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Abstract. Visual analytics systems are in place within smart grid en-
vironments to alleviate crisis situations by allowing decision makers to
perceive and understand the severity of a crisis situation. However, errors
in measurements that are propagated due to various reasons (such as
data transformations, errors in measurement devices etc.) can make the
decision makers less confident in deriving information. Therefore, analysis
and visualization of uncertainty within such data has become important.
In this paper we utilize two uncertainty propagation techniques: sampling
and Monte Carlo simulation, to propagate uncertainties inherent in power
data within our smart grid environment, and compare their performance
to best fit our use-case. We found that the Monte Carlo simulation method
is most suitable for measuring uncertainty in our application domain.
Further, we identified most effective visual metaphors to communicate
uncertainty to the crisis managers.
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1 Introduction

Electric power grids are the backbone of our society, since failures in the electricity
supply has a strong impact on the fundamental societal structures such as
life/health, environment, and economy, among others. The rise of renewable
energy of small energy producers such as photo-voltaic increases the system’s
complexity. To integrate these producers and to transfer their energy to other
regions communication infrastructures and energy infrastructures are tightly
coupled, which increases the effectiveness, however, also increases the vulnerability
since failures in one infrastructure can cascade into the other. Visualization
systems are needed that abstract the complex information of both infrastructures
in case of a crisis to enable crisis response by decision makers. In [5] and [6] the
authors abstract the incoming data from each infrastructure element and apply
a set of rules to map this information to a color encoded scale that highlights
which elements are in normal, danger or alarm mode. This mapping is consistent
over all infrastructures and thus, allow interdisciplinary teams to “perceive” and
“understand” a crisis situation. Further, the system predicts based on the past
data, the currents status, and the users’ actions, a possible future subsequent



development of the situation and of all infrastructure elements. This allows the
evaluation of alternative actions and therefore supports the crisis managers in
the decision making process. The decider will draw a decision based on the
visualization of the current and future state (alarm level) of infrastructures and
the detail information of elements of interest based on the propagated subsequent
development of alternative actions. However, such analysis systems are error
prone. Errors propagated by the measurement modules or the discrepancy between
simulation models and reality reduce the confidence of decision makers for such
systems in general. Her/his trust into measurements and predictions is of major
importance and thus, such systems must highlight how uncertain or certain some
predictions or measurements are. In this paper, we will present our work in

Fig. 1. (a) Transformer stations (rectangles) are connected via power lines and are
also connected to the communication infrastructure (triangles), which transfers the
information to the central control room. The transmission range of the mobile stations is
visualized as concentric circles. While gray indicates normal operation mode, the yellow
elements on the screen reveal a severe situation. High deviations in voltage cascaded
from the energy grid into the mobile grid due to failures of the power supply. (b) An
example of the intuitiveness test in the pilot study. The low to high uncertainty in
modular power data is depicted through low to high Green color saturation. Here, the
correct low, medium, high ordering of the uncertainty visualization is therefore 2, 1, 3

progress that utilizes robust statistical methods such as Monte Carlo simulation
to measure uncertainties of single measurands and aggregated uncertainties for
alarm levels. We currently evaluate these methods and present a comparison of
Monte Carlo simulation and sampling methods, and choose the most suitable
method for propagating uncertainties within Smart Grid monitoring. Further,
we present our selection of uncertainty visualization methods as adapted from [3]
to visualize the quantified power data uncertainties, and test the effectiveness of
these visualization designs within a pilot study environment.

Therefore our two fold contribution is 1) comparison results of the two
uncertainty propagation techniques within our dataset, 2) visual design candidates
for multidimensional uncertainties, and tentative evaluations of these uncertainty
visualization candidates for their effectiveness.



2 Related Work

Statistical propagation and visualization of uncertainty in spatio-temporal data
has long been studied in various settings [9], [11], and these visualizations have
been evaluated in previous works such as [4], [8]. Uncertainty can be defined as
a parameter associated with the result of a measurement that characterizes the
dispersion of the values that could reasonably be attributed to the measurand [10],
and the quantification and visualization of these uncertainties is important for
thorough data analysis, information derivation and decision making.

Lee & Chen [2] examined several widely used uncertainty propagation tech-
niques in order to understand the characteristics and limitation of these methods,
and further compare heir performances. We chose the sampling and the Monte
Carlo simulation techniques to propagate the uncertainties within the power
dataset, and compare their performance within the dataset.

Bertin’s work on visual variables [1] was extended by, for example, Morrison [7]
and MacEachren [3]. Furthermore, MacEachren manipulated the focus variable
in to four metaphors; (i) Contour crispness, (ii) Fill clarity, (iii) Fog, and (iv)
Resolution. We adapt these semiotics to visualize the aggregated power uncer-
tainty as well as the modular power uncertainty, and tested their effectiveness in
a pilot study environment.

3 Monte Carlo Simulation and Sampling Methods for
Uncertainty Propagation of Power Data in Smart Grids

Sampling typically takes the distribution of a selected subset of the data and
estimates the characteristics of the whole dataset. Within our power dataset we
incorporated this method and further constructed a 95% confidence interval with
which we demonstrate the inherent uncertainty in the modular power data.

Monte Carlo technique models the statistical errors in the data by the use of
ordinary statistics and random variables, assuming that the errors have a Gaussian
probability distribution function. Continuous repetition of the simulation removes
the variations in the probability distribution function. The uncertainty in the
data is therefore propagated by the mean error and the standard deviation for
each data point. Once again with a 95% confidence interval we demonstrate the
inherent uncertainty in the modular power data. An example is shown in Figure
2. We carried out the above two methods for two random weeks of the data that
are available for three transformer stations within the smart grid network. For the
comparison of the two methods we counted how many data points are within and
outside of the 95% confidence interval. The method that shows more data points
within the 95% confidence interval is considered more appropriate for our dataset.
Figure 2 (a) shows the comparison results for the three transformer stations, and
(b) for a selected transformer station in Helgenreute. This comparison shows us
that the Monte Carlo simulation method works better within our dataset.

The aggregated uncertainty for the alarm levels is estimated by the classifier
that maps the incoming field information, the detected anomalies and expected



behavior of an element to discrete alarm levels. The distance to the decision
bounder indicates how sure the classifier is in the assignment (e.g., the element
was assigned to “danger” class but it was also close to the bounder to “normal”
and thus, the classifier is more uncertain).

Fig. 2. (a) Comparison results of Sampling and Monte Carlo Simulation (MCS) methods
for the three transformer stations. (b) Sampling method (left) and MCS method (right)
to propagate power uncertainty at the Helgenreute transformer station. Low to high
Purple color saturation indicates the high and low uncertainties

4 Uncertainty Visualization Candidates

We picked 7 visual metaphors to visualize the modular power uncertainty and
the aggregated power uncertainty. These are filling, color transparency, color
saturation, noise lines, fuzzy borders, border color hue, and icons. In order to
stay consistent with the existing visualization infrastructure (Figure 1 a), we
designed appropriate candidates to visualize the aggregated uncertainty and the
modular uncertainty of power data. These visualizations are shown in Figure 3.
Considering the smart grid monitoring requirements and with a goal of reducing
the solution space, we picked the most effective visualizations through conducting
a pilot study with 6 users (all 6 with a visualization background and aware
of the smart grid environment). As a first step in the pilot study we showed
a randomized order (1, 2, 3) of low, medium and high uncertainty depictions
of chosen visualizations. Then we asked the users to give the correct order of
the uncertainty visualizations from low, medium to high (Figure 1 b). At the
next step we conducted qualitative interviews to rank the visualizations (based
on preference, understanding). This allow us to assess the intuitiveness of the
different visualizations. The first three visualizations with significant differences in
high rating were selected as an outcome. Therefore for modular power uncertainty
visualization we selected transparency, color saturation and icons. For aggregated
power uncertainty we selected fuzzy borders, transparency and noise lines.

5 Conclusion

In our work in progress, we have compared two uncertainty propagation tech-
niques,sampling and Monte Carlo simulation to propagate the uncertainties



Fig. 3. Candidates for modular power uncertainty visualization (left, inner rectangles)
and aggregated power uncertainty visualization (right, border of the rectangle)

inherent in a power dataset within a smart grid network, and found that the
Monte Carlo simulation method works better within our smart grid scenario.
Further, we have conducted a pilot study to select the most effective uncertainty
visualization methods for modular and aggregated power uncertainty respectively.
With high rating from the users, we have selected transparency, color saturation
and icons to visualize the modular power uncertainty, and fuzzy borders, trans-
parency and noise lines to visualize the aggregated power uncertainty within
our smart grid network. In future work, we will use the selected uncertainty
visualization methods to design combinations of modular and aggregated power
uncertainty in one depiction, and further evaluate their effectiveness in a larger
study.
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