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Figure 1: Comparison of regular parallel coordinates with our slope-dependent polyline rendering. Parallel coordinates
face two problems, which are inherent in the technique: (a) depicts three clusters of the same diameter and size across all
dimensions. Diagonal changes of the clusters are visually more prominent, as diagonal lines are rendered more closely. (c) shows
200 data points of uniform random clutter/noise in all dimensions. Zig-zag clusters are visible as diagonal lines and are perceived
as clusters, although there are no such clusters in the data (ghost clusters). We propose to render each line segment based on its
slope between two axes. As a result, clusters are not distorted by their shape (b), and the ghost clusters effect is reduced (d).

ABSTRACT

Parallel coordinates are a popular technique to visualize multi-
dimensional data. However, they face a significant problem influ-
encing the perception and interpretation of patterns. The distance
between two parallel lines differs based on their slope. Vertical lines
are rendered longer and closer to each other than horizontal lines.
This problem is inherent in the technique and has two main conse-
quences: (1) clusters which have a steep slope between two axes
are visually more prominent than horizontal clusters. (2) Noise and
clutter can be perceived as clusters, as a few parallel vertical lines
visually emerge as a ghost cluster. Our paper makes two contribu-
tions: First, we formalize the problem and show its impact. Second,
we present a novel technique to reduce the effects by rendering the
polylines of the parallel coordinates based on their slope: horizontal
lines are rendered with the default width, lines with a steep slope
with a thinner line. Our technique avoids density distortions of clus-
ters, can be computed in linear time, and can be added on top of
most parallel coordinate variations. To demonstrate the usefulness,
we show examples and compare them to the classical rendering.
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1 INTRODUCTION

Parallel coordinates plots (PCPs) [11] are a well-researched visual-
ization technique for multi-dimensional data. Studies have shown
that they can be learned easily by non-visualization experts [15, 16]
and used in practice in various domains like finance [1], traffic
safety [7], and network analysis [17]. Compared to related tech-
niques such as scatter plot matrices and projections, PCPs have the
advantage to identify, explore, and understand patterns across multi-
ple dimensions. Cluster identification is, among others, one of the
most common tasks for parallel coordinates [2].

Every data record is represented by a single polyline, spanning
across the different axes/dimensions of the dataset. Polylines run-
ning close together are considered a cluster as they have similar val-
ues across the dimensions. In Fig. 1 (a), we can see three clusters

spanning across the dataset. Between dimensions 1–3, the clusters
are horizontal, meaning that the data values are approximately the
same within all dimensions. Across dimensions 3–5, the clusters
are diagonal, changing their values and cluster center, and have a
steep slope. We can easily see a general problem of the PCP tech-
nique: diagonal changes of clusters are visually more prominent
than horizontal trends. Assuming all polylines have the same line
thickness, there are two reasons for the problem: Diagonal lines
need more area and pixels, and the actual space between parallel
lines is smaller for diagonal clusters compared to horizontal ones.
As a consequence, there is a density distortion of clusters based on
the slope or angle of the cluster. A second problem, also based on
these rendering artifacts, are so-called ghost clusters. Fig. 1 (c) de-
picts a dataset with 200 points, randomly and uniformly distributed
across all dimensions. One can “see” two zig-zag patterns indicating
two clusters. However, the data does not contain any specific struc-
ture – in particular, no clusters. This problem is not only relevant in
pure clutter (or noise) datasets but also influences the perception of
clusters in datasets that contain a limited amount of clutter and noise
along with relevant patterns. Ghost clusters and distorted cluster
density are related to human bias, but the core problem is based in
the PCP technique. It can also occur in other variants of PCPs (e.g.,
different colors and transparency for lines, and edge-bundling).

We make two contributions: (1) we formalize the problem and
show its impact. (2) we propose a novel approach which renders each
line segment based on the slope between two dimensions. Horizontal
lines are rendered with the default line thickness. Diagonal lines
are rendered thinner. Two examples are depicted in Fig. 1 (b) and
(d). The technique can be computed in linear time and applied
on top of most PCP variations. The approach by Zhou et al. [20]
is closest to our work. It blends polylines based on their local
neighborhood, which reduces the influence of noise but still suffers
from the distortions caused by the over-emphasis on diagonal lines.

All material of this paper is available at https://osf.io/sy3dv.

2 RELATED WORK AND RESEARCH GAP

Plenty of approaches try to reduce clutter and highlight patterns in
PCP generally. However, to the best of our knowledge, a formaliza-
tion of the pattern distortion based on the polyline slope is missing,
and none of the existing approaches specifically target this limitation.

1

https://doi.org/10.1109/VISUAL.2019.8933706
https://osf.io/sy3dv


© 2020 IEEE. This is the author’s version of the article that has been published in the proceedings of IEEE Visualization
conference. The final version of this record is available at: 10.1109/VISUAL.2019.8933706

2.1 Sampling and Filtering Techniques

The basic premise for the use of sampling (and filtering) techniques
is that with less data, the degree of clutter and overplotting decreases,
while the general structures, typically represented by many data
records, remain in the PCP [10]. The taxonomy by Ellis & Dix [6]
provides a categorization of clutter reduction methods, including
sampling, filtering, and clustering, as well as visual techniques such
as point size and opacity. Sampling often removes relevant data
records or dimensions, and in this way reduces the truthfulness of
the sampling concerning the dataset in its entirety. Our technique
reduces clutter by counterbalancing the distortion artifact inherent
to PCPs. It can be applied to a sampled or filtered subset of the data
if the dataset exceeds the size visualizable in a PCP. Dependent on
the data, our technique increases the amount of data displayable in a
given PCP by deemphasizing diagonal polyline segments.

2.2 Axes Reordering and Dimension Reduction

Another approach to minimize clutter in PCPs is to reorder the
dimension axes or reduce the number of displayed dimensions. For
example, Pargnostics by Dasgupta and Kosara [5] describes a set
of quality metrics for PCPs which can be minimized or maximized
(e.g., the number of line-crossings and parallelism). The authors also
suggest the flipping of axes to reduce the number of line-crossings or
diagonal clusters. The survey by Behrisch et al. [4] discusses a large
number of quality metrics as objective functions for axes reordering.
Axes reordering, dimension reduction, and axes flipping can reduce
ghost clusters by favoring horizontal structures. Depending on the
data, however, it cannot be avoided entirely. Axes reordering is
highly dependent on the data and analysis task. It is an orthogonal
concept to our approach and can be combined with it.

2.3 Density- and Cluster-based Rendering

Clusters and other patterns can also be highlighted by density-
distributed rendering. The general idea is to render PCPs as density
distributions rather than individual polylines. Johansson et al. [12]
measure the density based on the number of overlapping polylines
per pixel. This notion of density serves as input to a transfer func-
tion that allows highlighting areas according to their local density.
Heinrich & Weiskopf [9] apply the concept of continuous scatter-
plots [3] to PCPs to derive a density model and thus interpolate the
data. The resulting rendering is specifically useful for cluster iden-
tification. The work by Palmas et al. [14] provides a different ap-
proach, which bundles edges according to class membership. The
resulting bundles are rendered as polygonal strips. Density- and
cluster-based rendering may hide the underlying individual records
and often require class labels to achieve a useful coloring or edge-
bundling. While these approaches reduce clutter, they do not avoid
the density distortion of clusters.

Figure 2: Geometry of a polyline segment. In regular PCPs, width
w is constant and length l, height h and area A are dependent on α .

2.4 Polyline Modifications

A common technique is to modify the polylines of PCPs, specifically
the overall line width, opacity, color, and shape. One example is
the edge-bundling approach by Heinrich et al. [8], which bundles
polylines according to class membership and thus reshapes the line.
The work by Zhou et al. [20] called line splatting is most closely to
ours. Line splatting is iteratively adjusting the opacity of lines based
on the local neighborhood. Users can interactively change the degree
of polyline and segment splatting. In contrast to Zhou et al. [20], our
work tries to mitigate the visual distortions intrinsic to PCPs, such
as the perceived density of clusters and the effect of ghost clusters.

3 PROBLEM STATEMENT AND IMPACT ON PCP PATTERNS

We formalize the line geometry of parallel coordinates and describe
their effects on density distortions and ghost clusters.

3.1 Line Geometry in Parallel Coordinates

In standard PCPs, a polyline segment has a constant line width
w ∈ R+, also called thickness or stroke width. As depicted in Fig. 2,
the slope of a segment is defined by the angle α ∈ [0, π

2 ) between
the horizon and the segment. ∆W denotes the space between the
dimension axes and ∆H indicates the difference of data values. In
contrast to w, the line height is slope-dependent: h = w · cos−1(α),
with α = tan−1(∆H/∆W ). The area A of a segment is defined as
h ·∆W and the length l is defined as ∆W · cos−1(α).

3.2 Slope-dependent Distortion of Polylines

In parallel coordinates, horizontal clusters correspond to a set of
data points with a strong positive correlation in a subset of values
across dimensions. Visually, these clusters have roughly horizontal
cluster boundaries and only small line slopes. An example is de-
picted in dimensions 1–3 of Fig. 1 (a). In contrast, diagonal clusters
correspond to data points with similar values within, but a strong
variation between dimensions. Visually, these clusters have steep
cluster boundaries and high line slopes. The last three dimensions in
Fig. 1 (a) present examples. Horizontal and diagonal clusters are not
defined in a precise way, and there is a smooth transition between
them. Visual cluster density refers to the share of colored pixels
within a line cluster. A large number of densely packed colored pix-
els induce a dense cluster and vice versa. The following effects char-
acterize the emerging distortions influencing visual cluster density.
Increase of Line Length and Area. Line
length l, line-height h and line surface area
A depend on the angle α , with the expo-
nential relationship A ∝ h ∝ l ∝ cos−1(α)
shown by the figure on the right. This de-
pendency affects the perception of clusters.
Large line slopes imply larger surface areas
(= more pixels, lower data-to-ink ratio [18])

Figure 3: Effect of angle α on PCP lines. (1) Diagonal lines have
a higher line surface area (= more pixels) compared to horizontal
lines. (2) Diagonal lines have a smaller distance between lines.
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(a) n = 100 (b) n = 200 (c) n = 400 (d) n = 400

Figure 4: Ghost clusters in uniformly distributed random data points. The number n of polylines is increased from (a) to (c). (d) = (c) but
the data points of a ghost cluster are highlighted to demonstrate that they are indeed uniformly distributed even though (c) indicates otherwise.

and therefore a more prominent line. The emphasis translates from
lines to clusters, so that diagonal clusters are more noticeable than
horizontal clusters. This effect is depicted in the top of Fig. 3.
Decrease of Line Distance. Large line slopes in diagonal clusters
reduce the space between lines and increases the perceived density
of the cluster as lines may overlap, and the background vanishes.
The orthogonal distance d⊥ between two parallel lines is depends on
the angle α , with d⊥ = dh · cos(α), where dh is the distance of the
intersections of both lines with a dimension axis. This effect creates
the perception that the lines are cohesive as shown in Fig. 3.

3.3 Visual Distortion of Cluster Densities
The Gestalt law of proximity [13, 19] indicates that the density of
lines translates to a perception of cohesiveness and thereby enables
users to recognize clusters in PCPs. Classical PCPs put undue
emphasis on diagonal clusters, which is facilitated by the increase
of line lengths and decrease of line distances. This contradicts the
data-ink ratio coined by Tufte [18], which describes the proportion
of ink devoted to the actual data relative to the total amount of
ink. Thus, it adds unnecessary distortion: Diagonal clusters are
emphasized more than horizontal clusters. Classical PCPs, therefore,
induce a systematically inaccurate perception of clusters, when the
observer would expect that the visualization is inherently neutral in
this respect. We can see the effect in Fig. 1 (a), where diagonal and
horizontal clusters receive a significantly different emphasis.

3.4 Ghost Clusters
The rendering effects caused by the different slopes of the polyline
segments can also produce artificial patterns in parallel coordinates
plots. Fig. 4 (a–c) show three PCPs with uniformly distributed
random data points, i.e., there is no structure in the data. One can
easily see that a zig-zag pattern, alternating between high and low
values is visually present. The corresponding polylines seem to be
parallel and close together, forming two clusters. With an increasing
number of data points, the “clusters” are perceptually stronger. In
Fig. 4 (d), we mark one apparent cluster and highlight its polylines
across the different dimensions. One can see that the data is indeed
randomly distributed and not forming a cluster across the dimensions.
We define these visible, but non-existing patterns as ghost clusters.
Ghost clusters are not only a problem of datasets with clutter or
noise. Also, in structured datasets, ghost clusters can be present and
influence the interpretation of the data.

4 SLOPE-DEPENDENT RENDERING OF LINES

To overcome the distortion of cluster densities and potential ghost
clusters, we propose to render the polyline segments based on their
angle α . The general idea is to render horizontal lines with the
default width and diagonal lines with a thinner line. As a result, we
increase the space between vertical lines and decrease the surface
area, i.e., the number of pixels to draw a line. In the ideal case,
all line segments should end up with the same area and the same
distance between the segments. To achieve the same area for all
line segments, the width w of the polyline segments needs to be

scaled based on their length l. As the line length l = ∆W/cos(α) is
dependent on α , the desired width ω also needs to depend on α . We
interpret all lines as parallelograms with an equal and constant area A
and thus equal and constant side length h∈R+ which is independent
of α (Fig. 2). The height of this parallelogram corresponds to the
desired α-dependent width ω , leading to A = l ·ω = ∆W/cos(α) ·
(h · cos(α)). This results in the angle-dependent line width

(1) ω = h · cos(α)

The angle-dependent width ω can be generalized, allowing us to
weaken or strengthen the adjustment of the line width

(2) ω = h · cosP(α)

where parameter P ∈ R determines the adjustment strength. Our
approach applies to pixel- and vector-based rendering techniques.

4.1 Choosing the Adjustment Strength
P = 0 corresponds to classical PCP rendering, where all lines have
the same width. P = 1 corresponds to rendering with equal line
heights resulting in the same surface area A for all polylines. How-
ever, it does not fully correct the decreased line distances. Thus,
we allow P > 1 as over-adjustment to further compensate overplot-
ting of lines with strong slopes. In particular, the parameter P can
be freely adapted to the degree of clutter, and the properties of the
dataset. We want to highlight that our slope-dependent rendering can
fully overcome the problem of different line surface area (P = 1), but
the issue of varying distance between polylines can only be reduced
with P > 1. Based on these geometric properties, we recommend
P = 1 for truthful representation. However, many properties of a
PCP and dataset influence the quality of the rendering (see Sec. 4.2),
therefore an over-adjustment (P > 1) may be necessary. Our tests
with various synthetic and real-world datasets showed that P≈ 2 is
an upper bound for most applications.

In Fig. 5, we apply our technique to a synthetic dataset and uni-
form random noise. We achieve a balanced emphasis of horizontal
and diagonal clusters for P = 1 and an over-emphasis of horizontal
lines for P = 2. Ghost clusters are also reduced for P = 1 because
their density is corrected. However, the effect of smaller line dis-
tance cannot be avoided, and ghost clusters are still visible. We can
compensate for the line distance effect by over-adjusting the line
area effect (e.g., P = 2), nearly eliminating the ghost clusters, but
introducing an over-emphasis of horizontal lines.

4.2 Influence of PCP Properties and Parameters
The following parallel coordinates parameters influence the impact
of ghost clusters and the distortion of cluster densities and should be
taken into account when applying the slope-dependent rendering.
PCP Size, Axis Height and Spacing. The overall size of a PCP has
a direct impact on the axis height and spacing ∆W between the axes.
Axis height and ∆W determine the range of α: Long axes and tight
spacing, caused by high-dimensionality, increase the angles and
distort cluster densities and increase the likelihood of ghost clusters.
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Figure 5: Effect of parameter P on pattern visualization in synthetic data with uniformly distributed background noise, and in
uniformly distributed random data only. Regular rendering (P = 0) significantly over-emphasizes diagonal clusters and causes the
occurrence of ghost clusters. For P = 1, all clusters are equally emphasized, and the effect of ghost clusters is strongly mitigated. For P = 2 the
distortion is reverted, and horizontal clusters are over-emphasized. Simultaneously, ghost clusters are further reduced.

Default Line Width. Manipulating the constant line-height h influ-
ences the detail and the clarity of the PCP. Thick lines increase the
problem of overplotting, in particular for diagonal lines and clus-
ters. Thin lines are more distinguishable and therefore produce more
salient visualizations. The result of the slope-dependent rendering
depends on the default line width, typically determined by the user.
The default width directly influences the area covered by each line
segment. It is advisable to consider a manual adaptation of the con-
stant line-height h before applying a slope-dependent rendering.
Data Volume. The number of data records influences the visual
representation a PCP and is strongly related to its size and the default
line width. A high data volume visualized with a small PCP and/or
a thick line width increases the problem of overplotting, but also the
distortion of cluster densities and ghost clusters. For example, Fig. 4
shows how the dataset size increases the perception of ghost clusters.
Therefore, these properties should be optimized for a given dataset
before applying the slope-dependent rendering.
Line Color and Transparency. When no transparency
is used, then the color of the polylines does not affect
PCPs and therefore also not our approach. Transparency
can be used to avoid clutter and overplotting but intro-
duces another artifact, which negatively influences the
perception of patterns. Crossing lines introduce a darker
color, which may be interpreted as a cluster. Combined
with the slope-dependent rendering, new ghost clusters may occur,
while other patterns may vanish: Adjusting the transparency of lines
based on their slopes, as opposed to the line width, is not useful.

5 DISCUSSION AND FUTURE WORK

To test the effectiveness of our slope-dependent rendering, we im-
plemented a tool which is available on our website1. Users can up-
load their data, or try out various synthetic and real-world datasets,
comparing the results of classical and slope-based rendering. Dur-
ing our testing with the implementation, we found out that our
slope-dependent line adjustment technique performs well on vari-
ous datasets, reduces ghost clusters, and counterbalances distortions.
We also tested the impact of our approach with other patterns, such
as positive and negative correlations (Fig. 5). While positive correla-
tions are not affected even with a large P value (P = 2), the slope-

1See http://subspace.dbvis.de/pcp-adjustment for the tool and
https://github.com/davidpomerenke/slope for code and data.

dependent rendering influences the diagonal lines of negative cor-
relation. We found that negative correlations also remain visible.
However, the line representing data points at the ends of the dimen-
sion ranges are drawn with a small line width, making the visibility
of this pattern susceptible to large P values (P = 2).

Our approach can be combined with other techniques, such as
axes reordering and dimension reduction, as they do not manipulate
the polylines of a PCP. It can also be combined with polyline modi-
fications like edge-bundling. However, the line width should then
be calculated relative to the line length rather than the slope. As de-
scribed above, various PCP properties generally influence the visual
distortion and ghost clusters in PCPs. To achieve optimal results,
these parameters should be optimized before the slope-dependent
rendering is applied, and focus on the reduction of overplotting and
the average angles of polylines.

A careful selection of the parameter P is necessary. The useful-
ness of a particular P depends on many general PCP properties, as
well as data characteristics such as the number of data records and
dimensions. Therefore, P cannot be determined fully automatically
based on a fixed parameter. However, we envision an algorithm
which measures the density distribution, overlapping, and distortion
and automatically selects an appropriate P to achieve a reliable rep-
resentation of the data. We want to address this algorithm as part of
future work. Furthermore, we want to evaluate the usefulness of our
approach, in particular in comparison to other methods, by conduct-
ing a quantitative user study.

6 CONCLUSION

We formalize two general problems of parallel coordinates: The
density of clusters are often distorted and non-existing ghost-clusters
emerge. As a solution, we propose a novel rendering technique for
the polyline segments: The line width is adjusted according to the
angle of each line segment. Our method can be computed in linear
time, depends on a single parameter, and can be combined with
many existing parallel coordinates’ variations.
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