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Figure 1: Overview of our proposed Visual Analysis application. (A) Variable Selection Search bar to select lab measurements. (B)
PCA BiPlot that supports similarity search in participant and measurement space. (C) Variable Distribution Plots for every selected
variable show the distribution of all participants. (D) PixelPlot displays the activity of participants in everyday life.

ABSTRACT

The complexity of intervention studies to assess physical activity
(PA) is increasing, resulting in vast amounts of data being recorded
in laboratory settings. Recent studies extend datasets with measure-
ments outside the lab using wearable devices, allowing for a bridge
to be built between the lab and real-life applications. Such het-
erogeneous, multigranular datasets impose various challenges for
data analysis and visualization, and require tailored approaches to
support domain experts. Contrarily, it enables data-driven hypoth-
esis generation, which is particularly valuable in interdisciplinary
contexts where theory-driven approaches fall short due to a lack
of well-established theoretical foundations. While lab conditions
are extensively handled in existing visual interfaces, measurements
in everyday life situations are often neglected, yet have an essen-
tial impact on the capturing of PA. To facilitate exploration of this
data, we propose a visual analytics application consisting of mul-
tiple linked views comprising a BiPlot, Variable Distribution plots,
and a dense-pixel visualization allowing experts to generate novel
interdisciplinary hypotheses based on laboratory and everyday life
measurements. We evaluate our application by conducting an ex-
pert study with an end user of the application, showcasing the ap-
plication’s benefits to support experts in solving tasks regarding ex-
ploration, pattern identification, association, and comparison.

Index Terms: Visual Analytics, Physical Activity, Intervention
Studies, Multigranular Visualizations.
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1 INTRODUCTION

Promoting physical activity (PA) through behavioral interventions
is an essential aspect in health research, as the WHO identified
physical inactivity as the fourth leading cause of global mortal-
ity [20]. Traditionally, intervention studies are designed to test
preexisting hypotheses using controlled pre-, post-, and follow-up
measurements of a specific variable across an intervention and con-
trol group.

In recent years, a shift towards more sophisticated study setups
that grow in complexity and scope has become apparent. Often,
substantially more data than required is collected to test the ini-
tial hypotheses [2], resulting in complex datasets that are high-
dimensional and heterogeneous, comprising variables that differ
in type (e.g., numerical, ordinal, categorical), temporal resolution
(e.g., discrete lab visits vs. continuous tracking), and measure-
ment context (e.g., controlled laboratory tests vs. real-world ob-
servations). While this increased complexity imposes challenges
for data analysis, the diversity of these datasets opens up new op-
portunities for data-driven hypothesis generation methods, offering
a complement to the predominantly employed theory-driven ap-
proaches [24].

Visual Analytics (VA) approaches have demonstrated their po-
tential for hypothesis generation by integrating computational
methods with interactive visual representations [27, 15]. Involv-
ing PA researchers as domain experts in these human-in-the-loop
analysis processes supports the discovery of new patterns and inter-
vention strategies beyond established theoretical models.

A number of studies have already been conducted in the PA
domain to investigate how behavioral, physiological, and environ-
mental factors can increase activity levels and improve health out-
comes [12, 11, 8]. Given the multifaceted nature of PA, its quan-
tification remains challenging and a broad variety of measurement
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methods exist [30]. While interactive VA tools on intervention stud-
ies mostly rely on lab-based assessments [29, 3, 1], PA also plays a
vital role outside the lab in everyday life activities. Understanding
the interplay between laboratory-based measures and everyday life
behavior provides a possibility to assess the real-world effective-
ness of interventions, yet remains underexplored in current visual
analytics solutions.

The study Promoting Physical Exercise in Lab and Life (Pro-
PELL) [4] evaluates the effects of a lab-based jump training in-
tervention on the promotion of PA in a 21-week randomized con-
trol trial (RCT). In addition to various physiological and psycho-
logical measurements conducted in the lab at three time points
(baseline, post-intervention, and follow-up), participants answered
weekly questionnaires and wore smartwatches throughout the study
period. This study design enables the integration and assessment of
both episodic lab measurements gathered from different disciplines
and longitudinal, real-world behavioral data, offering a broader and
more holistic perspective on the promotion of PA.

To support the exploration and analysis of such a heterogeneous,
multidimensional dataset, we derive analysis tasks from existing lit-
erature in the public health domain and propose a visual analytics
application tailored to support intervention researchers in PA. Our
approach enables domain experts to explore the available data, as-
sess the effectiveness of the intervention, investigate inter-variable
relationships, and generate new hypotheses based on trends ob-
served across both lab-based and real-world data. We evaluate our
application in an expert study that illustrates how analysts interact
with the visualizations and demonstrates insights that can be de-
rived using our approach.

2 RELATED WORK

The data analyzed in this paper stems from a RCT conducted to
evaluate a public health intervention; hence, our work builds on
VA approaches for analyzing and visualizing such data to support
domain experts in drawing evidence-based conclusions.

In their survey on Visual Analytics in the public health domain,
Preim and Lawonn [22] outline commonly used tasks, require-
ments, and visualization techniques, and they further indicate a lack
of evaluation of public health interventions in their research agenda.
To address the challenges of underlying heterogeneous data often
encountered in cohort studies, Steenwijk et al. [29] propose a con-
ceptual data structure of domains, features, mappers, and studies
coupled with an interactive data exploration environment consist-
ing of scatterplots, PCPs, and time plots. In a similar fashion,
Angelelli et al. [2] structure heterogeneous study data in multiple
OLAP cubes that can be aggregated for visual exploration in a pro-
totype consisting of multiple coordinated views. Malik et al. [18]
establish a taxonomy of metrics for comparing cohorts of tempo-
ral event sequences, and allow a visual exploration of these metrics
in their VA interface dubbed CoCo. Klimm et al. [16] leverage
3D rendering techniques of MRI data to integrate image data in
the analysis of cohort study data. Bernard et al. [3] propose a VA
tool incorporating varying levels of detail to enable both individual
record and cohort views to support physicians in analyzing patient
data with regard to prostate cancer. The tool S-ADVIsed [1] inte-
grates interactive subspace clustering methods to explain risk fac-
tors of diseases in cohort study data. Ritti-Dias et al. [26] highlight
the importance of visual elements such as glyphs to communicate
the effects of an intervention in randomized controlled trials. Brich
et al. [5] leverage dimensionality reduction to visualize multivari-
ate time series data as time curves recorded in intensive care units.
Wang et al. [33] present ThreadStates, an approach for visualizing
and identifying states of disease progressions in longitudinal cohort
studies through scatter plots, feature matrices, and area charts. Li et
al. [17] propose Trial View, a system that leverages a graph autoen-
coder to construct a patient similarity graph, enabling clustering and
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Figure 2: Variable Selection Search Bar. Allows querying available
measurements through keywords, and can be sorted by either DiD
or Cohen’s d. All currently selected measurements are pinned to the
top of the list.

coordinated visualizations at both individual and cohort levels for
the exploration of temporal event data in clinical trials.

While existing VA approaches for intervention studies primarily
focus on lab-based measurements, they often overlook the influence
of real-world context and everyday life, highlighting the need for
methods that integrate and visualize out-of-lab data to provide a
more holistic view of intervention effects.

3 MOTIVATOR

The following section describes the utilized data, outlines the task
elicitation process based on existing literature, and provides an
overview of the prototype along its key components.

3.1 Data

In the ProPELL study setup, 74 participants (age 23 £ 3 years)
were divided into a control and training group, where the train-
ing group underwent an 8-week jump training, performing 15 min-
utes of exercise 3 days per week. In the presented prototype, we
analyze up to 109 variables that were collected from different do-
mains, such as physiology (e.g., cardiovascular, neuromuscular, and
endocrine) and psychology (e.g., motivational, emotional, and be-
havioral) across varying temporal granularities. Most lab measure-
ments were recorded three times, once before the intervention (m1),
once after the intervention (m2), and once in a follow-up (m3). Ev-
ery participant was further equipped with a smartwatch and was
instructed to wear it as often as possible, recording exercise- and
activity-related variables in the form of active steps or sedentary,
light, moderate, or vigorous physical activity.

3.2 Analysis Tasks

In conjunction with two experts involved in the project from the do-
mains of sports science and psychology, we elicited analysis tasks
central to the goals of our visual analytics approach in support-
ing interdisciplinary data exploration in lab and life, derived from
Preim and Lawonn [22]:

[T1] Exploration: Gaining an overview and explore the data.

[T2] Assessment and Pattern Identification: Drill down on spe-
cific measurements and assess their relevance in promoting PA.

[T3] Associations: Finding and analyzing associations between
interdisciplinary measurements.

[T4] Comparisons: Support comparisons between subgroups,
such as the control and training group.

Other available tasks from Preim and Lawonn were deemed as
not relevant. For Verification of hypotheses, domain experts use
their established analysis methods and rather rely on statistical
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Figure 3: PCA BiPlot showing information about participants (A) and
measurements (B). Filtered participants by brushing from other visu-
alizations are highlighted. Measurements are colored by discipline
and generally show strong groupings.

methods instead of interactive VA applications. While the inter-
pretation of the study results allows reflecting on and potentially
refining the study design and intervention strategy, Policy Develop-
ment is not a primary target of this application. Likewise, educating
the public about the importance of PA is an overarching goal of the
performed intervention study, but the developed VA application is
not designed for Dissemination purposes.

3.3 Prototype

The VA prototype consists of multiple linked views, namely a Vari-
able Selection Search Bar, a PCA Biplot, Variable Distribution
Plots, and an activity PixelPlot (see Figure 1). Each plot is brush-
able, allowing users to create a subgroup that is simultaneously
highlighted across all other plots. Participants are represented in all
views of the prototype and are visualized using a consistent color
scheme. By default, the coloring encodes study group affiliation
(control vs. training), but it can be adjusted to reflect other at-
tributes such as metadata, selected lab measurements, or aggregated
life-based indicators. The following section explains the individual
components in more detail and outlines how the aforementioned
tasks are supported.

Variable Selection As an initial starting point, analysts might want
to inspect a number of specific variables and investigate how they
relate to other measurements [T1]. To facilitate variable subse-
lection, we provide three different approaches: (1) Analysts, es-
pecially those who designed the study, often want to make use of
their domain knowledge and already have a set of variables they
want to examine in mind. We facilitate this selection task by a
keyword-based Search Bar that returns a list of matches from the
descriptions of every variable (see Figure 2). These variables can
be added to the analysis process by clicking on the checkbox that is
present on the left-hand side of each entry. (2) For a supported data-
driven selection, we provide two effect size measures that quantify
the magnitude of change between the training and control groups:
The Difference in Differences (DiD) [10], which captures the rela-
tive change in outcomes over time between groups, and Cohen’s
d [6], which measures the standardized difference in means be-
tween groups. The search results can be ordered by both the DiD
and the Cohen’s h to highlight variables exhibiting larger changes
between the groups. (3) Furthermore, we provide automated feature
selection through feature importance values obtained from machine
learning models trained on the study data using the internal feature
importance techniques, namely a Support Vector Machine (SVM),
Random Forest (RF), and Extreme Gradient Boosting (XGBoost).
We train the classifier using the control or training association as
labels and return the top ten features with the highest importance
threshold. These features can be further evaluated for relevance us-
ing the Variable Distribution Plots.
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Figure 4: Distribution plots showing the distribution of participants
for several variables concerning the improvement of physical activ-
ity (m2-m1). Brushing on one plot will highlight the filtered partici-
pants in the other plots (A). The shift of the main KDE peak in the
Vo2max measurement indicates an overall improvement (B); how-
ever, the control and training groups are not well separated. The
Countermovement Jump maximum velocity measurement shows a
better split (C).

PCA BiPlot To provide an overview of the lab-measured vari-
ables [T1], we provide a Principal Component Analysis (PCA)
BiPlot, which is capable of assessing similarities both on a vari-
able and participant level (see Figure 3). PCA analysis is com-
monly deployed by researchers in PA [14, 9], which reduces the
learning curve and cognitive load for the application for the an-
alysts. To capture the performance increase among the available
measurements, we calculated the relative increase after the inter-

vention %, resulting in a single, normalized score for ev-

ery variable. From these scores, we can obtain so-called loadings
and scores using PCA and visualize them in a BiPlot. Every line
represents a loading of a variable where the length and direction
encode the variance, with small angles between lines indicating
correlations. Such correlations can indicate associations between
interdisciplinary factors [T3]. To facilitate this, we employ a cat-
egorical color scheme to visually discern loadings from different
domains (see Figure 3 (B)). On the other hand, every point repre-
sents a study participant, where close proximity indicates similar
performance increases, allowing for inspection of possible cluster
structures. The points can be interactively colored according to any
attribute to support various comparisons, e.g., between the control
and training group or any currently selected measurements [T4].
Variables can be added or removed from the analysis by clicking on
the loading line, which triggers a recomputation of the PCA accord-
ing to the selected variables, fostering an iterative analysis loop. As
with all plots in MotiVAtor, brushing the plot is supported and will
act as a filter, highlighting the included participants in all other vi-
sualizations.

Variable Distributions To allow a deeper understanding of one
specific variable and permit pattern identification [T2], we provide
a Distribution Plot (see Figure 4) for every variable that was se-
lected through the Search Bar or the BiPlot loadings. As the focus
of the study is to assess the promotion of PA, we show the differ-
ence between the measurements before and after the intervention
(m2 — ml) rather than absolute values. This captures the perfor-
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Figure 5: Pixel Plot giving an overview of PA in life situations. Scaling the rectangle height by wear time shows large deviations. Reordering
techniques to make patterns salient, such as training together (A), or especially active days (B). The rectangles can be filtered by value (C) or
wear time (D). Reference view indicating how the control/training group is aligned with the current ordering (E).

mance during the intervention period better, where a value above
0 indicates an increase, and a value below O a decrease. The dis-
tribution can be viewed on two different levels of granularity, with
a kernel density estimation (KDE) showing the global distribution
represented by a single line and a beeswarm plot that shows the fre-
quency of participants (on the y-axis) across the value range (on the
x-axis) on a finer level with every circle uniquely representing one
participant. As pointed out by Yang et al. [21], beeswarm plots pro-
vide a more lucid representation of the distribution, where we apply
the global coloring scale to every point individually and facilitate a
comparison of different groups across the data range [T4]. The
KDE serves as the static baseline across all participants, whereas
the beeswarm points adapt to the filtering and depict how the fil-
tered selection diverges from this baseline. A solid vertical line
at 0 visually separates performance decrease from increase, while
dashed lines indicate the 10th, 50th, and 90th percentiles of the dis-
tribution. Hovering a beeswarm circle will display the absolute val-
ues of the measurements via a tooltip. The plot itself can also func-
tion as an interactive filter, where brushing over a selected range
creates a subgroup. The participants within the brushed interval are
then highlighted in all other plots.

PixelPlot The activity data collected from smartwatches through-
out the entire study duration serves as the basis for assessing PA in
everyday life situations, as opposed to the lab measurements pre-
dominant in the other views. The data is available as the number
of steps or broken down into the 4 levels of activity (sedentary,
light, moderate, vigorous) on a daily resolution. To provide a com-
pact overview [T1], we provide a dense pixel visualization where
the rows represent participants and the columns sequentially reveal
time (see Figure 5).

Since the base level of activity can vary among the partici-
pants, absolute values are susceptible to a visual dominance of
high-activity participants. To mitigate this, we provide the op-

tion to visualize a z-Score normalized z = % value instead. The
mean ({) and standard deviation (o) are obtained from the first 2
weeks of data, allowing changes in PA to be interpreted relative
to a pre-intervention baseline. The values are encoded using a di-
verging blue-red color scale, visually emphasizing deviations from
the baseline. Following a cold—hot metaphor, blue indicates lower,
red higher activity levels, while white represents no deviation from
the baseline. A brushable legend is shown alongside the visual-
ization (see Figure 5 (C)), allowing users to filter participants and
days based on their activity changes. This reduces visual clutter
and supports targeted exploration of selected deviation levels, such
as sustained increases in PA over time.

Another notable impact on the performance measurement is the

wear time of the smartwatch, as participants who wear the watch
longer most likely accumulate more PA. We indicate the wear time
for every day by scaling the height of every pixel accordingly, re-
sulting in larger rectangles for days with longer wear durations. The
PixelPlot can also be filtered according to the wear time (see Fig-
ure 5 (D)), allowing analysts to focus their analysis on days when
the watch was worn for a minimum number of hours.

We further provide the option for an absolute or relative tem-
poral arrangement on the columns. In the absolute arrangement,
the pixels are ordered according to the actual day the activity was
recorded, while in the relative the pixels are placed according to the
day in the study. The absolute arrangement allows users to iden-
tify the influence of outside factors such as holidays (see Figure 1),
whereas the relative arrangement enables a comparison of partici-
pants according to the progress of the study [T4].

Applying 1-D ordering strategies is a common approach to make
patterns and structures in dense pixel visualizations salient [28, 23],
and hence facilitate pattern identification [T2]. The implemented
strategies fall into three main categories: (1) group-based order-
ings leverage known participant attributes such as study condition
(training/control), sex, or adherence status to cluster participants
by metadata. (2) To provide a similarity-based ordering on the un-
derlying time series, we apply the normalized Euclidean distance
metric from van Wijk and van Selow [31] and obtain an ordering
from the leaf nodes of the dendrogram from complete-linkage hi-
erarchical clustering. We further use trend decomposition to obtain
the slope value of the decomposed trend, which reflects the long-
term progression of the series and gives an indication of whether
an increase in PA has been recorded. (3) variable-based orderings
rank participants based on any given selected lab measurement, en-
abling direct visual comparisons along known outcome measures.
On the left-hand side of the PixelPlot, a reference view visualizes
the global coloring across all participants. It serves as a visual guide
to assess how the current ordering aligns with the selected color en-
coding. For instance, users can evaluate how clearly an ordering
separates training and control groups.

4 EVALUATION

To assess the applicability of our approach, we conducted an expert
user study with a professor in sports science (55 years old) with
more than 25 years of experience in the field of promoting PA, who
is also actively involved in the ProPELL project.

Setup After inquiring about the participant’s expectations for a pro-
totype aimed at supporting hypothesis generation in the domain of
PA, each component of the prototype was introduced. The partici-
pant was given time to familiarize himself with the environment and
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was initially asked to gain an overview of the dataset [T1]. Next,
he was prompted to select a measurement of interest and assess
the influence of the intervention on this variable, guided by visual
cues provided in the interface [T2]. Following this, the participant
was asked to identify and interpret a potential association between
variables from different disciplinary domains, such as physiologi-
cal and psychological data [T3]. To assess the prototype’s support
for comparative analysis, the participant was then tasked with com-
paring subgroups, for example, the control and intervention groups,
concerning selected variables [T4]. The session concluded with a
think-aloud interview, in which the participant shared his impres-
sions of the application’s usability, limitations, and its potential us-
age in real-world research settings.

Results Regarding his expectations, the expert stated that he would
like to explore the full extent of available measurements and ex-
amine how different interdisciplinary variables are connected. In
order to generate novel hypotheses, PA researchers often rely on
existing theories and perform a methodological transfer where the-
oretical constructs from one context are applied to another. A data-
driven approach to explore such associations was considered valu-
able when theoretical foundations are limited or not yet established.

To get an overview of PA in life, he first examines the PixelPlot
and observes the high deviation in terms of wear time. As low wear
times are associated with high uncertainty, he filters the plot to only
show days where the watch was at least worn for eight hours. To
determine possible clusters among participants, he orders the pixel
plot by time series similarity. This revealed a period shortly after
the second lab measurement (m2) during which a group of partici-
pants recorded unusually high step counts (see Figure 5 (B)). Fur-
thermore, he detects a pair of participants with very similar activity
patterns, which led to speculation that they may have exercised to-
gether (see Figure 5 (A)). When reordering by mean step count, it
becomes evident that these two were among the most active par-
ticipants overall (~20k steps/day). This aligns with physiological
research stating that shared activity can increase motivation and, in
turn, promote higher levels of PA.

For assessing lab performances, he starts with selecting the
Vo2max (maximal aerobic capacity) measurement, a parameter
known to quantify endurance fitness in established PA theories. The
Distribution Plot visible in Figure 4 indicates a general increase in
performance across all participants, as the major peak of the KDE
distribution is shifted rightward relative to the zero indicator. How-
ever, the expert inferred that repeated Vo2max measurements are
often subject to familiarization effects, where participants may per-
form better in a second trial not because of improved fitness, but due
to increased comfort with the procedure and more accurate self-
pacing. When exploring individual-level data via the beeswarm
plot, no clear separation between the control and training groups
could be observed. Using the PixelPlot, the expert further observed
that many participants already exhibited high baseline activity lev-
els in everyday life (>10k steps/day), indicating a ceiling effect in
the Vo2max measurement. To find variables that better capture a
difference between the groups, he sorts by the entries in the Search
Bar by DiD and selects the Countermovement Jump Max Veloc-
ity and Jump Height using Flight Time Method. As seen in Fig-
ure 4, most training group participants increased their performance
in contrast to the control group, which is unsurprising as these mea-
surements capture properties related to the jump-training of the in-
tervention. When inspecting the loadings in the BiPlot (see Fig-
ure 3), the expert notices that the Heart Rate Variability measured
in the psychology lab exhibits a correlation to the selected jump-
related variables. Increased heart rate variability is seen as an indi-
cator of reduced stress, leading to the interdisciplinary hypothesis
that jump training can reduce stress levels.

Feedback The expert was overall very satisfied with the capabili-
ties of the prototype. Although the range of interaction options in-

troduces a learning curve, the expert noted that the system becomes
intuitive after a short period of use. Especially the interactive brush-
ing functionality on all visualizations, coupled with the instantly fil-
tered feedback, was valued highly and enabled rapid comparisons
of arbitrary subgroups sharing common characteristics. In conjunc-
tion with the adaptive coloring scheme and various available or-
dering strategies for the PixelPlot, the prototype was perceived as
a powerful toolbox for investigating PA-related phenomena in lab
and life scenarios. Since the main focus of the analysis consisted of
comparing the training and control groups, this group assignment
was used as the predominant coloring scheme. However, applying
other variables as the coloring dimension, such as the mean number
of steps or the trend slope obtained from the smart watch activity,
helped connect lab-based assessments to everyday life activities. In
reverse, applying other variables as the coloring dimension, such as
psychological scores or physiological measurements, particularly
in the PCA and Distribution Plots, helped connect real-world be-
havior with lab-based assessments.

The automated feature selection functionality, on the other hand,
was rated as less helpful. The rationale behind the selected fea-
tures was not always clear to the expert, limiting interpretability
and trust in the provided methods. Ordering the available variables
in the Search Bar by DiD or Cohen’s d provided more intuitive sup-
port in the selection of variables. To retrieve additional associated
variables, the expert found the BiPlot loadings helpful, but noted
that confirmation via the Distribution Plots was necessary to ensure
interpretability.

5 DISCUSSION

The expert evaluation in Section 4 sheds light on how potential
users solve the tasks that we elicited in Section 3. In the follow-
ing, we review the applicability of our approach and discuss the
generalizability beyond the used dataset.

[T1] Exploration As outlined in the expert feedback, the proto-
type already supports users in examining the data before conduct-
ing their domain-specific analysis. The Distribution Plots provide
a general overview of the measurement distributions, and the Pix-
elPlot offers a compact overview of PA in everyday life situations.
Through the rectangle height in Figure 5, it is easily observable
that the wear time of the smart watch is subject to high deviations
within and between participants. The large differences in wear time
introduce uncertainty and skew the results, possibly limiting the ex-
pressiveness of the recorded activity data in life. Various imputation
strategies [25] could be applied to mitigate this discrepancy, at the
risk of possibly introducing bias. While large deviations from wear
time and PA are easily detectable, low-level activity patterns are vi-
sually underrepresented due to the chosen divergent color scale and
the scaled rectangle height.

[T2] Assessment and Pattern Identification To assess the rel-
evance of lab measurements on PA, the Distribution Plots of-
fer a compact perspective on performance increases or decreases
amongst the participants, and have proven beneficial in identifying
patterns as outlined in the expert study in Section 4. By using dif-
ferent coloring schemes on the beeswarm plot, these results can be
interpreted with respect to different contexts, such as the impact of
the intervention (by control/training coloring), or the performance
in everyday life situations (by coloring according to the trend slope
or the mean number of steps). Figure 4 (Vo2max) exposes that such
plots can be susceptible to outliers where large deviations between
the m1 and m2 measurements were recorded. While this facili-
tates the detection of outliers and possible measurement errors, the
overall distribution is squished, limiting the interpretability of the
visualization.

[T3] Associations Linking interdisciplinary measurements is sup-

ported by the BiPlot loadings, in which correlations between vari-
ables from different domains are visually identifiable by lines that
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are closely aligned with a small angle between them but origi-
nate from different disciplines, as indicated by their distinct col-
ors (see Figure 3). The PixelPlot can further support the analysis
by confirming whether performance increases in the lab are also
recorded in everyday life situations of the participants. Ordering
the PixelPlot by the trend slope allows easy filtering of participants
with increased PA by brushing the plot, setting the focus on this
subgroup in all other visualizations. While these associations visu-
ally suggest correlations, they do not directly imply causality. Since
the primary purpose of the prototype is to facilitate hypothesis gen-
eration, the causality can subsequently be validated through specif-
ically designed, rigorous follow-up studies.

[T4] Comparisons The color scale applied in all plots enables
a comparison of given subgroups, e.g., training or control. The
Beeswarms in the Distribution Plots support comparisons on an in-
dividual level, and coloring according to both numerical and cate-
gorical attributes can be applied. While using separate KDE curves
for each group could offer a clearer visual distinction between con-
trol and training groups, this approach does not scale well when
more than two groups are involved or when comparing against
continuous variables. The PixelPlot further supports comparisons
through the available ordering strategies, i.e., by revealing patterns
such as training buddies with very similar activity patterns (see Fig-
ure 5). These dense pixel visualizations scale well with larger
datasets, as observable in other domains [28]. In confirmatory sce-
narios, comparisons between subgroups are typically verified with
statistical significance (e.g., via t-tests). However, since our ap-
proach emphasizes exploratory hypothesis generation, such formal
tests are outside our immediate scope but may follow in subsequent
follow-up studies.

5.1 Limitations and Future Work

Limitations While our approach relies on PCA, alternative nonlin-
ear projection methods such as t-SNE or UMAP could potentially
capture local neighborhood structures more effectively. However,
these methods do not provide loadings, which are essential for in-
terpreting and assessing variable similarities. Furthermore, they are
more difficult to interpret and less familiar to researchers in the PA
domain, which further motivated our decision to use PCA.

Recording activity in life throughout a study duration of 21
weeks inherently introduces patterns through seasonal trends, such
as weekends or holidays. These effects are clearly visible in the
absolute view (see Figure 1), and the relative view can even show
such trends relative to the study progress (see Figure 5 (B)), spark-
ing speculations about their cause from the study setup. However,
such effects directly impact the assessment of physical activity in
life and can also be viewed as undesired biases. Cyclic biases such
as weekend-related activity peaks could be mitigated through bas-
ing the PixelPlot visualizations on trend decomposition (e.g., sep-
arating seasonal, residual, and overall trends). However, patterns
like increased weekend activity may themselves be relevant find-
ings, depending on the research question, and should not naively be
dismissed as mere noise.

The evaluation of our prototype was carried out with only one
expert user, which limits the generalizability of the findings. Al-
though the expert provided valuable feedback, this perspective may
not capture the full range of needs and preferences within the phys-
ical activity research community. Involving multiple experts from
diverse backgrounds will help validate the application’s usability
and effectiveness more comprehensively.

Future Work Our automated feature selection functionality, which
was not well received in the expert user study, is limited to the
built-in feature importance of the provided classification models,
which is largely influenced by the classification’s performance con-
cerning the target feature or the closeness of the learned knowl-
edge to the expert’s knowledge. As future work, we aim to deploy

improved classification models, either with better performance or
closer expert and model knowledge alignment. Further, more ad-
vanced XAI methods, such as Shapley Additive Global importancE
(SAGE) [19] are available and have shown promising results in
other application areas, identifying relevant features for feature se-
lection. Including interpretable clustering approaches [13] towards
the dense pixel visualization could also enable further insights out-
side of the domain knowledge of the experts grouping similar sam-
ples. However, we acknowledge that the abstraction level of such
methods may pose challenges for domain experts without a strong
technical background. Ensuring the usability and accessibility of
these techniques remains an open issue.

We leveraged the scores and loadings from a PCA BiPlot to in-
vestigate similarities between participants and associations between
measurements, respectively. While effective for linear patterns, this
approach may overlook more complex structures in the data. As
future work, we aim to investigate how Dual analysis methods [7],
which simultaneously consider relationships across participants and
features, can offer a complementary perspective and reveal latent
patterns that are not easily captured by PCA alone.

The full extent of the data recorded in the study includes addi-
tional data sources such as weekly survey data or brain imaging
in the form of MRI data. Previous studies have shown how such
data can successfully be integrated in the analysis of cohort study
data [32, 16], and incorporating them will contribute to a more
holistic view on the interdisciplinary analysis of PA promotion.

6 CONCLUSION

We presented MotiVAtor, a VA application to support the analysis
of complex, heterogeneous data from interdisciplinary PA interven-
tion studies that combine lab-based and real-world measurements.
By bridging controlled and everyday settings, the system offers re-
searchers a more comprehensive view of intervention effects. Our
approach is grounded in task categories identified from prior re-
search, namely exploration, pattern identification, association, and
comparison. Feedback from an expert user study highlights the
value of the tool for exploratory analysis and hypothesis genera-
tion, particularly in contexts where theoretical guidance is limited.
Future work will focus on improving model interpretability, inte-
grating additional data sources, and extending the analytical capa-
bilities to better support dynamic, multigranular data analysis in PA
research.
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