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ABSTRACT

We introduce ExpLIMEable for enhancing the understanding of
Local Interpretable Model-Agnostic Explanations (LIME), with a
focus on medical image analysis. LIME is a popular and widely
used method in explainable artificial intelligence (XAI) that provides
locally faithful and interpretable post-hoc explanations for black box
models. However, LIME explanations are not always robust due
to variations in perturbation techniques and the selection of inter-
pretable functions. The proposed visual analytics application aims
to address these concerns by enabling the users to freely explore and
compare the explanations generated by different LIME parameter
instances. The application utilizes a convolutional neural network
(CNN) for brain MRI tumor classification and allows users to cus-
tomize post-hoc LIME parameters to gain insights into the model’s
decision-making process. The developed application assists machine
learning developers in understanding the limitations of LIME and its
sensitivity to different parameters, as well as the doctors in providing
an explanation to machine learning models, enabling more informed
decision-making, with the ultimate goal of improving its robustness
and explanation quality.

Index Terms: Explainable AI—Visualization—LIME—Healthcare

1 INTRODUCTION

With the increasing use of machine learning (ML) methods for
decision-making and problem-solving, there is a growing need for
interpretable and explainable ML techniques. These techniques
emerge from a necessity to design intelligible ML systems com-
prehensible to humans and provide explanations for predictions
from opaque models, i.e. CNNs. The terms interpretability and
explainability are still commonly used interchangeably in the litera-
ture [22]. However, we would like to make the following distinction:
Interpretable ML focuses on developing models that are inherently
interpretable, while explainable artificial intelligence (XAI) aims to
provide explanations for existing black-box models [19, 22]. These
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research areas aim to establish trust, causality, fairness, and privacy
to facilitate a comprehensive understanding of models’ decision
process and mitigate biases and errors [19, 22, 30]. However, the
lack of consensus among different XAI methods creates confusion
for users, as the explanations are typically method-dependant [24].

One widely used technique in the field of explainability is the
Local Interpretable Model-Agnostic Explanations (LIME) algo-
rithm [26]. It is a widely-used XAI method that has been extensively
discussed in the literature and that finds rich application to image
data [12], including medical ones [4]. LIME is a post-hoc method
that provides local explanations using human-interpretable represen-
tations, even for complex models that are otherwise non-intelligible
to humans. However, LIME itself is not always robust, as the expla-
nations can depend on factors such as the perturbation techniques
or the type of interpretable function employed. Extensive research
has been conducted to examine the stability of LIME and explore
pipelines that enhance our comprehension of its behavior [39], as
well as study its biases [32].

In high-stakes applications like healthcare, where machine learn-
ing plays a crucial role [18], explanations of ML models’ decisions
become vital due to the associated risks. Given the wide usage of
LIME across high-risk disciplines and its lack of robustness and
consensus, we propose ExpLIMEable to enhance the understand-
ing of LIME. For the design of the interactive visual interface, we
draw inspiration from previous works dedicated to improving the
understanding of explanations [33]. Specifically, we introduce Ex-
pLIMEable to address a medical image analysis challenge, brain
MRI tumor classification. Within this context, we aim to provide
a workflow that allows users to freely explore various explanations
generated by different LIME parameter instances for the predictions
of a large, black-box CNN model. ExpLIMEable is designed to
serve two distinct purposes. Firstly, it supports machine learning
developers in comprehending the limitations of LIME, as well as
its sensitivity and robustness to various parameters. This under-
standing can guide developers toward configuring LIME in a more
robust manner. Secondly, it supports clinicians in their decision-
making process by providing an explanation for machine learning
predictions.



The main contribution of this work is the development of an in-
teractive framework that allows machine learning experts to explore
and understand the pitfalls and robustness of LIME in healthcare
applications, particularly, in MRI brain tumor classification. Ex-
plainability holds great importance in healthcare, as the predictions
of ML models heavily influence medical decisions. We extensively
analyze various segmentation approaches within LIME and intro-
duce a novel dimension reduction step to the local perturbations
of LIME to evaluate the impact on the robustness of the method.
Additionally, we provide a simplified pipeline for clinicians to obtain
an explanation for their machine learning prediction.

2 BACKGROUND

2.1 Explainable AI
Explainable AI refers to the field of research focused on developing
AI systems that can provide understandable and transparent explana-
tions for their decisions [14]. It aims to bridge the gap between the
complexity of AI algorithms and the need for human comprehensibil-
ity. Various methods have been proposed in the literature to achieve
explainability. Rule-based approaches, such as decision trees, gen-
erate explicit rules that can be easily interpreted. Model-agnostic
techniques, such as LIME [26] and SHAP [20], approximate the be-
havior of black-box models by assigning feature importance scores,
enabling post-hoc explanations [15]. Gradient-based methods mea-
sure how much each feature contributes to the final prediction based
on their gradient. Finally, counterfactual explanations, measure how
much individual feature values would have to be altered to flip the
overall model’s prediction [19, 22, 30]. Specifically in the healthcare
domain, XAI has found applications in diagnostic systems, where it
can provide clinicians with explanations for their predictions, aiding
in decision-making and fostering trust [21,35]. Despite their benefits,
XAI models have limitations. The pursuit of comprehensive expla-
nations leads to a trade-off between accuracy and interpretability.
At the same time, the lack of standardized evaluation metrics and
consistent definitions of explainability hampers unified frameworks
and poses additional challenges. Additionally, ensuring that explana-
tions are tailored to different user backgrounds and contexts remains
an ongoing research area as there is wide variability between expla-
nation methods. Nonetheless, XAI holds the potential to enhance
human-AI collaboration, increase trustworthiness, and facilitate the
adoption of AI systems in critical domains. Numerous tools have
been developed to take care of visualization approaches to represent
explained data and architectures and improve the interactions with
XAI users. For a comprehensive overview of visualization solutions
to XAI methods, we refer the reader to [5] and [17].

2.2 Local Interpretable Model-agnostic Explanations
2.2.1 LIME algorithm
LIME is a perturbation-based local XAI technique that explains
the behavior of a predictive model for a given input image [26].
Thus, the technique is model-agnostic but data-dependent. LIME
works based on interpretable representations of the input, e.g. fea-
tures/columns in tabular data. Likewise, for image classification, it is
common practice to use superpixels, larger image patches of similar
pixels, as interpretable features. LIME consists of the following
steps to obtain the explanations for a target model:

1 Identify interpretable features: For a given input image Fig. 2
a) the superpixels are computed via segmentation (compare
Fig. 2 b)).

2 Sampling for Local Exploration: The neighborhood of the
input image is sampled and perturbation of the original image is
generated. There exist multiple alternatives for this generation
and in this work, we will focus on zero replacement, i.e. for
each perturbed image the color of randomly drawn superpixels
is turned to black (Fig. 2 c)).

3 Approximate target model: For each perturbed image, the
output of the target model is computed. Later, an interpretable
model is fitted locally on these samples. In this work, we fit a
ridge regression model to approximate these outputs.

4 LIME explanations: Based on the coefficients of the locally
fitted interpretable model, the importance of each superpixel is
estimated for the prediction of the model. In Fig. 2 d) the green
regions have the strongest positive influence on the prediction.
Red regions on the other hand support a different classification.

2.2.2 LIME sensitivity
The steps described in Sect. 2.2.1 are sensitive to the design choices
and can introduce biases at different levels. In step 1, the choice of
segmentation will influence the final superpixels, hence, the space of
features to explain the method. e.g., if a superpixel covers a large re-
gion, sub-regions that potentially have different semantic meanings
are therefore indistinguishable. The choice of superpixel replace-
ment in step 2 will affect the final explanation as the generated local
perturbations will be at different distances in space from the image
of interest. At the same time, the effect of certain replacement meth-
ods might differ when treating almost uniform superpixels compared
to superpixels with largely heterogeneous textures. Additionally, if
perturbations are sampled uniformly, possible correlations between
features are disregarded. Finally, step 3 assumes that there exists a
linear model that can fit the local decision boundary, which can bias
the final performance of the explanation method.

a) b) c) d)

Figure 2: LIME explanation: a) input image; b) segmented image;
c) example of a perturbed image in the local neighborhood; d) final
explanation (green segments: contribute towards the classification,
red segments: support a different prediction)

3 RELATED WORK

There are numerous examples in literature that explore the use of
XAI techniques in an interactive fashion, focusing on providing
explanations to machine learning models or on understanding the
explanation methods themselves. For example, the explAIner frame-
work [33], provides a comprehensive pipeline for model understand-
ing, diagnosis, and refinement. It incorporates global monitoring
and steering mechanisms, such as provenance tracking and reporting,
to enhance trust and confidence in the explanations. The system
includes various explainers, both low- and high-abstraction, to cater
to different user groups. Through its iterative workflow, this frame-
work enables users to gain insights into the models, diagnose issues,
and refine them effectively using a wide range of XAI techniques.

In recent years, there has been a significant amount of effort dedi-
cated to investigating the robustness of XAI techniques. Many works
report the lack or insufficient coherence in these methods. For exam-
ple, Alvarez-Melis and Jaakkola [6] highlight the negative effect of
small input variations on the stability of the LIME explanations. On
the same notion, Bansal et al. [7] report a high sensitivity of LIME
to its hyperparameters. Finally, Dieber and Kirrane [10] mention a
lack of global interpretability of local LIME explanations.

Based on these findings and criticism, various algorithmic
changes to LIME have been proposed. Some of the most recent
extensions include S-LIME [42] that aims at determining the number
of local perturbations required to guarantee stability and B-LIME [2]
that incorporates bootstrap sampling in an effort to improve stability



and local fidelity. Despite the vast array of new ideas and extensions,
no comprehensive solution has yet been found.

As many open challenges continue to stay unanswered and many
relationships remain unintelligible to humans, recent works advo-
cate the use of visual diagnostics to assess XAI explanations. For
instance, Goode and Hofmann [13] develop and discuss various
visualizations, including feature heatmaps, explanation scatter plots,
and assessment metric plots, to analyze the consistency in LIME
explanations across different observations and investigate the fidelity
of the local model approximation. Based on these visual diagnos-
tic tools Goode and Hofmann [13] encourage further research to
improve the effectiveness and reliability of LIME as an explana-
tory method, which will be the focus of our study. Related work
has focused on interacting with LIME. ExplainExplore [9] revised
the LIME method by utilizing both linear models and shallow tree-
based models as surrogate models. It enables local explanations for
specific instances through interactive display of generated samples
and direct manipulations. Moreover, [40] enhanced the process of
generating training samples by utilizing deep generative networks,
and [8] modified LIME to calculate average feature contributions for
providing explanations specifically tailored to a selected subgroup.

In our pipeline, we focus on different parameters of the LIME
algorithm and the user interaction with these, including a novel
sampling strategy. Previous works have explored sampling alterna-
tives before, such as [31] which proposes a generative adversarial
network to generate the sampled perturbations for the locally fitted
model for explanations. Following a similar line, Visania et al. [38]
propose OptiLIME, a framework that provides freedom to choose
the best adherence-stability trade-off level, basing the sampling on
geometrical properties and a new optimization scheme on tabular
data. However, we focus on the original implementation of LIME
and its application to medical data, extending the OptiLIME idea of
assessing the robustness, but based on different segmentation and di-
mension reduction steps, without modifying the overall optimization
scheme and staying faithful to LIME. Overall, we address a similar
problem as previous works trying to find a stable LIME configura-
tion. However, we provide the user with an interactive framework
with an enhanced understanding of the method’s parameters and
provenance tracking for better comprehension, following a similar
line as the explAIner framework [33], in our case targeting solely
LIME to solve healthcare applications.

4 TUMOR CLASSIFICATION FOR DECISION SUPPORT

4.1 Users and Tasks
The application is catered to machine learning experts with a basic
understanding of LIME who are interested in investigating its
sensitivity to different modeling assumptions and who are keen on
improving the robustness of LIME explanations.

The ExpLIMEable pipeline offers a flexible visual interface that
allows extensive exploration, analysis, and innovation. Thereby, it
combines the central notions of the explAIner framework [33]: un-
derstanding, diagnosis, and refinement. In particular, the dashboard
allows for:

1 Exploration: The user can analyze different explanation re-
sults with a comprehensive overview and comparative dash-
board.

2 Customization: The user has the freedom to include new
explanations based on user-desired configurations and modify
modeling assumptions to steer explanations.

3 Provenance tracking: The user can keep track of the explo-
ration of parameters and of all explanations in time.

We address the challenges of LIME and the parameters by keep-
ing humans in the loop, with a more comprehensive user scenario
described in Sect. 6.

4.2 MRI data, processing and guidance
The dataset used in the proposed XAI pipeline is the Brain Tu-
mor MRI Dataset from Kaggle, which was also part of a Coursera
course [1]. The dataset includes 2D MRI frames for three types of
tumors: glioma, meningioma, and pituitary. It includes MRIs of
healthy brains, with 931, 942, 906, and 506 images, respectively.

During the pre-processing phase, we filter duplicate images and
detect the outline of the skull with the Python OpenCV library. We
crop the images based on this contour and resize them to 240x240
pixels. We use 80% of the images for training the ML model and the
other 20% for validation. Finally, the test set comprises five images
per class. The example image in Figure 2 is part of the test set.

We pre-compute selected test cases to facilitate a seamless user
experience and responsive explorations. These computations include
segmentations of MRI images, lower dimensional embeddings of the
perturbed images, and corresponding LIME explanations. However,
due to resource constraints, we limited the pre-computations to
six images only: three meningioma tumors and three examples of
healthy brains. For each image, we computed a total of 36 different
explanations using LIME, which will be shown in the dashboard
to serve as user’s guidance for parameter exploration. Furthermore,
we pre-compute a total amount of 500 parameter combinations
per image, which are mapped to a lower dimensional embedding
using UMAP [23] to provide an overview of possible explanations.
Overall, this structure allows the user to freely interact with the data
and generate new examples based on their own input. The designed
interface improves user guidance by providing a flexible dashboard
with extensive data visualization and provenance tracking, detailed
in Sect. 5.2.

4.3 Machine learning model
The predictive model we use in the backend is based on the
EfficientNet-B1 architecture [34]. The model was pre-trained on
ImageNet [29] and later fine-tuned for 30 epochs on our dataset
using TensorFlow. The final model achieves a balanced accuracy
of 97.9% on the validation dataset and all test images are classified
correctly. In order to ensure meaningful interactions with the visual
interface, the predictive model has to be reasonably accurate to yield
sound explanations in combination with LIME.

4.4 LIME implementation refinements
In this work, we explore various configurations of the LIME algo-
rithm based on the four steps described in Sect. 2.2.1. Firstly in
Step 1, we investigate different segmentation algorithms and their
influence on the resulting superpixel geometries to uncover the po-
tential biases that the segmentation introduces. These algorithms
include: Felzenszwalb [11], Slic [3], Quickshift [37] and Water-
shed [25]. Secondly, between steps 2 and 3, we introduce a novel
dimension reduction approach to select specific perturbations of
LIME. Here, all perturbed images are transformed to a lower di-
mensional space and clustered based on embedding distance. Later,
only samples in the cluster of the original image are chosen to carry
out the explanations in Step 3. This way, we aim to select the most
informative local perturbations for a more stable, knowledgeable
explanation. We explore three well-known dimension reduction tech-
niques: UMAP [23], t-SNE [36], and PCA [27]. With this approach,
we avoid a uniform sample selection and hinder potential biases in
the correlation of the data.

5 VISUAL ANALYSIS WORKSPACE

The developed platform is available at http://b1-dimensionality-
reduction-for-lime.course-xai-iml23.isginf.ch/.

5.1 Layout of the Interactive Dashboard
The interactive dashboard consists of two distinct and separate
pipelines. The so-called ”Preselected image” and an ”External up-

http://b1-dimensionality-reduction-for-lime.course-xai-iml23.isginf.ch/
http://b1-dimensionality-reduction-for-lime.course-xai-iml23.isginf.ch/
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load” branch. In both scenarios, users can navigate through various
stages, and at the top of the page, there is a stepper that serves as a
visual guide indicating past, present, and future steps. Throughout
the dashboard, there are two buttons to the left of the stepper that
allow to navigate forward or backward within the pipeline. Fig. 3 1
shows the stepper as well as the entrance points for both pipelines.
For all phases of the pipeline, an initial onboarding setup introduces
the user to the functionalities of the page and provides brief explana-
tions of each step. Additional ? buttons are scattered throughout
the interface to explain selected algorithms. In all intermediate steps,
the panel on the left side shows the history of the current pipeline,
e.g. the currently chosen MRI and its segmentation (compare Fig. 3
2 or 3 left). Please note that the background colors throughout

the dashboard are within a range of calming and desaturated blue
tones to avoid an over-saturation of the interface. This choice is
made considering the interface’s inherent complexity. Other col-
ors are selected based on an optimized color palette by Wong [41]
considering color vision deficiency.

5.1.1 Pipeline 1: Preselected images
This first branch is the main pipeline and it includes four different
steps: image selection, explanation, segmentation, and reduction,
with a potentially endless loop from reduction back to explanation, as
laid out in Fig. 1. The user, an ML expert, starts with image selection,
which currently allows choosing one out of six pre-processed images,
and selects ”next” in the navigation panel.

Explanation Exploration
On the Explanation page, the user is invited to an exploration of
different LIME explanations for the classification of the selected
MRI. The explanations are based on different combinations of seg-
mentation and dimension reduction methods coupled with different
parameter settings, described in Sect. 4.4. The display is arranged in

different rows, also called axes. Each of these rows varies only one
parameter at a time to depict its influence on the final explanations.
Fig. 3 4 shows the segmentation axes on the left and the axes for
the dimension reduction methods on the right. The user can freely
select and investigate each explanation. In order to improve the nav-
igation through the numerous provided examples, each explanation
is mapped with UMAP from the image space onto a point in the 2D
space and summarized in a scatter-plot (see Fig. 3 4 left). For more
details please refer to the provenance tracking in Sect. 5.2. This
allows the user to keep track of the remaining, unexplored space.
In order to improve the user experience, the user can rearrange the
visual interface by moving and resizing all axis components within
the dashboard to match individual preferences. It is intended that the
user investigates and compares different configurations and analyses
their proximity via the scatter plot. After exploration, the user can
move on to the next step of the pipeline to compute new, custom
explanations based on the last selected reference explanation which
is always displayed in a designated panel (see Fig. 3 4 ).

Segmentation
During this step, various segmentation algorithms can be selected.
The corresponding parameter values can be adjusted via sliders. The
user can continuously change it until reaching the desired outcomes.
Fig. 3 2 shows an example of a segmented MRI with the selection
of the segmentation method and parameters.

Reduction
The last step of the workflow is the optional step of dimension re-
duction. The user can decide to skip this step and continue with
the standard LIME pipeline. However, it is encouraged to explore
the influence of dimension reduction. Once the user proceeds with
a segmented image from the previous step, the perturbed images
are transformed into a lower dimensional space based on the user’s



choice. This embedding is used to select only the closest perturba-
tions for the explanation, as described in 4.4. The central component
of the reduction page shows the result of the dimension reduction
in the form of a scatter plot. The color coding highlights which
perturbations would be part of the following explanation (Fig. 3 3 ).

Explanation loop
After finishing the dimension reduction step, the user is taken back
to the explanation and exploration step where the newly added ex-
planation is now displayed. Additionally, this explanation is added
to the scatter plot for the user to compare the new explanation with
the pre-computed examples and to reason about its reliability. Ide-
ally, the user stays in a continuous loop of Explanation, Exploration,
Segmentation, and Reduction until the entire space of all possible
explanations, depicted in the scatter plot, is fully explored and until
the user is satisfied with a specific configuration or neighborhood
of configurations. All of the computed new explanations are added
in a new panel on the explanation page for improved provenance
tracking and guidance (see Fig. 3 4 top right). At the explana-
tion/exploration step, the user always has the option to re-do (button
on the top left) and potentially choose a new image during image
selection or change to the ”user upload” branch.

5.1.2 Pipeline 2: External upload
The ”external upload” branch starts with the user uploading their
own image. This branch is an extension to the main Pipeline 1 and
does not yet include the exploratory map. The workflow in this
branch consists of image selection, segmentation, dimension reduc-
tion, and explanation (see Pipeline 2 in Fig. 4). In this branch there
are no pre-computed explanations as user-uploaded data cannot be
anticipated in advance, hence there is no comparative map among
different parameters. Hereafter, the clinician can make use of this
simplified Pipeline 2 in the default setting to acquire an explana-
tion for a prediction made by an ML model. Moreover, focusing
on the main user group, ML experts, we enable users to compute
new explanations using the different segmentation techniques and
dimension reduction approaches proposed in Sect. 4.4, granting
them the freedom to explore. For now, we do not perform any sanity
checks concerning the validity of the uploaded data and consider it
the user’s responsibility to upload sensible data close to the model’s
original training data. The user can walk through and explore the
steps of segmentation and dimension reduction and investigate the
respective influence by reviewing their final explanations (see Fig. 3
5 ). The user can upload new images to continue to explore. This

allows the user to verify, their own data, findings, and results from
interacting with the main branch on pre-computed samples. In future
versions, we plan to compute an explanation overview in the same
manner as the current main branch. This could be done by simply
informing the user about potential waiting times, and allowing to
work in parallel sessions until the computation is complete. Once
finalized, this branch would be able to guide the user through the
same exploration as the main branch. The current deployed version
using the provided link is a preliminary prototype and only Pipeline
1 works reliably.

5.2 Provenance tracking
Provenance tracking in our study is accomplished using two ap-
proaches. Firstly, as briefly introduced in Sect. 4.2, we employ
UMAP to map the set of pre-computed explanations to a lower
dimensional embedding. Within this embedding, we introduce a
trajectory view that enables users to select explanations from an ex-
ternal image grid and navigate through the explanation space using
an arrow as a guide (see Fig. 3 4 detail). This trajectory view facil-
itates an understanding of the explanation’s sensitivity toward each
parameter. As the user traverses through new explanations in the
pipeline, each iteration adds a new data point to the 2D embedding,

and the trajectory follows this new point. To prevent overplotting,
the trajectory map can be discarded at any point in time.

In addition, we incorporate provenance tracking in the visualiza-
tion of the explanations. Whenever users generate a new explanation,
it is automatically displayed in a dedicated panel in the interface and
can be selected as a reference for subsequent explorations. While
users can explore in an infinite loop, for user-friendliness, only up
to 9 images are displayed at a time to avoid overcrowding. Once
the limit is reached, each new image replaces the oldest one, yet all
images are still included in the 2D exploration map. Thanks to the
flexible panel layout, the user can rearrange the components to bring
the past history closer to any other desired component. The inter-
face is designed to support users in exploring the space of possible
explanations, while the integration of provenance tracking enhances
the narrative by preserving a record of past explorations.

6 USER SCENARIOS

We highlight the practical use of ExpLIMEable based on two
user scenarios that are developed around different analysis tasks,
focusing on pipeline 1, the main platform in ExpLIMEable. We
refer to Fig. 3 for visual examples of the described use cases.

Understanding the sensitivity of LIME through Exploration
This scenario describes a user who experienced ambiguous
explanations by LIME and now wants to understand why the
explanations do not align with their mental model and how the
different hyperparameters influence the final explanation. At the
start, the user receives onboarding prompts that ease the first contact
with the dashboard. The user wants to explore different explanations
and selects one of the pre-computed images (Fig. 3 1 ). Arriving at
the exploration page (Fig. 3 4 ), the user follows a second set of
onboarding information and reads it carefully. At any moment, the
user can go back and forth between the onboarding information in
case some components remain unclear. After familiarizing them
with the exploration page the user now has a good overview of
the capabilities of the dashboard and starts to explore different
pre-computed explanations. While going through the different
explanations the user keeps track of the trajectory via the scatter
plot (Fig. 3 4 ). After a while, the user notices a small distinct
cluster of explanations that they have not explored yet. Using the
color coding in the scatter plot and tracing the trajectory the user
can find the corresponding parameter set and starts to investigate.
In this case, this cluster contained images segmented into large
superpixels each spanning considerable portions of the brain. As
a result, LIME indicated that the majority of the brain scans were
positively contributing to the tumor classification. To the user, this
is less intuitive since they also seem to include healthy tissue. Thus,
these explanations were skipped by the user initially. Before moving
on, the user notes down the critical parameter range. The user
now wonders about the influence of the segmentation around the
tumor region. Therefore, they start to add custom explanations with
different segmentation methods (Fig. 3 2 ). Some of these combine
the entire tumor in one superpixel and others are designed to divide
the tumor into several superpixels. One tentative takeaway is that
LIME seems to perform more robustly if the tumor is captured in
one large superpixel rather than several smaller ones. The user notes
their findings and continues with another pre-computed image.

Improving LIME’s robustness by customized explanations
In the second scenario, the user already went through the first explo-
ration stage and is now driven to improve the robustness of LIME.
The user is aware of challenges arising from out-of-domain predic-
tions and thus downloads the original training dataset. Afterward,
the user begins to upload (Fig. 3 1 ) new images to ExpLIMEable
to probe if the findings translate and generalize to other examples.
Curious about the dimension reduction feature (Fig. 3 3 ) the user
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extensively explores the influence of the selected local perturbations
on the resulting explanations (Fig. 3 5 ). Based on these findings, it
is envisioned that the ML expert then implements changes to LIME
in an effort to make the algorithm more robust.

7 DISCUSSION

In this study, we have developed a tool that we believe offers sig-
nificant value to understanding the use of LIME, despite its in-
herent complexity. To enhance user experience, we have invested
efforts into improving the tool’s aesthetics, incorporating visually
discernible colors, and implementing features such as multiple prove-
nance tracking paths and on-boarding guides. We argue that includ-
ing an unlimited loop within the interface offers substantial benefits,
enabling users to navigate the system more effectively and derive
greater value as their learning curve in terms of usability can be ex-
tended indefinitely. The addition of dimension reduction represents
a novel contribution, and we intend to further explore this aspect to
enhance the functionality of LIME. This platform will be of great
use to machine learning experts, as it facilitates their comprehension
of explainability, critical in our medical application and beyond.
Given the increasing deployment of models in everyday tasks and
the growing regulatory requirements on mandatory explanations, we
consider our platform a valuable asset in this evolving landscape.

Regarding limitations, we believe that this tool can provide great
value for clinical decision support but Pipeline 1 still requires vast
simplifications to make the full system translatable. Currently, only
Pipeline 2 can be used by clinicians. In general, the quantitative
evaluation of XAI methods is challenging due to a lack of agree-
ment and standardized metrics. At this stage, we do not provide a
quantitative metric to compare different evaluations. However, this
would be needed to conclude the absolute effect on robustness and
whether the dimensionality reduction is beneficial. Existing frame-
works to evaluate classification could serve as the basis for further
steps, i.e., comparing the predictions after removing the features that
contributed most based on different XAI methods [16, 28]. During
segmentation and dimension reduction, the user is shown a range
of recommended parameters. For now, these are constant for all
images. Providing individual parameter ranges for each image, e.g.
based on histogram data, could improve user guidance.

In terms of future work, we would like to expand the interactions
during the dimension reduction step. Moreover, conducting a com-
prehensive evaluation user study, with questionnaires and surveys,
will provide valuable feedback and insights, to understand how users
handle the explanations. Additionally, expanding the pre-computed
dataset beyond the current six images will be beneficial for gener-
alization. As the next steps, incorporating parameter exploration
for the ”upload branch” will offer users complete freedom in their
explorations. However, this comes with the challenge of handling
out-of-domain scenarios, which could be circumvented by retraining

the CNN with the correct distribution. Regarding the stakeholders
in the future, we aim to assist clinicians by providing a better, more
robust understanding of the model, to make more informed decisions
with a potential optimal configuration. This user will not need to
understand the machine learning components but rather select the
parameters that yield a faithful explanation aligned with their mental
model. We are aware of the challenge of adapting the system but we
believe that having this tool will help to incentivize the transition of
ML to the clinics. The current dashboard focuses on image data as it
is a relevant use case of LIME. However, it could be adapted to other
data types, i.e., tabular data or signals. Instead of the segmentation
step, we would have an alternative perturbation method to study,
i.e. adding random noise or removing data points. However, the
dimension reduction step would remain unchanged. Visualization of
the new data types would be replaced with tables or plots. Lastly, we
have focused on LIME, as one of the most used XAI methods. How-
ever, a similar platform could be developed for other XAI models
like SHAP [20]. At its core, it considers all possible combinations
of features to allocate contributions. We believe that this platform
can be extended to its most used variation, KernelSHAP [20], which
is equivalent to using weighted linear regression in LIME with a
specific kernel. Hereafter, one could study the effect of perturba-
tions and dimension reduction with our framework, modifying the
optimization to a kernel-weighted linear regression problem.

8 CONCLUSION

In conclusion, the increasing use of machine learning techniques in
decision-making has created a demand for explainable ML models,
especially in high-stakes applications like healthcare. One widely
discussed explainable technique is LIME, which is model-agnostic
and provides locally interpretable explanations. However, LIME
itself is not always robust, and the quality of explanations can vary
based on the parameters and perturbation techniques used. To ad-
dress this issue, we propose a tool that enhances the understanding
of LIME and allows users to explore different explanations. We
focus on the specific application of brain MRI tumor classification
and provide a workflow that enables machine learning developers to
gain insights into the model’s behavior. Additionally, we introduce
a novel approach to sampling in the perturbation space. By applying
dimensionality reduction to such perturbations, we aim to select
more reliable instances for a more robust explanation. With the help
of this tool, users can explore the explanations generated by differ-
ent LIME instances, providing insights into the system’s limitations,
sensitivity, and robustness with a smooth narrative keeping track of
provenance and explanations of tasks at all steps. With a compre-
hensive overview, the tool guides users toward an optimal, faithful
explanation aligned with their mental model. Overall, our study
contributes to the field of XAI by addressing the lack of robustness
in LIME explanations and providing a practical tool for enhanced
understanding and decision-making in medical image analysis.
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