 20], we work on word-level representations rather
than sentence embeddings (e.g., Sentence-BERT [31]). Our first data
modeling step is to build an embedding space that represents a large
vocabulary and can be further extended to out-of-vocabulary words.

Word Embeddings There are two primary categories of word
embedding vectors: static vectors, exemplified by word2vec [24] and
GloVe [29], and contextual word embeddings derived from Trans-
former language models. Given that our approach aims to capture
thematic similarities and differences between generated text sequences
at the word-level granularity, both static and contextual word embed-
dings serve as viable alternatives. Depending on the chosen embedding
type, a sufficient dataset (or vocabulary) needs to be selected to create
the baseline embedding space. To utilize static embeddings, it is essen-
tial to construct a comprehensive word-level vocabulary that adequately
encompasses the diversity of a given language. In contrast, in the case
of contextual word embeddings, it is necessary to have a dataset that
encompasses various contexts in which words are used, i.e., sentences.
In the following, we show examples utilizing static word embeddings
extracted from the ConceptNet Numberbatch model2 for a random
sample of its 400,000 word-vocabulary (our sample contains 4000
words). Utilizing static word embeddings is especially sufficient for
closed-source models whose parameters are not openly available. The-
oretically, the same set of processing steps explained in the following
can be applied to contextual word embeddings in a comparable fashion.
One needs to consider though, that the embedded space will contain
one token multiple times when utilizing contextual word embeddings;
thus, the interpretation of the results, in particular in the radial design
(see subsection 5.1) is more challenging than using static embeddings.

2https://github.com/commonsense/conceptnet-numberbatch

Embedding Projection For visualization purposes, we apply the
UMAP [23] dimensionality reduction technique to bring the high-
dimensional embedding vectors to two dimensions that we use as x and
y coordinates in a scatterplot. We use UMAP instead of other dimen-
sionality reduction methods (e.g., t-SNE [38]) due to its performance
and efficient computation time. The parameters for the projection were
determined through a series of experiments, aiming to optimize their
fit to the specific dataset. The quality of the embedded projection was
assessed through observations by two visual analytics experts.

The word positions are used to assign words a unique color that is
used throughout the workspace. In particular, each word is assigned a
unique color based on its position in the 2D space using the semantic
color space approach, introduced by El-Assady et al. [9].

Spatial Clustering and Ontological Abstraction After obtaining
the word positions in the 2D space, we identify local neighborhoods,
i.e., clusters, using the DBSCAN clustering algorithm [10] on the
words’ 2D coordinates. The clusters are marked through convex-hulls
displayed around the word positions and colored in the average color
of the underlying words with decreased opacity.

One key aspect of the clusters is to provide an overview of their
respective thematic concepts. To achieve this, all words present in a
cluster are thematically categorized using an ontology. In our approach,
we utilize BabelNet [26] to extract hypernyms for each word in the
vocabulary. We identify the most frequent hypernym for each cluster
and use it as the cluster’s representative concept (i.e., cluster category).
The hypernym assignment based on the frequency is a naive approach
and can be extended to a more sophisticated method, e.g., through
a concept disambiguation technique [33]. Words that are not part of
any cluster are assigned a list of hypernyms (i.e., word categories). In
this way, we support three label types that help the user to interpret
the generated text sequences. Cluster Categories show the hypernyms
assigned to words joined in one cluster. Word Categories show hyper-
nyms for single words that do not belong to a cluster after running the
DBSCAN algorithm. Literal Words are words themselves generated by
the language model. An example of the different word abstractions is
shown in Figure 4. By default, we show the Literal Words, i.e., words
that have been used by the model in the generated output. The users
can change the word representation in the interface.

4.2 Text Generation
Before starting the exploration, the user selects the model(s) and inputs
the prompt(s) for the analysis.

Output Configuration Motivated by the related work [18, 19], the
output analysis is performed on a sentence-level. We provide support
for two types of outputs to enhance comparability. Firstly, the outputs
are limited to the first sentence and are generated for a specified number
of runs. Since text generation is not deterministic, this method provides
a set of sentences that are likely to occur, according to the model’s
parameters. The user can specify the desired number of sentences for
each input prompt through the interface. Secondly, the user can define
the maximum sequence length for a single prompt (e.g., 100 tokens);
the output is then segmented into sentences and presented visually.

https://github.com/commonsense/conceptnet-numberbatch


Fig. 3: Cosine distance of sentence embeddings extracted using
sentence-transformers/all-MiniLM-L6-v2.

Sentence Representation To facilitate the output analysis,
it is crucial to represent the generated text sequences adequately.
Our aim is to maximize the support for interpretability. Hence,
we utilize the word positions within the projected
2D space, connecting them with lines to form a
trajectory. This trajectory serves as a represen-
tation of the sentence for subsequent processing
steps. The similarity between two trajectories is
easily interpretable by exploring the word posi-
tions and their neighborhoods in the scatterplot
visualization. There are potential artifacts that can be created due to
the uncertainty in the projection (i.e., UMAP) itself. It means that,
theoretically, the projection might introduce similarities between un-
related sentences. Since our goal is to provide a relative comparison
between two outputs, the artifacts, if present, will be valid for both
prompts/models at the same time and, thus, they will become obvious
in the comparison visualization.

Instead of representing sentences by connected words, one could use
sentence embeddings to analyze sentence similarity. The bias analysis
is currently done on the word-level granularity [5, 20]. However, as
depicted in Figure 3, the sentence embeddings capture different context
properties, and sentences that utilize the same words are not necessarily
similar in the high-dimensional space. Moreover, in some cases, the
cosine distance between sentence embeddings can be unintuitive and
difficult to interpret. Although currently we support the word-level
granularity, the combination between sentence embeddings and word-
level representations could be an interesting topic for future research.

Sentence Clustering The generation of a substantial number of
sentences can impact the analysis and in-
terpretation process, as it may become chal-
lenging for users to gain a comprehensive un-
derstanding of the thematic differences. We
thus cluster the outputs into groups of sim-
ilar sentences and support the exploration of
both clusters and single sentences. In our
approach, the trajectories representing the
generated text sequences are clustered using
a hierarchical complete-linkage clustering
approach utilizing the Hausdorff distance [14]. The particular distance
value for the clustering can be specified by the users in the interface;
suggestions for an appropriate value (i.e., value that changes the pro-

Fig. 4: To explore a prompt output, the user can explore the sentence
trajectories displayed in the embedded space. The user can change the
data aggregation level, from cluster categories to the literal words. On
mouse over a word, the corresponding trajectories are highlighted and
sentences are displayed for close reading.

duced clusters) are provided in the interface. We cluster the trajectories
rather than the high-dimensional embedding vectors, since we aim to
provide an interpretable outcome, i.e., the users should be able to com-
prehend the cluster similarity in order to adapt the distance parameter.
Clustering sequences based on embedding vectors does not support
such a degree of interpretability.

Sentence Annotations To provide more versatile insights
into sentence differences, the sentences are annotated with their
sentiment. This feature is particularly valuable for bias analysis,
as it can reveal potential biases when the generated output ex-
hibits a more positive or negative tone towards a specific gender
type. We use a fine-tuned Transformer model from the Hugging-
Face repository3 for sentiment classification and show the sentiment
score for a sentence through a smiley-icon, as shown in the side-figure.
The user can specify the model to use through the interface.

5 MULTI-LAYER VISUAL ANALYTICS WORKSPACE

In the following, we describe the visual analytics workspace that en-
ables the exploration and comparison of text outputs generated for two
prompts or by two models. The main visualization of the embedded
space is two-dimensional, with words represented as dots and gener-
ated sentences depicted as lines connecting these dots. By default, we
display a subset of 4000 datapoints, represent clusters through convex
hulls and show cluster labels only for clusters that do not introduce
overplotting. The clusters are colored according to the average color
of the underlying words. The users can zoom into the space; the clus-
ter labels are updated utilizing the available space. In the final zoom
level, we display the literal words for a closer inspection. The different
degrees of zoom levels are shown in Figure 2.

While representing words and sentences in a unified embedding
space is easily understandable, visual overplotting becomes a challenge
when dealing with a large number of sentences. To address this issue,
we employ summary visualizations that offer a more comprehensive
view of the generated sentences, highlighting their similarities and
differences. This is achieved through a multi-layer approach, where
properties are presented at multiple levels of granularity. This approach
enables users to familiarize themselves with more abstract represen-
tations initially and gradually gain insights into more detailed single
instances, facilitating a progressive understanding of the data. In our
work, we follow the comparative visualization design guidelines by Gle-
icher [12]. In particular, we utilize two design forms, i.e., juxtaposition
and superposition, and apply interaction methods to filter data points
for closer inspection. To ease the readability of the visualizations, we
use positional encoding and display one output on the left-hand side
and the other – on the right-hand side of the screen. In visualizations
that use the superposition design, the summary of differences between
the two outputs apply the same positional encoding, i.e., the left-hand
side for one output and the right-hand side – for the other.

5.1 Global Comparison Layer

The first summary layer provides an overview of all sentences generated
for the particular input prompt(s). Here, our goal is to provide an insight
into the main thematic regions covered in the generated text outputs.

Single Output A single text output is displayed in a separate view,
where the words are connected through trajectories (see Figure 4). As
mentioned in subsection 4.1, we apply multiple techniques to show
the thematic labels for the generated sequences (i.e., Literal Words,
Word Categories, Cluster Categories). The user can switch between
the different categories to show either more abstract (i.e., hypernyms)
or concrete words representing the thematic concepts. By hovering
over a label in the visualization, all sentences that include the particular
word/category get highlighted and the text is displayed underneath the
visualization for close-reading. The user can exclude stopwords (i.e.,
common words with a poor semantic meaning) from the representation
to reduce the visual clutter.

3https://huggingface.co

https://huggingface.co


Fig. 5: We use a superposition design and place the two outputs for a comparison in a single embedded space. A radial design is used to summarize
their similarities and differences. In particular, we separate the embedded space into multiple slices using a similar approach to a pie-chart. The
created arcs for each slice summarize the corresponding slices, i.e., the visualization highlights which words are used in both prompt outputs (the
outer arc) and which only in a single output (in the inner arc, the left or right side).

Output Comparison We provide two designs for the output com-
parison task, utilizing the juxtaposition and superposition designs [12].
Juxtaposition: The most common visual design used for comparison
tasks is to place the comparable elements next to each other on the
screen. Visual highlighting can be used to support the user in detecting
similarities and differences in the two juxtaposed visualizations.

We utilize this design and place the two single output visualizations
next to each other on the screen and use visual highlighting techniques
to support the comparison process. Specifically, we enhance the label
sizes for labels that exclusively appear on one side of the outputs. This
approach enables the identification of output differences by drawing
attention to the labels that are unique to each side.

The juxtaposition design comes with limitations. Although it is easy
to detect global differences, e.g., when the two outputs cover different
regions in the embedded space, interpreting differences where the
changes are minor in the 2D space is difficult, i.e., when the outputs are
different, but the locations of the words deviate only slightly. Although
the highlighting of the words that differ in the two outputs help to
focus on specific regions in the visualization, one needs to fixate the
viewpoint to both outputs back and forth, which limits the readability
and memorization of the interesting aspects.
Superposition: Thus, to increase the readability and support a more
effective comparison of output similarities and differences, we design
a radial comparison visualization utilizing the superposition design
as shown in Figure 5. In particular, we first display both outputs
(i.e., sentence trajectories) in a single embedded space visualization.
Due to the potential diversity of the output that can be generated by a
language model for a single prompt, the summarization of the whole
space can be challenging. Thus, we separate the space into multiple

Fig. 6: The user can use the radial-design visualization to compare
text outputs for two prompts or one prompt created by two different
causal language models. By hovering over a word in the summary arc,
the corresponding sentences are displayed for close reading. Here:
the BLOOM model encodes stereotypical information about the female
gender. In particular, the model predicts that A woman’s job is to... care
for her family and to make sure that the family needs are met and be a
mother not a doctor or a lawyer.

slices and highlight concept differences for each slice separately. The
reason for creating slices is the ability to compare outputs in the local
neighborhood; when creating multiple visualizations, the users can
memorize concept locations and thus easily search for word occurrences
(e.g., mentions of family members in the bottom right corner).

The separation of the space must be reasonable and allow us to dis-
play the summary without affecting the interpretability of the projected
sentence trajectories. We place the summary around the projected space,
which is not overlapping the trajectories, yet is spatially connected to
the corresponding slice of the embedded space. The slices are created
using a similar approach to a pie chart. In particular, we scale the
embedded trajectories to fit in a given radius, and split the emerged
ring into multiple slices as shown in Figure 5. We then use the arcs
for each slice to display words for the two text outputs. In particular,
on the outer side of the arc, we display the common words in both
prompt outputs. We split the inner arc into two pieces and display the
unique words for the particular prompt output (i.e., the first output on
the left-hand side and the second output on the right-hand side). This
gives us an overview of output differences for the different slices and
allows to detect interesting words for exploration in a close-reading
view. In particular, the user can hover over the words in the arcs, and
the corresponding sentences are highlighted in the embedded space
as well as displayed next to the visualization for close-reading. The
color of the arc is determined based on the average color of the words
within the corresponding slice. To increase the distinction between the
common and unique words, the outer arc has a slightly more intense
color than the inner arc. To help to distinguish the two outputs, the
right-hand side has a more intense color than the left-hand side output.

5.2 Cluster Comparison Layer
The Global Comparison Layer offers a high-level representation of
thematic concepts. However, as the size of the generated sentences
increases, it can become challenging to maintain a comprehensive un-
derstanding of all the thematic variations. To address this, we introduce
the Cluster Comparison Layer, which presents the sentences grouped
based on the hierarchical clustering output described in subsection 4.2.

Single Output Within the Cluster Comparison Layer, users have
the ability to visually examine the clustering results (displayed in Fig-
ure 7). Here, the generated sentences are grouped based on their simi-
larity (i.e., trajectories in the embedded space). This layer showcases
the clusters organized according to their shared hypernyms and the
most common words in the generated text sequences. A heat map is
utilized to display the label coordinates in the embedded space, assist-
ing in the visual tracing of the displayed elements. Furthermore, the
sentiment distribution for the specific sentences within each cluster is
depicted through horizontal bar charts, providing additional insights
into the emotional tone associated with the clusters. By clicking on the
cluster, the user can inspect the sentences grouped within it as shown
in Figure 8 to adapt the Hausdorff distance if needed.

Output Comparison To facilitate the comparison between the
two outputs, we display the clusters for the two outputs simultaneously



Fig. 7: The cluster comparison view groups sentences in each prompt output into clusters based on the sentence trajectory similarity. This view gives
a better insight into the different thematic concepts for one prompt input. Additional annotations such as sentiment provides further insights into
potential biases in the model’s parameters. By clicking on a cluster, the underlying sentences are displayed for close-reading.

using the juxtaposition design. In particular, the clustering result for
the left output is displayed on the left-hand side of the screen; the
clustering for the right output is displayed on the right-hand side. To
ease the comparison between the different clusters, the user can sort
them based on their pairwise similarity (i.e., average similarity between
the underlying sentences within a cluster). Moreover, the clustering
result of the second output can be aligned to the ordered clusters based
on their pairwise similarity. To evaluate the cluster alignment, the user
can display connecting lines between the clusters of the two outputs
where the thickness of the line encodes the cluster similarity (as shown
in Figure 1). By default, these lines are hidden to avoid visual overload.

5.3 Close-Reading Layer
The Close-Reading Layer is designed to enable a more detailed exam-
ination of the individual sentences. Within this layer, sentences are
presented, emphasizing main hypernyms and offering insights into the
sentiment linked to each sentence. This view allows a more compre-
hensive assessment of the content of sentences individually. Words are
color-coded in alignment with their positions in the embedded space.
An example for close reading is shown in Figure 7.

6 CASE STUDIES

In the following, we show the applicability of the visual analytics
workspace through three case studies that explore the encoded stereo-
types, demonstrate model comparisons, and generate linguistic insights.
We describe the different insights through an imaginary analysis ses-
sion with an NLP researcher who selects the models and provides the
input prompts for the analysis. We explore properties in BLOOM
(bloom-1b3) [32], ChatGPT4 and Bard5 models.

6.1 Stereotype Analysis
In the following, we present two examples on how to use the workspace
for exploring gender-related and demographic stereotypes.

4https://chat.openai.com/
5https://bard.google.com/

Fig. 8: One cluster represents the most common word categories (i.e.,
hypernyms), a heatmap representing the word positions in the embedded
space and a summary of sentiment for the underlying sentences. In
order to verify the cluster quality, the user can inspect the trajectories by
clicking on the cluster; the Hausdorf distance can be adapted to change
the clustering result, if needed.

Gender-related Stereotypes In this case study, the user aims
to explore gender biases encoded in the BLOOM model’s parameters.
The user selects the model and inputs two prompts that differ by a
single gender-associated word, i.e., ‘woman’ and ‘man.’ In particular,
the user inputs The woman’s task is to... and The man’s task is to... to
trigger the model in generating associations to the two genders. The
user specifies the generation of 30 alternative sentences in the interface.

The user begins by exploring the global comparison view. By default,
the model’s outputs are displayed in the juxtaposition view, where each
sentence is displayed as a trajectory in the embedded space. For a better
comparison of the output differences, the user changes the view to the
radial-design, shown in Figure 6. The summary spaces (i.e., arcs) show
that both inputs (related to a woman and man) are associated with a
few common words such as ‘make’, ‘take’, ‘money’, ‘children’, ‘wife’,
‘care’. Women are associated with ‘housework’; men, in contrary, are
associated with words such as ‘help’, ‘earn’, ‘living’. By hovering over
the summary slices, the user inspects the underlying sentences. The
visualization reveals the model’s predictions, i.e., a woman’s job is to
be a mother a wife and a daughter, be a good mother and wife and she
has to do it well, and her job is to make her husband happy.

To explore the different contexts in more detail, the user switches the
view to the cluster com-
parison layer. As shown
in the side-figure, the
cluster view provides
a good insight into
the similarity between
the generated sentences.
According to BLOOM’s predictions, the man’s job is to make a living.
In particular, to earn it and if he doesn’t, he has no right to complain.

Most of the predictions related to women include the aspect of being
a mother and a wife. In comparison to women, who should take care of
the family and
children, the out-
puts for the man
suggests that the man’s task is to be a good father, but this output is
more literal. In particular, the model predicts that the man should be
a good father, said his wife who stood by the side of the bed. It also
shows the narrative impact of the training corpus of BLOOM, i.e., the
book corpus used to train the model.

Demographic Stereotypes In this case study, the user explores
demographic biases in the BLOOM model. In particular, the user
specifies two prompts A white male is likely to and A black male is
likely to to explore the model’s associations to the skin color. As shown
in Figure 10, the generated outputs have many words in common. For
instance, both outputs contain words such as ‘history’, ‘white’, ‘black’,
‘male’, ‘female’. There are, however, several specific differences. In
the output about while males, the model talks about ‘genes’, ‘species’,
‘smoke’, ‘prostate’. The output about black males include words like
‘genetics’, ‘population’. By inspecting the summary slices in the radial-
design in more detail, the user can observe that BLOOM generates
several outputs that are related to health conditions. To explore this
aspect in more detail, the user changes the view to the cluster layout and
analyzes the cluster outputs. The visualization shows that both outputs,

https://chat.openai.com/
https://bard.google.com/


Fig. 9: Cheng et al. [5] use the method ‘Marked personas’ to show that chat-based models encode demographic stereotypes. We can replicate their
findings using the workspace; the significant words detected by the authors for different prompts are visible in the radial-design visualization (marked
with a gray circle). By inspecting the outputs in the close-reading view, we can detect further differences for the ChatGPT and Bard models.

for white and black male, include words that hint at a comparison to
the other demographic group. In particular, the output for white male
contains a cluster that describes what a white male is more likely to
have/do than a black male. In particular, a white male is more likely
than a black male to have a family history of cancer and more likely
than a black male to have a history of smoking and to smoke more
cigarettes per day. In contrary, a black male is more likely to be more
than twice likely as a white male to have a relative with a history
of depression or be more likely than a white male to have a higher
probability of having a history of smoking.

6.2 Chat-based Model Comparison

In this case study, we replicate the findings by Cheng et al. [5] on how
chat-based models encode demographic stereotypes. The authors intro-
duce a prompt-based method called Marked Personas and show that
GPT-3.5 and GPT-4 contain a high degree of racial stereotypes. Prompts
used for the analysis are, e.g., Imagine you are a(n) [race/ethnicity]
[gender]. Please describe yourself. The authors compute significant
words for the different categories and show that prompts about white
females are associated with words like ‘blond’ and ‘beauty.’ Black
women are associated with words like ‘strong’ and ‘curly.’

Fig. 10: The comparison of the outputs for the prompts A white male is
likely to... and A black male is likely to... using the BLOOM model. White
male gets associated with ‘gene’, ‘smoke’, ‘prostate’; black male gets
associated with ‘genetics’, ‘population’, ‘child’. More insights into the
concrete contexts can be observed on mouse over the particular words.

We use a subset of prompts used for the experiments by Cheng et
al. [5] on ChatGPT and Bard models and analyze the model outputs
with our workspace. Our goal is to explore whether similar observations
with regard to the significant words can be detected using our interface.
We follow the approach by Cheng et al. [5] and generate outputs for
the prompt Imagine you are a black male. Please describe yourself.
using the ChatGPT and Bard models, followed by the prompt Imagine
you are a white female. Please describe yourself. posed to the same
models. That is, we focus on comparing the outputs generated by two
different language models for the same prompt. As shown in Figure 9,
the radial-design displays six significant words that were detected by
Cheng et al. [5] for each input prompt. For the input related to a black
male, the output contains significant words such as ‘black’, ‘deep’,
‘strong’, ‘community’, ‘coiled’, ‘resilience’. For the input related to
a white female, the output contains significant words such as ‘white’,
‘blue’, ‘fair’, ‘blonde’, ‘freckles’, ‘hazel’. Five significant words for
each output are included in the summary slices and are easily detectable
by the user; only ‘strong’ and ‘hazel’ are excluded from the summaries,
but are visible in the sentence trajectories. This observation confirms
that if the model outputs contain significant words, these will become
visible in the comparative radial-design since the summaries focus on
frequent words that are either common for both inputs or, especially
relevant here, differ for the two inputs. Thus, if there are differences,
these will become obvious in the comparative visualizations.

By exploring the generated outputs in more detail, we can identify
further model differences. In particular, for the prompt Imagine you
are a white female. Please describe yourself., the ChatGPT model
generates text that is more related to the woman’s appearance. The
model predicts that a white female possess fair skin with a hint of
warmth..., hazel eyes, etc. Bard, however, focuses more on personal
characteristics such as a woman being a social person, multifaceted
person, and usually described as being attractive but she doesn’t really
think about her appearance that much. It would be interesting to further
inspect such differences and their reasons, i.e., whether the reason is
the training data itself, or some of the pre/post-processing steps used
by the particular interface after the model has generated the output.

6.3 Linguistic Insights on Negation

Finally, we show a case study that demonstrates how we can utilize
the workspace to generate linguistic insights into a model’s ability to
capture the linguistic phenomenon of negation.

Research on language model capabilities and limitations has focused
on exploring different linguistic phenomena, including negation. Previ-
ous work has shown that language models (both masked and causal)
struggle with capturing the semantic constraints of negations [18, 19].
In particular, often, negation has a poor impact on the models’ predic-
tions. In other words, the predictions for inputs with and without a
negation are the same or highly similar [18].



Fig. 11: The BLOOM model generates thematically similar outputs for the prompts A woman’s job is to... and A woman’s job is not to..., whereby
both outputs are related to the woman being a mother and a wife. The main difference is the grammatical structure in which these concepts are used
(i.e., the used connector). In particular, A woman’s job is to be a mother and a wife, but A woman’s job is not to be a mother but a wife.

Using the global comparison view, the user explores the differences
in outputs generated for two prompts that differ only in an existence
of the negation ‘not.’ The user explores the prompts A woman’s job is
to and A woman’s job is not to generated by the BLOOM model. As
shown in Figure 11, there are a few concepts that are included in both
outputs. Especially the concept of being a family member – a mother
who is a wife and has a husband is strongly encoded in the BLOOM’s
parameters, both in prompts with and without negation.

When inspecting the predictions in the close reading view, it becomes
obvious that the model generates sentences that mention the same
concepts (i.e., mother, wife), but in different grammatical structures.
According to BLOOM, a woman’s job is to be a mother and a wife.
At the same time, a woman’s job is not to be a mother but a wife and
a housewife (see Figure 11). This observation is a good example for
the general public to increase their sensibility and understanding of the
model’s limitations. In particular, the generated sequences are likely to
occur in the training data but are not the ground truth and replication of
the real world. Thus, for the model it is similarly true that a woman’s
job is to be a mother and not to be a mother. The model has learned,
however, that it is common to use the grammatical structure of ‘not to
be something but something else.’

These examples also show that the negation has no strong impact
on the model’s predictions. The model learns specific concepts related
to a woman, i.e., her role in the family. If the model had learned the
meaning of the negation, one would expect the predictions to propose
a stronger contradiction to the family concept, since, according to the
theoretical linguistic literature, the negation introduces a grammatical
conflict. In other words, something cannot be true and false at the same
time. Further aspects on such grammatical constraints for function
word classes are summarized in our recent work [18].

7 DISCUSSION

In the following, we describe the limitations of the approach and discuss
interesting research opportunities.

7.1 Limitations
Slices in the Radial-Design The design of the radial visualization

has several advantages and limitations for comparing model outputs.
Thus, it proposes an interesting direction for future research. In par-
ticular, the method is simple and assures that the words within a slice
are related to each other since they occur in the neighborhood of the
2D space. Nevertheless, depending on the number of slices created
and the chosen starting angle for the slices, clusters in the embedded
space may become separated into two neighboring slices. Although
this is a limitation, its negative effect on the interpretation of the data
is not too pronounced, since the focus of the analysis is the relative
comparison of two text outputs. Therefore, if the two outputs contain
differences in the particular slices, these will become obvious in the
summary visualization.

Scalability The visualization of trajectories is limited with regard
to how many sentences can be displayed simultaneously. With an

increased number of sentences, it may be necessary to remove the
connecting lines and show them only on demand. Currently, to avoid
overplotting, we limit the number of keywords that are displayed in
the Global Comparison View. This restricts the insights that can be
generated; thus, it is important to explore the Cluster Comparison View
to gain a full picture about the output differences.

7.2 Research Opportunities

Extension of the Radial Design There are many potential exten-
sions of this design. First, an additional summary ring in the center
of the projected space can be added to capture the central cluster that
would otherwise become separated in multiple slices. This introduces
new challenges, since the summary ring would overlap the underlying
sentence trajectories; thus, one would need to find solutions for the
placement of the summary to avoid overlapping. Moreover, multiple
summary rings from the center to the outer borders of the embedded
space could be used to set the focus on the comparison aspect rather
than the original sentence trajectories. Future work could assess the
potential of the different design alternatives.

Interactive Embedded-Space Adaptation In order to avoid scal-
ability issues and problems that may occur due to limiting the number
of words displayed in the global comparison view, there is potential for
further extensions of the method, i.e. to adapt the displayed information
interactively. One could think of grouping (clustering) outputs before-
hand and displaying multiple radial-layouts for each cluster separately.
Thus, a comparison of only a subset of the generated sentences could
be supported at a time, but without restrictions of hiding some of the
words in the visualization.

8 CONCLUSION

In this paper, we introduced a visual method for comparing out-
puts generated for two prompts or by two causal language models.
Our approach leverages a unified, ontology-driven embedding space
as a common foundation for the thematic concepts present in the
generated text sequences. Using this embedding space, we gener-
ated interpretable sentence representations, which are automatically
grouped based on their semantic similarity. To provide a comprehen-
sive understanding of the generated data, we employed visual sum-
maries that offer insights at various levels of granularity. Through
multiple case studies, we demonstrated the effectiveness of our ap-
proach in generating new insights into how models encode stereo-
types and capture linguistic phenomena. More information under:
https://prompt-comparison.lingvis.io/.
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