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Figure 1: We structure the color map creation process into distinct stages: Based on the task, we (1) aggregate the data, (2) then
choose a method to produce vector representations. (3) These representations can be combined based on a chosen unit of analysis.
Afterward, we (4) use a projection method to map the units’ high-dimensional vectors to 2- or 3-dimensional coordinates, which
(5) can be assigned to color. The result is a semantically meaningful and informative color map. At each step of the pipeline, we
are confronted with several design choices, which depend on the data, task, and processing steps. Some of the possible methods
available at each stage are represented at the bottom. The highlighted path represents an exemplary sequence of design decisions.

ABSTRACT

Current visual text analytics applications do not regard color assign-
ment as a prominent design consideration. We argue that there is a
need for applying meaningful colors to text, enhancing comprehen-
sion and comparability. Hence, in this paper, we present a guideline
to facilitate the choice of colors in text visualizations. The semantic
color mapping pipeline is derived from literature and experiences in
text visualization design and sums up design considerations, lessons
learned, and best practices. The proposed pipeline starts by extract-
ing labeled data from raw text, choosing an aggregation level to
create an appropriate vector representation, then defining the unit
of analysis to project the data into a low-dimensional space, and
finally assigning colors based on the selected color space. We argue
that applying such a pipeline enhances the understanding of attribute
relations in text visualizations, as confirmed by two applications.

1 INTRODUCTION

Color is one of the most prominent visual variables in visualiza-
tion design. Mapping data variables and attributes to semantically
meaningful colors is among the main challenges for visualization
creators [13]. From mapping concepts to colors based on cultural
references [15,20] to mapping them based on image queries [32,39],
researchers have suggested a multitude of techniques to bestow
meaning to color. However, we need an alternative color assignment
technique for applications where concepts do not have an inherent
color association or where the distribution of color assignments
would not make full use of the available color space.

This challenge is quite apparent for text data visualization. Text
data is usually processed using computational linguistics algorithms
before it is visualized [23]. After processing, the raw (unstructured)
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text data is commonly transformed into (structured) hierarchical
and high-dimensional data. For example, frequent concepts, topics,
emotions, named entities, or other attributes can be extracted and vi-
sualized. Most commonly, these attributes are assigned colors based
on a categorical color mapping that does not depict the inherent
relation between the attributes. Surveys of text visualizations [17]
show the lack of thoughtful color assignment in existing approaches.

As an example, let us consider an application that analyzes the
thematic structure of a document collection and assigns a topic to
each document. These topics are represented by some keywords
as descriptors, and each document can also be represented by a
set of keywords. Each document and topic keyword is, in turn,
represented by an embedding vector. In this example, we have
multiple levels of information, where similarities can be defined
along the abstraction levels but also across different levels. Using a
categorical colormap [12] to differentiate the topic groups would not
allow for enough nuance to express similarities for the other levels.

Generally speaking, for text visualizations, we often want to
depict the following relations using color: (1) the similarity across
computed categories and groupings, e.g., topics or entities; (2) the
similarity between keywords, n-grams, and word vectors; and (3) the
similarity between a category and a keyword. An effective color
assignment would allow for the investigation of these three types
of relationships, facilitating the localization of individual attributes
based on their color, as well as the comparison of different attributes.

To address this challenge, in this paper, we propose a guideline
for semantic color mapping. It is described in the form of a pipeline
that deduces best practices from several color assignment experi-
ments and literature. We showcase the applicability of the proposed
guideline in the context of text visualization applications in Sect. 4.
The operationalization and in-depth evaluation of the pipeline is a
subject of future work.

Contribution – We contribute a detailed description of the multi-
stage process of semantic color mapping and a discussion of lessons
learned, and best practices based on two application scenarios.



2 RELATED WORK

Color considerations for text can often be seen using the context
of the case or task at hand in combination with semantic resonant
colors of words. Semantic resonant colors map object words to their
real-world colors, e.g., yellow for banana or blue for sky. Based on
the assumption that meaningful colored words improve task solving
performance, Lin et al. [21] conducted a study to investigate the hy-
pothesis and propose colors for such context words. They found that
semantic resonant color assignment significantly improves the chart
reading time in their study. An example using semantic resonant
colors for words or, in this case, categories is NEREx [9]. They use
such resonant colors to support users in exploring entity graphs.

Not only are semantic resonant colors favorable in some situa-
tions, but other features are also essential for some situations without,
e.g., meaningful resonant colors for words or in which the semantic
resonant colors do not include the context of the task correctly [25].
Gramazio et al. [12] present various metrics with which a color scale
can be generated, neglecting semantic resonant colors for words.
But, their metrics could be further extended using such resonant col-
ors to generate more meaningful color maps, including the context
for words. Also, other considerations like the affection for colors
are crucial properties for users [1]. Bartram et al. [1] demonstrate
how small changes for color maps can steer the affection of colors
for users into calm and positive. An extension of the technique with
additional colors can lead to more focused semantic resonant colors.

Towards extending previous color scales, Steiger et al. [37] eval-
uate various 2D color maps for their usage as spatial color scales.
They use various measures to investigate which properties the se-
lected 2D color maps support for further analysis tasks in user ap-
plications. For example, Buchmüller et al. [3] use the previously
discovered properties and further investigate the possibility of apply-
ing these color maps to fish swarms for collective behavior analysis.
Primarily, 2D color maps with white or black in the center are
unfavorable for such a task. When combining the previous consider-
ations, we have to focus on the related work towards spatial color
maps. Thus, such a finding is essential for 2D color maps in spatial
tasks like those presented in this paper using 2D or 3D projections.

Sect. 3 presents all stages of our proposed pipeline in detail, incor-
porating further related work of each stage. Due to the scope of the
paper, we do not include an extensive overview of color perception
or color assignment research beyond the presented considerations
and examples. However, our first introductory related work gives
a few considerations for text and the use of colors for them. We
identify a need for a semantic color mapping pipeline for 2D or
3D projections of words considering semantic resonant colors or
spatial color maps to investigate the differences in the projections.
The proposed pipeline in this work is further inspired by the argu-
ments for enhancing the relative comparison of data objects using
two-dimensional color assignments [37].

3 SEMANTIC COLOR MAPPING PIPELINE

In order to structure the design space, we present a pipeline
encompassing the necessary steps to get from available data to
semantic color labels. Fig. 1 shows the four distinct steps of the
workflow we identified: (1) Aggregating the underlying data in
a task-dependent way; (2) choosing a method for transforming
the aggregated text data into numerical vector representations; (3)
choosing an appropriate unit of analysis; and subsequently (4)
applying a projection method. Finally, we can (5) apply the resulting
coordinates onto a color map. At each step of the pipeline, we have
a set of available design choices which influence the outcome. In
the following section, we want to briefly highlight the key design
considerations and possibilities.

Methodology – This paper aims to structure best practices and
design consideration for color assignment in visual text analytics

applications [18]. To come up with the proposed pipeline, we first
identified a set of available methods from literature, as discussed
in the previous section. Second, we analyzed the properties
and characteristics of available methods. Lastly, based on our
experience, extensive discussions, and literature reviews, we came
up with the pipeline and collection of methods at each step. This
paper points out task-specific considerations, which are further
exemplified in application scenarios in Sect. 4.

Pipeline Dependencies – This section describes each step of the
proposed pipeline independently. However, as the steps are not
independent, we also provide considerations for the design as a
guideline. That being said, further research and studies are needed
to map out the best practices for design choices of pipeline steps.

3.1 Aggregation Level & Vector Representations

Text data can be analyzed in different granularity levels, depending
on the use case at hand. The granularity levels typically include
words/tokens, sentences, utterances, paragraphs, etc. On the token
level, methods such as YAKE [6] allow the automatic extraction of
important keywords from the textual data. Independent on the used
level, its representation is usually numeric, captured in the form of a
(potentially) high-dimensional vector. The reason is the ability to
apply machine learning methods to such a numerical input. In the
following, we showcase different forms of a vector representation
that can be used to characterize text data.

Aggregation Level Considerations
Input: Raw or labeled data.

Output: Aggregated data.

Design Choices: Aggregation levels, e.g., token/word, sentence,
paragraph, document

Dependencies: Analysis task

There are multiple ways of representing text through high-
dimensional vectors [14]. We can use one of the early approaches
that include One-Hot Encoding Vectors that encode word occur-
rence in a document and Count Vectors that encode word frequency.
Different weighting techniques such as Term Frequency – Inverse
Document Frequency (TF-IDF) [27] can be used to represent the
word’s importance in a document amongst a collection of docu-
ments. These early approaches represent words in a standalone
manner though, i.e., the vectors do not encode any relationship be-
tween them. To represent word relationships, one can use more
recent approaches that are built on a different learning assumption,
i.e., words that occur in the same context are similar and thus should
be represented through similar vectors. This principle is used in, e.g.,
Co-Occurrence Vectors [4, 5] and neural network based learning
techniques such as Word2Vec [24] or ConceptNet [34]. The latter
produces static word embeddings capturing the words’ meaning, but
lacks the ability to distinguish between polysemous words (words
with multiple meanings).

The most recent advances in NLP are deep-learning-based lan-
guage models (e.g., BERT [7]) that produce contextualized word
embeddings, i.e., a unique embedding vector for each word’s occur-
rence in the context. Before using contextualized word embeddings
in a text application, we first need to make several analysis-related
decisions. Language model architectures typically consist of multi-
ple layers. Since the information that gets captured in the different
layers varies [29,33], one has to decide which layer is appropriate for
a given use case. We can use embedding vectors from one specific
layer or combine embeddings from multiple layers by averaging
or concatenating them. For some use cases, one can also extract
embeddings from context-size zero, which sometimes are used as



replacements for static embeddings [19]. The list of possible vec-
tor representations does not end with the development of language
models, though.

Depending on the application scenario, one can create further
representation encodings, e.g., topic distributions [10] as well as
diverse scoring techniques that capture text characteristics, or use
WordNet embeddings that are built from semantic networks [30].
For other granularity levels, we might need to either average word
level vectors or come up with new alternatives. For instance, to rep-
resent sentences, we can use neural networks that produce sentence
embeddings [28].

Vector Representations Considerations
Input: Aggregated text data

Output: High-dimensional vectors

Design Choices: Traditional document vectors, static word em-
beddings, contextualized word embeddings, sentence embeddings,
topic distributions, WordNet

Dependencies: Aggregation level

3.2 Unit of Analysis & Projection Methods

The following step is the translation from potentially high-
dimensional vector representations into low-dimensional 2D or 3D
coordinates. Besides choosing the actual dimensionality reduction
method, we also have to consider the task-dependent unit of analysis.
Based on our intended task, we need to apply a secondary aggrega-
tion step to combine vector representations into topics, concepts, or
sentiments. For example, we might average the vectors of multiple
tokens belonging to a concept to get a shared score representation
for the whole concept. Alternatively, we may aggregate the 2D/3D
coordinates after the dimensionality-reduction step. Later in this
section, we discuss that the second approach is beneficiary if we
have a growing data corpus.

Unit of Analysis Considerations
Input: High-dimensional vectors

Output: Aggregated sets of vector data

Design Choices: Aggregation based on chosen unit of interest,
e.g. topic

Dependencies: Aggregation level, task

To translate the high-dimensional vectors into low-dimensional
1D/2D or 3D coordinates, we have the choice between a wide range
of available projection techniques [11, 22]. Methods can be classi-
fied based on two main characteristics: linearity and preservation of
neighborhood. Linear methods are simple, computationally efficient,
and easy to interpret, but cannot capture distributions in complex
higher-dimensional manifolds. Non-linear ones require more careful
optimization of parameters, but work better for complex manifolds.

Depending on the output of the previous step, one also has to
consider that different projection methods are applicable to differ-
ent input types: Either high-dimensional samples, or an available
distance metric. One might therefore choose a method based on the
availability of respective input data from the previous step. Many
methods can be used with high-dimensional input samples, but well-
known approaches like MDS, t-SNE, and UMAP only require an
available distance metric [11].

A prime example of a linear and global method is Principal
Component Analysis (PCA). MDS is the most well-known global
and non-linear method. As the term suggests, the advantage of

both methods is that they preserve global structure at the possible
expense of local discriminability. In particular, one might expect
good global coverage of the space, but similar data points might
be projected onto very similar coordinates, and might therefore not
be easily distinguishable from each other. Methods like t-SNE,
UMAP or PBC are part of the non-linear and local methods. These
methods are better at untangling local structures at the expense of
global structural fidelity. This trade-off between global consistency
and local discriminability might depend on the particular task. A
recent surveys finds that PBC, t-SNE, UMAP and IDMAP produce
consistently good results [11], both quantitatively and in terms of
human perception, for 2D projections. Another survey found that t-
SNE, UMAP and neural auto encoder-based approaches produce
the best results for 3D projections [38].

When the tasks demand adding additional data points over time,
e.g., for progressive topic modeling [10], we want to ensure con-
tinued stability of the 2D projection, which requires that we do not
recompute the whole embedding, but instead embed additional data
points into an existing embedding. Especially for non-linear embed-
ding and projection methods, averaging vector representations can
lead to larger jumps in the projected coordinates. Therefore, it is
preferable to average the final low-dimensional projected coordinates
instead. This ensures higher stability of the resulting coordinates
and subsequent colors.

As a final post-processing step, we can apply a linear transforma-
tion like stretching along coordinate axes to fit the resulting projec-
tion to the shape of the chosen color space, e.g., a 2D rectangular
color map, or a three-dimensional complex color space.

Projection Method Considerations
Input: Set of high-dimensional numeric vector representations

Output: 2D/3D coordinate per input

Design Choices: Local vs. global, linear vs. non-linear embedding
methods, algorithm hyperparameters

Dependencies: Vector representations, color space

3.3 Color Mapping

In the next step, a color map is created, so that each of the projected
2D points is matched with a color. Zhou et al. give a general
overview of color spaces in visualization [42]. Compared to the
traditional use case of color maps in, e.g., scatter plots [41], the color
in a semantic color map does not encode an external attribute such as
frequency or importance. Instead, it only represents the similarity of
points in the projection space, usually using the euclidean distance.

Choosing an appropriate color space is essential for extracting a
good semantic color map from it. Many different color spaces, such
as RGB, HSV, CIELab can be used to represent color values. For a
semantic mapping, the colors of the color space should represent the
similarity between projection points, meaning that close-by projec-
tion points are represented using colors that are perceived as similar.
To be able to distinguish points that are far away, the space needs
to contain many distinguishable colors - therefore the extracted 2D
map should cover many different hues, and not be restricted to, e.g.,
only purple and greens.

Once an appropriate color space is found, we still need to create
a mapping from the color space to the projection space. The easiest
way to create such a map is to take a slice of the higher dimensional
color space to create a fixed 2D color map. Steiger et al. offer a
visual tool for the exploration of different precomputed 2D color
maps [37]. They introduce multiple quantitative measures, e.g., per-
ceived color distance, and color map properties such as perceptual
linearity and number of distinguishable colors. Bremm et al. employ



Figure 2: Semantic Concept Space Application [8]. On the left, we display the concept projection in the color space; on the right, the semantic
concept space visualization, showing various concepts and their topics in a unified space.

a 2D semantic color map to compare descriptors, and base it on a
slice of the RGB color cube, as their goal was to have high-contrast
colors [2]. Steiger et al. use four colors as corner points and inter-
polate between them to create a 2D color map [36]. Each corner
of the 2D map is assigned a color, equalized across intensity and
saturation, and all other positions are interpolated using the CIELab
color space. We will present two 2D example applications using
semantic color maps in Section 3.

One big challenge for creating these semantic color maps is that
simply taking a slice of a 3D color space cube might result in areas
where the saturation is very low or uneven. Further, different color
hues at the same saturation level are perceived differently by humans,
as observed by Steiger et al. [37]. The outline of the 2D projection
does not necessarily have to be a rectangle or ellipse - it could
also contain empty regions without points. To keep regions of the
projection space as separated as possible, it might make sense to
sample the color map to match the distribution of the projection.
Adaptive sampling of the color space, as proposed by Koutrouli
et al. [16] or Nardini et al. [26], allows for more evenly perceived
saturation levels on most positions on the 2D map. It also helps to
maintain small but well-distinguishable regions on the map, with
smooth transitions between regions. Adaptive color maps can also
support users that might be afflicted with vision-based deficiencies,
as suggested by Waldin et al. [40].

Color Map Considerations
Input: 2D/3D coordinate per input

Output: Color per coordinate

Design Choices: Color space (e.g., RGB, HSV, CIELab), color
perception (e.g., proximity, cultural meaning), space coverage

Dependencies: Coordinate positions, task

4 APPLICATION SCENARIOS

In the following, we present two application examples that utilize
the proposed semantic color mapping pipeline.

4.1 Semantic Concept Spaces

In Semantic Concept Spaces [8], we proposed a tool to visualize
concepts and their topics in a unified space. The goal was to create a
semantic concept space visualization using 2D projections of word
embeddings. Words from a given corpus were filtered based on their
Part-Of-Speech tags, enriched with semantically similar words, on

the token level. We extracted vector embeddings for all tokens using
ConceptNet [34]. All collected words were then projected to 2D
using t-SNE. As we also wanted to visualize the relation between
topics and their descriptive keywords, topics were represented using
the embeddings of a selection of the topics’ important keywords, by
aggregating the t-SNE positions to a single position for each topic.
Using an agglomerate hierarchical clustering, words were aggre-
gated based on their 2D position and high-dimensional similarity,
and assigned to a concept hierarchy of three ranks. Words on the
highest rank were represented using gray color, and used to create
Voronoi cells that indicate global groups of concepts. Each concept
of the middle rank was assigned a color, based on an underlying 2D
semantic color map Fig. 2. We chose a slice of the CIELab color
space, at a luminosity of 60 percent, similar to Steiger et al. [37].
Words in the lower ranks (keywords) inherited the color of their par-
ent concept. On one hand, this allowed users to quickly see which
concepts are similar to each other, as close concepts have similar
colors. On the other hand, keywords might have another color than
their direct neighbors, showing then a mismatch between the high-
dimensional similarity of words and their closeness according to the
2D projection. The concept space showing all three hierarchy ranks
can be observed in Fig. 2.

4.2 Topic Model Icicle

We implemented a visual analytics system for continuous topic
model refinement in a streaming system [35]. The main visualization
is shown in Fig. 3. To determine topic colors, we start at the token
level, extracting the top 20 keywords using YAKE [6]. We chose to
operate on the token-level as topics are typically evaluated through
their descriptive keywords–hence, we wanted keyword changes to
be reflected in the topic’s color. We then extract DistilBert [31]
embeddings for the descriptor keywords, and project them onto
the color map by Bremm et al. [2] using UMAP. To determine the
final topic color, we compute the weighted average position of the
topic’s keywords, using the YAKE keyword scores as weights. We
aggregate the UMAP positions rather than the DistilBert vectors to
ensure that the final result is within the bounds of the previously
computed UMAP projection. To optimize the color assignment,
we remove frequent, domain-specific keywords with little semantic
information, which has two benefits. First, it reduces potential
distortion in the UMAP projection by reducing the number of data
points. Second, removing semantically uninteresting words means
that the limited number of available colors can be better distributed
across the available topics. First, it ensures that keywords with more
descriptive content can be projected with less distortion. Second,



Figure 3: Topic Model Refinement Application [35]. On the left, we display the keyword distribution in the color space; on the right, the
sankey diagram showing topic development through color changes.

it keeps these keywords from taking up room in the color map and
leaves more colors available for other keywords and concepts.

5 DISCUSSION

Based on our experience utilizing semantic color mapping in the
presented applications, in this section, we discuss important design
considerations and best practices.

5.1 Design Considerations

We discuss three design considerations for the pipeline.

Task Support – The main consideration for using the proposed
pipeline is to figure out which tasks can be supported by using such
color mapping. In particular, which unit of analysis will be used to
anchor the color assignment and how is the data distributed for this
analysis level, i.e., are there distinct clusters, etc.

Unit of Analysis Distribution – One of the decisive criteria for
the effectiveness of the color assignment is the distribution of the
attributes that are mapped to color. If the attributes do not equally
cover distinct areas in the color space, then the resulting visualization
will not make full use of the available colors. In particular, if the
attributes are mainly clustered in the middle of the space, they might
end up being assigned a non-expressive color, e.g., gray or white.
On the other hand, having balanced clustered throughout the space
can result in meaningful color mapping, which, in turn, could be the
basis of a discrete or categorical color assignment.

Subjective Similarity – Color distances and similarities are subjec-
tive, culture-dependent, and perception-dependent [15]. Considering
for whom, where, and in which context a visualization is designed,
is crucial for the choice of color space. In some languages and
cultures, certain color shades can not be distinguished or named as
easily as in others [15], influencing the detection of differences in
color assignment. Taking such issues into account will determine
the inclusivity, accessibility, and effectiveness of the visual design.

5.2 Best Practices

We discuss three best practices based on our application experiences.

Projection and Color Space Match – To make use of the full
spectrum of the color space, the projection (shape) has to match the
color space (shape). If they do not align, some areas of the color
space might not be covered by any data points, such as in Fig. 3. To
address such issues, rotating and scaling the projection or the color
space to align them could allow for a better use of available colors.

Incremental or Streaming Analysis – In many applications, ob-
jects could be progressively added to the visualization. Thus, vi-
sualization designers need to consider how adding objects to the
projection space would skew the vectorization and color mapping.
For example, the new vectors might be projected outside the color
space, or they might end up cluttered in one area, e.g., in the middle
of the color space. Recalculating the last steps of the semantic color
mapping pipeline would solve this issue, but cause a discontinuation
to the existing colors in the visualization. Allowing for manually
triggering color reassignments could avoid issues resulting from
continuously adding objects to the color space.

Color Perception – One of the most important issues to consider
when using this pipeline is that some objects might be mapped close
to each other in the space, resulting in color similarities below the
just-noticeable-difference. In addition, due to perception issues,
such as color blindness and others, users might face difficulties
distinguishing areas in the used color space. Allowing users to
choose from a list of colormaps would empower them to pick the
best perspective based on their understanding and perception.

6 CONCLUSION

In this paper, we have presented a pipeline for semantic color map-
ping, as a guideline for meaningful color assignment in visual text
analytics applications. Our proposed approach is based on a multi-
step process that starts with a task-based extraction of labels from
the text data; followed by the determination of the aggregation level
to generate vector representations; afterward, we define the unit of
analysis to aggregate and project the vectors; finally, the projection
is used for a color assignment based on given color space. In ad-
dition, this paper presented two application scenarios that utilize
the proposed pipeline. Finally, we concluded with a discussion of
design considerations and best practices to guide users.

In the future, we plan to operationalize the proposed pipeline by
implementing it as a service or library to support practitioners to im-
plement our identified considerations in their works. In addition, we
aim to study the design considerations and tradeoffs of users directly
in a user study. The study empirically can show the influence of
semantic resonant colors for words against the spatial differences of
2D color maps. Thus, such a study can provide guidance for text vi-
sualization designers based on empirical results. These results can be
further investigated and improve the design considerations and best
practices for the proposed pipeline with additional operationalization
in the to-be-developed service or library.
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