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Multiscale Visualization:
A Structured Literature Analysis

Eren Cakmak, Dominik Jackle, Tobias Schreck, Daniel Keim, Johannes Fuchs.

Abstract—Multiscale visualizations are typically used to analyze multiscale processes and data in various application domains, such
as the visual exploration of hierarchical genome structures in molecular biology. However, creating such multiscale visualizations
remains challenging due to the plethora of existing work and the expression ambiguity in visualization research. Up to today, there has
been little work to compare and categorize multiscale visualizations to understand their design practices. In this work, we present a
structured literature analysis to provide an overview of common design practices in multiscale visualization research. We
systematically reviewed and categorized 122 published journal or conference papers between 1995 and 2020. We organized the
reviewed papers in a taxonomy that reveals common design factors. Researchers and practitioners can use our taxonomy to explore
existing work to create new multiscale navigation and visualization techniques. Based on the reviewed papers, we examine research

trends and highlight open research challenges.

Index Terms—Multiscale Visualization, Multiscale Navigation, Multiscale Exploration, Literature Analysis, Taxonomy, Survey.

1 INTRODUCTION

ANY multiscale visualizations have been proposed in
Mvisualization research. These multiscale visualization
approaches are essential in various application domains
to analyze large and high-dimensional datasets, such as
in geography [1], physics [2], or biology [3]. For instance,
in molecular biology, multiscale visualizations are used to
analyze genomes’ multiscale hierarchical structure, such as
the nucleus with a division into chromosomes, fibers, and,
at the lowest scale, atoms [4]. Typically, in contrast to single-
scale visualizations, multiscale visualizations scale to larger
datasets, produce less clutter, and reveal the emergence of
patterns at different levels of scale. For example, aggrega-
tion methods can be recursively utilized to promote a top-
down or bottom-up hierarchical visual exploration of large
datasets [5]. However, designing multiscale visualizations is
challenging due to the plethora of existing approaches and
different design considerations.

In previous visualization research, authors regularly
use the expression multiscale (multi-scale) visualization in
different contexts with often varying meanings. Examples
of different contexts include interaction-based multiscale
zooming methods [6] or multiscale statistical summary
visualizations [7]. Visualization experts know about the
expression’s ambiguity and typically specify the accurate
meaning in their respective papers. However, the different
definitions of what is meant by a multiscale visualization
may be confusing for novice readers. For example, selecting
a multiscale visualization approach can be challenging for
data analysts due to the expression’s ambiguity. Currently,
there has been little work to categorize and compare mul-
tiscale visualizations to understand their design practices.
To address this challenge, we provide a systematic litera-
ture analysis of multiscale visualizations to gain insights
into common design factors and improve communication
between researchers.
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In this work, we provide a comprehensive overview
of multiscale visualization approaches. We systematically
analyzed 122 papers from multiple journals and confer-
ences to understand general design practices for multiscale
visualizations. The result is a categorization of multiscale
visualization approaches into a taxonomy. We discuss how
different multiscale visualizations enable us to analyze and
relate information at various scales to gain insight into
complex systems, such as in molecular biology [3]. Further,
we summarize design considerations and highlight open
research challenges for multiscale visualizations. Overall,
we provide a basis for the systematic reasoning about
multiscale visualizations, and the key contributions are: (1)
a unified definition of the terminology, (2) a taxonomy of
design practices for multiscale visualizations, (3) a summary
of design considerations, and (4) a collection of crucial
open research challenges. An extensive list of the reviewed
papers, the resulting paper codings, and the taxonomy are
accessible online at multiscale-vis.dbvis.de.

2 BACKGROUND

In this section, we first examine some definitions and derive
a unified consensus on the multiscale visualization termi-
nology. We also search for similar concepts and synonyms in
visualization research. The second part discusses common-
alities and differences of our literature analysis to related
work, such as relevant theoretical work and surveys.

2.1 Terminology

Some expressions are often so widely used that people
use them without specifying their exact meaning. The term
multiscale visualization belongs to these expressions. The
potential characteristics and interpretations of multiscale vi-
sualizations are quite broad in visualization research. There-
fore, we reviewed existing definitions to derive a consensus
of what is meant by multiscale visualization.
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In a broader context, multiscale visualizations are a form
of multiscale analysis. In many fields, multiscale analysis is
widely in use to understand the emergent properties of sys-
tems in the real world, such as in physics [2] or biology [8].
The essential term “multiscale” has the following dictionary
definition: “operating or occurring over different levels” [9].
The dictionary definition highlights the main characteristics
of multiscale analysis, analyzing data at various levels of
detail. Such a multiscale analysis’s primary goal is to inves-
tigate complex systems by examining small-scale patterns
and their effects on emerging large-scale patterns [8]. For
instance, multiscale analysis is useful to analyze local in-
teractions between animals in collective animal behavior
to understand individual animals’” influence on large-scale
swarm behavior [10].

In the following, we examine definitions of multiscale
visualizations to derive a more precise definition. First,
Furnas and Bederson [11] specify multiscale visualization
(multiscale interfaces) as an approach to display data at
different magnifications or scales. Next, Stolte et al. [12]
provide another perspective. The authors emphasize that
multiscale visualizations utilize data and visual abstraction
methods to present the data at different abstraction lev-
els. Data abstractions transform and reduce the underlying
dataset (e.g., aggregation or filtering), and visual abstrac-
tions change the data point representations (e.g., semantic
zooming or distortions). Further, Elmqvist and Fekete [5]
propose a multiscale structure and navigation strategies to
turn existing approaches into multiscale visualizations and
present data at multiple aggregation levels. Ebert et al. [13]
describe the need for multiscale interactions to understand
scientific data and system-of-systems at multiple problem
scales. More recently, Viola and Isenberg [14] characterize
multiscale visualizations as representations that display and
relate abstracted data across various levels of scale.

We want to highlight that the previous definitions in-
clude different concepts such as navigating and relating ab-
stracted data (e.g., aggregated data) across scales. These con-
cepts are essential in multiscale analysis in various domains.
For example, in the visualization of DNA nanostructures [3],
domain experts have to navigate and relate information
across different scales to understand complex system-of-
systems. Overall, concepts such as the presentation and
navigation of different abstraction scales expose patterns
and relationships in datasets at varying scales. Therefore,
we derive the following definition from the listed previ-
ous research: “Multiscale visualizations allow users to present,
navigate and relate data across multiple abstraction scales.” Our
definition integrates various interpretations to specify the
ideal characteristics of multiscale visualizations.

We reviewed the visualization literature to identify sim-
ilar concepts and notions to the expression multiscale visu-
alization. We utilize these similar expressions in our liter-
ature analysis as search terms to identify related papers.
We used the IEEE VIS paper keyword search by Isenberg
et al. [15] and the derived keyword topics [16] to search
for synonyms. Additionally, we scanned the keywords and
abstracts of the updated metadata collection about IEEE
VIS publications [17]. We equally reviewed the CHI confer-
ence proceedings accessible on the ACM digital library for
related expressions. We searched for the author keywords
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Fig. 1. The five most frequently used expressions among the surveyed
122 papers. The most common expression is multiscale visualization.

(tags) for “multiscale” and scanned the resulting 29 papers
for related expressions. We identified multiple reoccurring
similar expressions such as multi-scale, multiple scales, multi-
level, cross-scale, multi-resolution, and multiple resolutions in
combination with terms such as visualization, interface, rep-
resentation, viewing, interaction, navigation, model, design, and
analysis are used to describe similar concepts in visualization
research. To determine which of the related expressions is
most often used in the literature, we investigated the term
usage of our literature analysis search results (see Fig. 1).
The term multiscale (multi-scale) is the most commonly
used term of the previously listed expressions.

2.2 Related Work

Multiscale visualization has been a part of visualization re-
search for quite some time. Next, we discuss related theory
and survey papers that describe multiscale visualizations.

Theoretical Work: Many related theory papers discuss
multiscale visualization approaches. Furnas and Beder-
son [11] provide an analytical framework and space-scale di-
agrams to understand multiscale interfaces. Stolte et al. [12]
formalize multiscale visualizations using abstraction meth-
ods for data cubes. Kehrer and Hauser [18] discuss multi-
faceted visualization approaches, including a multi-model
scenario. Goodwin et al. [1] discuss the modifiable areal
unit problem (MAUP) [19] and propose a framework for
multivariate visual comparison across multiple geographi-
cal scales. Viola and Isenberg [14] examine and formalize
the concept of abstraction in visualization research. The
authors discuss multiscale visual abstractions for spatial and
temporal data. In comparison, our work focuses less on
providing another theoretical framework and concentrates
more on presenting an overview of multiscale visualization
design practices in visualization research.

Surveys: In visualization research, three surveys in-
vestigate multiscale visualizations in specific application
domains. Vaquero et al. [20] review the visualization and
interaction techniques for multiscale biomedical data, such
as anatomy or genomics. Ezzati-Jivan and Dagenais [21] sur-
vey multiscale navigation of execution trace data, focussing
on multilevel trace abstraction and visualization methods.
Miao et al. [22] discuss multiscale visualization techniques
for the analysis and manipulation of 3D DNA structures
in molecular biology. These surveys investigate multiscale
visualizations for particular application domains. Further-
more, Ebert et al. [13] describe challenges and opportuni-
ties for multiscale scientific visualizations. In contrast, our
work systematically reviews design practices for multiscale
visualizations in a broader context of visualization research,
exceeding the traditional scope of a survey.
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Hierarchical Visualizations: Further related work focus
on hierarchical and tree-based visualizations. Yang et al. [23]
propose a framework called Interactive Hierarchical Dis-
plays (IHD) for the multi-resolution view and navigation
(e.g., drill-down) of hierarchies. Elmqvist and Fekete [5]
propose a more general framework that presents a mul-
tiscale structure and navigation methods to turn existing
visualization techniques into multiscale approaches. Schulz
et al. [24] elaborate on the design space of implicit tree visu-
alizations. In contrast to these works, we provide a broader
review of visualization research by analyzing design factors
in existing multiscale visualizations.

In summary, all these previous approaches present sig-
nificant contributions by introducing frameworks, tech-
niques, or domain-specific surveys. However, none of the
previous work explored the broader visualization literature
for existing multiscale visualization. Such a literature anal-
ysis is essential to understand common practices (e.g., in-
teraction methods and targets) for multiscale visualizations.
Our literature analysis is the first analysis of design practices
for multiscale visualizations to the best of our knowledge.

3 METHODOLOGY

Our literature analysis’s primary goal is to give a compre-
hensive overview of multiscale visualizations. The guide-
lines for qualitative literature analysis [25] inspired our
methodological approach. We focus on papers that use the
expression multiscale visualizations or the identified related
expressions (see Sec. 2.1). Moreover, our literature analysis
cannot include all possible multiscale data models in visu-
alization research, as this would go far beyond the scope of
our work. We did not explore visualization approaches that
only employ hierarchical or tree-based models. Specifically,
we omitted all papers that only utilize multiscale models
(e.g., hierarchical clustering) without any multiscale visual-
ization. In the following, we describe our literature search
and analysis procedure.

3.1 Selection of Literature

First, we used multiple search engines to identify relevant
papers from various conferences and journals. We used the
search term visualization and the identified related expres-
sions (see Sec. 2.1) for online keyword search. We used the
following search engines, which lead to the results: IEEE
Xplore digital library (327 results), ACM digital library (651
results), EG digital library (129 results), and DBLP computer
science bibliography (781 results).

The automatically identified papers were refined in three
steps. In the first step, we only included peer-reviewed
full papers published in journals or conferences. The step
reduced the number of papers from 1888 to 1312. In the
second step, we manually excluded papers that were not
related to multiscale visualizations. In this step, we excluded
papers that only use multiscale models (e.g., hierarchical
clustering) without any multiscale visualization. As a result,
the papers were further filtered from 1312 to 75. As for the
last step, we recursively scanned the paper references and
followed the citations in both directions on Google Scholar.
Hence, the number of papers increased again from 75 to 122.
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3.2 Coding Scheme

We developed a coding scheme and tagged the 122 papers
with labels. The coding scheme is designed to capture
multiscale visualization characteristics and is based on ex-
isting taxonomies. To keep our coding scheme focused and
manageable, we combined some labels in more abstract
categories. Therefore, some details might get lost, like the
distinction between line charts and scatterplots, which have
been summarized as statistical graphics. A paper can have
multiple labels of a specific coding category, for instance,
multiple target labels. The authors coded the papers. We
randomly selected and encoded 20 papers redundantly to
validate our coding process. For the redundantly encoded
papers, Cohen’s kappa coefficient for inter-rater reliability
reached a substantial agreement with x = 0.61 (83% overall
agreement). We tagged the 122 papers with the following
coding scheme (see Tab. 1). A detailed description of each
tag is described in the supplementary material.

Journal: We labeled the papers with the year and journal or
conference to identify trends and the leading paper outlets.
Visualization Idioms: Munzner [26, Chapter 7-9] describes
various categories of visualization techniques for different
dataset types, such as spatial or network data. We selected
ten prominent visualization idioms from the described vi-
sualization techniques to label the respective multiscale
visualizations. We also added an extra category “other”
describing unique visualizations that do not fall into any
defined visualization idioms category. The following list
summarizes the labels.

e statistical graphics: traditional charts, such as line
charts, bar charts, or scatterplots.

o parallel coordinates: display multivariate datasets as
lines between parallel axes.

o dense layouts: pixel-oriented visualization techniques
display data records’ values as colored pixels.

e glyph: multivariate data records are mapped to glyph,
icon, and symbol representations.

e 3D: three-dimensional geometric visualizations.

o geographic: geographic visualizations for spatial data,
such as choropleth maps.

o spatial fields: visualizations of scalar-, vector-, and
tensor fields.

e graph: graph (network) and tree visualizations.

o stacked charts: present data in multiple stacked layers,
such as streamgraph visualizations.

e other: visualization techniques not fitting into any of
the categories above.

Target: We labeled the target of the visualization using the
suggested detailed targets by Munzner [26, Chapter 3].
Interaction: We used the manipulation methods for visual-
izations of Brehmer and Munzner [27] to tag the supported
interaction methods. The listed manipulation methods [27]
unify interaction and visual encodings as both are closely
related to each other.

Composite Visualization: We used the design space of
composite visualizations [28] to capture and label the com-
bination of different visual representations in the same view.
Dataset Type: We facilitated four basic dataset types (tables,
networks & trees, fields, geometry) described by Munzner [26,
Chapter 2] to tag each paper.
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Category Labels Multi-Label | Source
Journal name of the journal or conference and year Source of Publication
Visualization Idiom statistical graphics, parallel coordinates, dense layouts, glyph, 3D, geo- v’ Munzner [26, Chapter 7-9]
graphic, spatial fields, graph, stacked charts, other
Target trends, outliers, features, distributions, extremes, dependency, correlation, v’ Munzner [26, Chapter 3]
similarity, topology, paths, shape
Interaction select, navigate, arrange, change, filter, aggregate v’ Brehmer and Munzner [27]
Composite Visualization | juxtaposed, superimposed, overloaded, nested, and integrated views v’ Javed and Elmqvist [28]
Dataset Type tables, networks & trees, fields, geometry v’ Munzner [26, Chapter 2]
Attribute Type categorical, ordinal, quantitative, hierarchical v’ Munzner [26, Chapter 2]
Navigation Strategy top-down and bottom-up exploration strategies Battle and Heer [29]
Level of Analysis microscale, mesoscale, macroscale v’ Shi et al. [30] and Xu et al. [31]
Application Area CompSystems (computing systems), LifeBio (life sciences, biology), ML- IEEE VIS Paper Submission Keywords [32]
StatsModel (machine learning, statistics), ScienceEngr (physical science,
engineering), SocHum (social science, humanities), OtherApp (other appli-
cation areas), NAApp (domain agnostic)
Paper Type technique (technique & algorithm), system, design study (application & IEEE VIS Paper Types [33]
design study), evaluation (empirical study), or model (theory & model)
Evaluation computational benchmark, qualitative evaluation, quantitative evaluation, v’ visualization evaluation strategies [34], [35], [36]
usage scenario, and no evaluation

TABLE 1
The applied coding scheme with tags. A detailed description of each tag is given in the supplementary material. In case a category is multi-label,
then several labels can be assigned to one paper.

Attribute Type: Munzner [26, Chapter 2] described the four 4.1 Coding Results

attribute types categorical, ordinal, quantitative, and hierarchi-
cal. We labeled the papers using these attribute types.
Navigation Strategy: We consider two navigation strategies
top-down and bottom-up exploration strategies [29]. The
strategies can be described by drill-down (top-down) and
roll-up (bottom-up) operations.

Level of Analysis: We consider the three levels of anal-
ysis scale: micro-, meso-, and macroscale. These analysis
levels are often used to describe the analysis scale (e.g.,
in Shi et al. [30] and Xu et al. [31]). Microscale analysis
is the smallest level of scale that displays individual data
points, such as examining nodes and edges in a graph. The
mesoscale analysis is in-between and investigates structural
properties, for instance, analyzing motifs and communities
in a graph. Macroscale analysis focuses on the dataset’s
global properties, such as the number of nodes and edges
in a graph. Ideally, a multiscale visualization visualizes all
three analysis scales to enable users to relate abstracted data
across scales.

Application Area: We utilized the IEEE VIS application ar-
eas keywords (see Tab. 1) to tag the application domain [32].
Paper Type: We categorized the papers according to the five
IEEE VIS paper types (see Tab. 1) to point out popular paper
types in the research field [33].

Evaluation: We investigated common evaluation strategies
in visualization research [34], [36] and on quantitative eval-
uation studies [35]. We used five tags to label the evalua-
tion strategies: computational benchmark, qualitative evaluation,
quantitative evaluation, usage scenario, and no evaluation.

4 RESULTS

The following section outlines prevalent coding labels and a
taxonomy of similar multiscale visualization contributions.
Furthermore, we derived design considerations based on
our structured literature analysis. Researchers can explore
the complete paper codings and the taxonomy online at
multiscale-vis.dbvis.de.
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First, we provide a high-level overview of the coding labels
based on the coding scheme categories (see Tab. 1). In
the supplementary material, we included charts to expose
temporal trends for each coding category. The following
percentages always refer to the 122 papers and do not
necessarily add up to 100%, as a paper can have multiple
category labels at the same time.

Publication Venues & Paper Types In recent years, an
increasing number of multiscale visualization papers have
been published (see Fig. 2). The top three publication
venues are IEEE TVCG (44/122), Computer Graphics Forum
(15/122), and ACM CHI (14/122). The remaining 49 papers
were published in related journals or conferences. The most
common paper types are technique (46%), design study
(25%), and model (16%) papers. The two other paper types,
system (7%) and model (6%), rarely appear over the years.
From 2015 to 2020, the proportion of paper types has re-
mained constant, except for a fluctuating number of design
study papers. Recently, the IEEE TVCG publications reached
an all-time high with nine papers in 2020 as the topic is
gaining popularity for visualizing large-scale datasets.
Visualization Idioms The following labels, statistical graph-
ics, geographic, 3D, and graph, occur separately in 25-28% of
all papers. The previous four labels, considered altogether,
appear in about 80% of all papers. The number of 3D, geo-
graphic, and graph idioms has steadily increased since 2008
due to a growing number of multiscale visualizations in
social sciences and biology (e.g., 3D DNA visualization [22]).
Each of the remaining idioms occurs as follows: 10% dense
layouts, 10% glyph, 7% parallel coordinates, and 5% spatial
fields, as well as stacked charts. Interestingly, our label
“other”, representing unique visualization techniques and
tailored design studies, appears in 40% of all papers.

Target The commonly assigned target labels for visualiza-
tions are with 80% features, 57% shape, 41% similarity, 39%
distribution, and 30% for topology as well as trends. The
remaining target labels appear in 28% paths, 27% correla-
tion, 27% outliers, and 18% dependency of all papers. The
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Fig. 2. The chart presents the paper types for the years 1995-2020.

target label “extremes” occurred only ten times, which is
rare considering the number of analyzed tabular datasets
(46%).

Interaction In almost all papers, essential interaction meth-
ods are the navigation (85%) and selection (83%) of abstrac-
tion scales. Papers without those two labels discuss more
theoretical contributions, such as frameworks or workflows.
The proportion of the labels aggregation (47%) and change
(34%) has remained constant since 2006. The interaction
methods filter (30%) and arrange (17%) have slightly in-
creased after 2014. Notably, the interaction methods select
and navigate likewise aggregate and change tend to appear
together as navigation across scales often includes selecting
an appropriate scale, and aggregation involves changing
data abstraction scale.

Composite Visualization An overall 45% of all papers
received the label juxtaposed. Each remaining label nested,
superimposed, integrated views, and overloaded appeared
overall in 13-15% of all papers. In terms of temporal shifts,
we observed 13 superimposed views from 2013 to 2017,
contrasting to the only four previously superimposed views
from 2003 to 2013. Furthermore, 40 papers did not describe
any composite views, as the approaches proposed only
visualization techniques or discussed theoretical work.
Dataset Type The utilized types are 50% geometry, 46%
table, 25% network & tree, and 7% field datasets. We want
to highlight that tabular datasets appear nearly 13% in
conjunction with geographic or network & tree datasets,
i.e., in the form of geographic attributes. Multiscale analyses
of field datasets first appeared in 2014 and are overall
underrepresented with only eight papers.

Attribute Type The analyzed attribute types are in 81% of
the cases categorical, 46% quantitative, and only 2% ordi-
nal. Furthermore, 18% of papers analyze hierarchical data
attributes. We want to highlight that there are no dedicated
multiscale visualizations for only ordinal data attributes.
Navigation Strategy Overall 74% of papers utilize top-
down approaches, with only eight papers applying bottom-
up approaches. Seven of the eight bottom-up approaches
were proposed after 2013. There are only three approaches
that describe only the bottom-up navigation strategies.
Level of Analysis For the next category, the label occur-
rences are as follows: 89% microscale, 75% mesoscale, and
12% macroscale. For 65% of all papers, the labels microscale
and mesoscale occur together. We noticed that most multi-
scale visualizations are not displaying macroscopic informa-
tion, which is essential for relating the abstracted structures
to the overall global dataset properties.

Application Area The labels appear with the following
frequencies: 28% LifeBio, 11% SocHum, 8% CompSystems,
5% ScienceEngr, and 2% MLStatsModel. Further, 34% of
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Fig. 3. The proportion of paper evaluations for the years 1995-2020,
showing a positive trend towards more extensive paper evaluations.

all papers are domain agnostic, and 15% are in other ap-
plication areas. The following trends have emerged. The
number of papers in life science and biology has steadily
increased from one in 2013 to six papers in 2020. Multiscale
visualizations for machine learning applications appeared
after 2017 and will inevitably increase in the future, as
multiscale visualizations are suited to display deep learning
architectures at varying scales, such as network layers and
their underlying neurons.

Paper Evaluation The number of utilized evaluation ap-
proaches are 51% usage scenario, 29% quantitative as well
as 20% qualitative user studies, 20% no evaluation, and 11%
computational benchmark. We also examined the propor-
tion of evaluation methods over the years (see Fig. 3). The
analysis indicates an increase in quantitative and qualitative
user studies, including a slight decrease in usage scenarios.
Additionally, since 2014, there has been an increase in com-
putational benchmarks in paper evaluations. Overall, there
is a positive trend towards more detailed evaluations with
benchmarks and user studies.

4.2 Multiscale Visualization Taxonomy

In the following section, we introduce prevalent classes
of contributions in multiscale visualization research. Our
taxonomy consists of six main classes of paper contributions
with multiple sub-classes (see Fig. 4). We outline how we
derived the taxonomy based on several clustering iterations
and the refinement of the clusters. First, we encoded the
labels using one-hot encoding and applied k-means cluster-
ing using the cosine similarity to identify similar multiscale
visualization papers. Considering the input parameters, we
used the silhouette coefficient and the elbow method to
identify a decent number of k-clusters. We decided to select
k = 6 after we examined k between two and twenty. In the
second step, we manually analyzed the clusters and chose
appropriate class names for each cluster. We also refined and
reassigned 22 borderline papers to more suitable classes. Fi-
nally, we recursively applied the previously described steps
to the resulting six classes to identify similar sub-classes of
papers. We assigned each of the 122 reviewed papers to
exactly one sub-class. In the supplementary material, we
included a detailed summary of the label occurrences for
each sub-class. Next, we describe the common design factors
of each sub-class.

4.2.1 Multiscale Visual Representations

Multiscale visual representations are listed as a primary
contribution across the reviewed papers. The class contains
multiscale visualization technique papers, including two
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Fig. 4. The chart shows the resulting taxonomy, including the number of papers. The six classes are Mult/scale Visual Representations, Multiscale
Visualization Applications, Multiscale Visual Analytics, Multiscale Interaction & Navigation, Theoretical Work, and Multiscale Visualization Systems.

design studies that list visualization techniques as part of
their contribution. The class is further divided based on
visualization idioms (see Fig. 5) into the six sub-classes:
statistical graphic, 3D, geographic, graph & tree, dense, and
miscellaneous representations. The remaining visualization
idioms did not occur often enough to form sub-classes.

Statistical Graphics (5/36): All sub-class papers utilize
juxtaposed statistical graphics to analyze temporal patterns
at multiple scales. The primary targets are exploring tem-
poral data (e.g., time series) to discover similar features
(5), including identifying trends (4). The sub-class papers
provide the following interaction methods to change (5),
navigate (4), and aggregate (4) data. The datasets are tabular
(5), examining mainly quantitative data attributes (4). For
example, a unique paper is the work of Mao et al. [37],
which depicts multiscale statistical trends in text documents,
including low-level semantics (e.g., topic shifts) and high-
level characteristics (e.g., general trends), as a smooth curve.

3D (8/36): The second sub-class employs 3D multi-
scale visual representations tailored for biological applica-
tions (8) to explore 3D hierarchical datasets (3). The sub-class
consists of visualizations for geometric (7) and field datasets
(4). The central targets are to identify distributions of ge-
ometric shapes (8) and similar features (7). The proposed
interaction methods are to select (7) and navigate (6) 3D
spaces in a top-down manner. The analysis level is mainly
mesoscale (7), including interactive aggregations methods to
locate and compare geometric shapes (3). An example paper
is ClearView [38], an interactive focus+context visualization
method for complex volumetric data.

Geographic (5/36): The next sub-class summarizes
geographic visual representations that provide insight into
spatial phenomena. The targets are to discover in all papers
spatial distributions, trends, outliers, and features, such as
shapes. The interaction methods are to select, navigate, filter,
aggregate, and change spatial scales (4). The navigation
strategy is top-down from coarse to fine granular (5) and
depicts micro-, and mesoscale (3). For example, the To-
poGroups [39] technique provides an overview and navi-
gation means to explore geographical distributions across
different aggregation scales.

Graph & Tree (8/36): The following sub-class is
about abstracting and visually exploring graph data such
as networks and trees. The sub-class papers summarize
graph structures into a hierarchy of strongly connected sub-
graphs, for example, recursively into a multiscale visualiza-
tion of small world networks [40]. The regular targets are to
explore similar aggregated graph topologies (8), paths (7),
and features (5). Nearly all approaches enable users to select,
navigate and aggregate the graphs in a top-down fashion
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to examine nodes (microscale) and meta-nodes (mesoscale).
Interestingly, paper evaluations only report usage scenarios
(7), except for some computational benchmarks (2). Lately,
for instance, Pezzotti et al. [41] proposed a technique to
explore large bipartite graphs (social networks) to reveal a
hierarchy of clusters.

[ Dense Layout (5/36): The next sub-class papers
present temporal events with dense layouts, also known
as pixel-based visualizations. The primary targets are to
compare similar features (5), including identifying temporal
trends (3) in large datasets. All sub-class papers combine
navigation and aggregation interaction methods for tabular
datasets at micro-, and mesoscale. All evaluations are pri-
marily usage scenarios. For instance, dg2pix [42] provides
an overview of large dynamic graphs using a dense pixel-
based visualization to explore graph embeddings at mul-
tiple temporal scales. A notable paper is Palenik et al. [43]
that proposes a pixelmap to analyze spatio-temporal particle
simulations at multiple temporal and spatial scales.

Miscellaneous (5/36): The last sub-class contains
rarely occurring visualizations idioms. Like the two paral-
lel coordinate approaches that combine aggregations with
navigation methods to summarize features, trends, and out-
liers [44], [45]. The remaining three papers propose distinct
techniques. For example, Veras and Collins [46] propose
a display-optimized tree cut algorithm to reduce clutter
for multiscale visualizations, such as treemap or sunburst
diagrams. Since the sub-class contains different approaches,
describing common design factors is pointless.

Summary: The central element of the class papers is to
visually explore and compare similar features (32), distribu-
tions (23), shapes (16), network topologies as well as paths
(16) of data across multiple scales. However, relating data
across scales is challenging and often overwhelming for
users due to the cognitive and interaction overload [39].

4.2.2 Multiscale Visualization Applications

The second class encompasses design study papers that
describe and solve application-focused challenges using
multiscale visualizations. Fig 6 provides a general overview
of the surveyed 122 papers’ application areas.

»| Biological Applications (8/19): The sub-class papers
appeared in biology and life sciences. The papers commonly
utilize juxtaposed visualizations (4), such as 3D and graph
representations. Typical targets are to explore and summa-
rize similar network (5) and geometric (4) datasets features
(8) and distributions (4), such as 3D shapes (5), network
topologies (5), and paths (5). The interaction methods are
selecting (8) and navigating (6) in a top-down fashion to
filter and change categorical data (8) attributes across micro-
and mesoscale. The paper evaluations are usage scenarios
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Fig. 5. The Figure presents how often visualization idioms appear in the
six multiscale visual representation sub-classes. Papers usually utilize
multiple visualization idioms in their approaches, for instance, ZAME [48]
depicts a matrix visualization with glyphs.

(6), including some qualitative user studies (4). For instance,
Abstractocyte [47] enables exploring 3D mesh and node-link
representation of astrocytes and neurons.

Computing Applications (6/19): The second sub-
class contains design study papers in computing, including
machine learning applications (2). The used visualization
idioms are graph (4) and other juxtaposed (5) domain-
specific visual representations for categorical and quantita-
tive data attributes. The targets are to investigate features
(6), network topology (5), and outliers (4) in tabular (5) and
network datasets (3). The utilized interaction methods are
selecting (6), navigating (5), filtering (5), and changing (5)
the data granularity using aggregation methods. All papers
are presenting usage scenarios as a central part of their
evaluation. A recent sub-class paper is, for instance, Cao
et al. [49] river-based visualization to explore adversarial
examples in deep neural networks at multiple levels.

Spatio-Temporal Applications (3/19): The third ap-
plication sub-class is about multiscale spatio-temporal anal-
ysis. The sub-class consists of papers focusing on visu-
ally analyzing spatio-temporal data across multiple spatial
scales. For example, Biswas et al. [50] propose a workflow
to examine the uncertainty of multiple weather ensemble
models across varying spatial resolutions. Given that the
sub-class consists of only three papers, the description of
common design factors is excessive.

Miscellaneous Applications (2/19): The last sub-class
contains papers that did not fit into the previously listed
sub-classes. One paper describes the multi-level visualiza-
tion design for poetry [51], and the other paper the inter-
active analysis of social tag networks and hierarchies [52].
The discussion of common design factors for this sub-class
is again challenging, considering the number of papers.

Summary: Visualization researchers proposed biological
(8), computing (6), and spatio-temporal (3) design study pa-
pers. However, the proposed application-specific solutions
are often challenging to transfer and generalize to similar
issues of other application areas.

4.2.3 Multiscale Visual Analytics

The third class contains multiscale Visual Analytics (VA) ap-
proaches for temporal, geospatial, and graph datasets. Since
the class contains only eight papers, we will briefly discuss
some design factors for the whole class. The targets are
exploring quantitative (7) and categorical (5) data attributes
to identify overall distinct features (7), outliers (7), and
trends (6). The papers implement a rich set of interaction
methods, including selecting (8), navigating (8), filtering (7),
and changing (6), as well as aggregating (6) data.
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Fig. 6. The chart presents the application areas distribution for the
corresponding taxonomy classes Sec. 4.2.

Temporal VA Approaches (3/8): The first sub-class
encompasses three papers to explore time-series data, utiliz-
ing the Visual Analytics mantra [53]. The papers allow ex-
ploring features, extremes, trends, and outliers in time-series
data. For instance, Sips et al. [54] proposed a rare bottom-up
navigation approach that utilizes a matrix-like visualization
for the multiscale exploration time-series patterns.

Geospatial VA Approaches (3/8): The second sub-
class consists of approaches for geospatial datasets that
provide extensive systems for the multiscale analysis of
geospatial features, such as shapes. For example, Wang
et al. [55] presented a multi-resolution VA approach for
weather simulation ensembles, comprising nested parallel
coordinate plots. The paper has unique characteristics, com-
bining juxtaposed, superimposed, and nested composite
visualizations with set operations and range queries to high-
light parameter correlations for the weather simulations.

& Graph-Based VA Approaches (2/8): The last sub-class
contains VA approaches for graph datasets. The approaches
enable users to analyze relationships and clusters across
scales to identify similar network topologies. For example,
Multiscale Snapshots [56] utilizes graph embeddings with
multiple visual metaphors to semi-automatically analyze
temporal states and trends in dynamic graphs. The two
approaches display various temporal scales using different
visual representations at all analysis levels.

Summary: Visual Analytics aims to overcome the in-
formation overload of large-scale datasets by interactive
semi-automated means which involve the user in the visual
exploration process [53].

4.2.4 Multiscale Interaction & Navigation

Multiscale interaction techniques are often reported contri-
butions across the reviewed papers. We divided the papers
into four sub-class that encompass similar multiscale inter-
action techniques for visualizations, display devices, virtual
environments, and some empirical user studies. A unique
characteristic is that most papers (23) in this class contribute
quantitative user study (see Fig. 7).

Interaction Techniques (14/27): The first sub-class
comprises interaction and navigation techniques for multi-
scale interfaces. The sub-class interaction methods are useful
for locating and identifying features (12), such as shapes
(9), in multiscale spaces. The papers utilize a wide range of
composite visualizations, with integrated (7) and juxtaposed
(5) views. Typically, authors present interaction methods
on geometric (8) and tabular (5) datasets, using categorical
data attributes (12). Many sub-class papers utilize top-down
navigation strategies (13). For instance, Javed et al. [57]
present the PolyZoom technique to progressively build a
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Fig. 7. The chart displays for the corresponding taxonomy classes
the presented evaluations. Papers regularly contain multiple evaluation
methods, for instance, a usage scenario and a benchmark.

hierarchy of focus regions that enables users to backtrack
and relate multiple magnification scales.

Interaction Techniques for Display Devices (3/27):
The sub-class contains multiscale interaction techniques for
different display devices. The targets are to lookup geomet-
ric datasets using top-down navigation strategies. A unique
paper is FingerGlass [58] which allows navigating between
locations at multiple scales using multitouch screens.

Interaction in Visualization Environments (6/27):
The next sub-class contains papers that describe interac-
tion techniques for multiscale virtual environments. The
sub-class targets are the identification of categorical data
attributes (microscale) in geometric datasets. For example,
HyperLabels [59] proposed navigational aids (labels) for
the simultaneous top-down and bottom-up exploration of
hierarchical molecular 3D models.

Empirical Studies (4/27): The last sub-class includes
evaluation papers that assess multiscale navigation tech-
niques. For example, Pietriga et al. [60] compare four multi-
scale interaction techniques (e.g., pan-zoom and constrained
distortion lenses) for searching tasks. The main target is to
identify and locate geometric shapes in a top-down manner.
Two sub-class papers [61], [62] investigate the effect of
display size in multiscale navigation. The results indicate
no apparent benefit for larger display sizes [62].

Summary: The class encompasses multiscale interaction
techniques, which pose new challenges as users are often
lost in the multiscale information space, also known as the
desert fog problem [63].

4.2.5 Theoretical Work

Theoretical visualization research (e.g., framework and
workflows) is a central part of the contribution (22). The
following class primarily contains such theory and model
papers. We divided the papers into four sub-classes: mul-
tiscale visualization theory, multiscale navigation theory,
frameworks, and related surveys. We only outline some
outstanding papers for these theory sub-classes as there is
no substantial overlap between the respective coding labels.
Multiscale Visualization Theory (6/22): The first
sub-class includes theoretical papers describing multiscale
information visualization’s characteristics and challenges.
For instance, Viola and Isenberg [14] analyze the concept
of abstraction used in visualization research and emphasize
the importance of multiscale visual abstractions for present-
ing multiscale processes in particular application domains.
We included the work of Cui et al. [64] in the sub-class as
the authors propose quality measurements for data abstrac-
tions. Such abstraction quality metrics are useful to assess
how much the abstracted data differs from the initial data.
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Multiscale Navigation Theory (4/22): The second
class involves model papers about multiscale navigation
theory. For example, Jul and Furnas [63] introduce the
desert fog problem and further extend view navigation
theory. The authors propose the critical zones concept using
navigational aids to reduce and overcome the desert fog
problem. Further, Guiard et al. [65] discuss the concept of
multiscale pointing and introduce a framework for Fitt’s law
in multiscale navigation.

Frameworks for Multiscale Visualizations (5/22):
The sub-class contains frameworks for multiscale informa-
tion visualization. For example, Elmqvist and Fekete [5]
presented a hierarchical aggregation model to turn existing
visualization techniques into multiscale visualizations that
scale to large datasets. The authors also describe interaction
methods to analyze the aggregated hierarchy, such as drill-
down and roll-up operations. In another work, Goodwin et
al. [1] propose a theoretical framework for visual compari-
son across scale and geography. The framework allows users
to explore local and global variations, including sensitivities
and correlation across multiple spatial scales.

(] Surveys (7/22): The last sub-class includes related
surveys and reviews. For instance, Cockburn et al. [66]
survey interfaces for both focused and contextual viewing
(e.g., overview+detail or focus+context). Such interfaces are
exceptional cases of multiscale visualizations as the views
display two varying magnification scales. Another recent
example is the preliminary study of multiscale maps by
Dumont et al. [67] that investigates how the map scale
influences the displayed map content. For example, the
authors discuss how the visual complexity varies across
scales, such as abstracting buildings and roads.

Summary: The class contains frameworks and workflows
that propose solutions for particular multiscale visualization
challenges, such as the desert fog problem [63].

4.2.6 Multiscale Visualization Systems

The last class contains technical multiscale visualization sys-
tems, which we did not further subdivide into sub-classes
as there was no further plausible distinction.

Systems (10/10): The following papers describe scal-
able systems, toolkits, and architectures to enable multiscale
visual analysis of large datasets. Stolte et al. [12] presents
a system for multiscale visualizations using zoom graphs
and data cubes operations. The targets are to identify (8)
explicit target features (8), such as geometric shapes (6).
The approaches utilize the statistical graphics visualization
idiom (5). The systems allow selecting (8), navigating (8),
and aggregating (5) tabular (7) and hierarchical (4) geo-
metric (6) datasets. The application areas are either bio-
logical (3) or domain agnostic applications that focus on
micro-, and mesoscale analysis. The system papers report
a broad set of evaluation methods among usage scenarios
(5). Representative papers are, for example, the recently
proposed Kyrix [68] and Kyrix-S [69] toolkits that provide
a declarative model and grammar to create and manage
pan/zoom visualization scales for large-scale datasets.

Summary: The class contains research introducing novel
architectures and software solutions for multiscale visual-
izations, such as the Splash [70] framework or Kyrix-S [69]
declarative grammar.
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4.3 Design Considerations

Based on our systematic literature analysis, we extracted
seven essential design considerations.

Multiscale structures enhance visual scalability. Re-
searchers utilized multiscale structures, with easily distin-
guishable and interpretable visual summaries, to reduce
clutter and increase the visual scalability [5]. Moreover,
Visual Analytics approaches can increase visual scalabil-
ity [71], such as dynamic analysis pipelines [72].
Understand relations across different scales. Users can
relate data across multiple scales by using either various jux-
taposed views [73] or interactive lenses [74]. Using different
scales, users can progressively build multiscale hierarchies
of focus regions [57] or employ space-distortion techniques
to highlight multiple focus regions [75]. Noteworthy in the
context are space-scale diagrams [11], which support the
understanding of multiscale interfaces.

Guide users during multiscale navigation. Researchers dis-
play context information across multiple scales to alleviate
interaction overload in multiscale visualizations [39]. For
example, residual landmarks across scales can be used to
guide and navigate users towards interesting patterns [63].
We identified the following approaches for guiding users in
multiscale environments through visual cues [63], topology-
aware interaction methods [76], overview visualization [41],
animations [77], and navigation viewport optimization [20].
Visualize abstraction measurements across scales. Display-
ing data abstraction measurements helps to assess the effects
of abstraction methods and uncertainty across scales [64],
[78]. For instance, the comparison of scale-independent ag-
gregation measurements enables to quantify the abstraction
quality across geographic scales [79].

Combining data and visual abstraction methods. The
exploration of both data and visual abstraction methods
reveals trade-offs and insight about sensitive abstraction pa-
rameters [12]. For example, exploring the trade-off between
reducing precision (e.g., compression) and resolution (e.g.,
sampling) reveals useful analysis scales [80].

Recursively abstract data features. Typically, abstraction
methods are recursively utilized to condense information
(e.g., hierarchical clustering [81]) and gradually explore data
features (e.g., drill-down and roll-up operations [82]). A
representative technique is ZAME [48], which uses a hier-
archy to abstract and explore graph data utilizing multiple
alternative visual representations.

Design tailored multiscale domain visualizations. Domain
experts benefit from distinct visual encodings and adaptive
interaction methods for domain-specific scales [22]. There-
fore, domain experts themselves need to select the most ap-
propriate design from a set of abstraction and visualization
methods for their analysis tasks [47].

5 DISCUSSION

In the previous section, we described our taxonomy and the
derived design considerations for multiscale visualization
approaches. Based on these results, we discuss the following
research challenges and limitations of our literature analysis.
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5.1 Research Challenges

The visual analysis of data at multiple scales poses several
challenges. Understanding the emergence of data patterns
across scales represents a challenge for users due to the
amount of data and displayed data scales [39]. Therefore,
developing more semi-automated analysis methods is es-
sential to help users identify, compare, and relate useful
analysis scales and visual representations. In this context,
particularly multiscale visualizations based on dense lay-
outs, glyphs, spatial field visualization idioms are underrep-
resented. Further, new data abstraction measurements and
dimensionality reduction methods can also reveal similar-
ities and differences across abstraction scales in one view.
We believe that such methods are well suited for the mul-
tiscale exploration of the underrepresented field, network,
and tree datasets. The development of such methods can
likewise enhance the analysis of uncertainty across scales. In
addition, multiscale visualizations can be distinguished into
approaches for real-world multiscale environments (e.g., bi-
ological data) and large non-spatial spaces (e.g., networks),
both requiring dedicated frameworks, visualization tech-
niques, and interaction methods. Another considerable chal-
lenge is to evaluate how different composite visualizations
for multiscale visualizations affect data exploration. For
instance, evaluating how simultaneously displayed juxta-
posed, superimposed, or integrated views of different scales
influence multiscale analysis.

The interaction and navigation across scales are fun-
damental in multiscale visualizations, often leading to in-
teraction overload. A unique research gap for multiscale
interaction and navigation techniques are novel methods to
arrange, filter, and change the data appropriately to multiple
displayed scales. Such methods are notably needed if users
navigate horizontally (e.g., filtering) and vertically (e.g.,
aggregation) simultaneously. Moreover, only a few multi-
scale visualizations also visualize the data on a macroscale,
which is potentially useful for novel user guidance meth-
ods and interactive overview visualizations. In addition,
the improvement of multiscale transition and navigation
models (e.g., 3D camera management systems) are also
of enormous importance for preserving the users’” mental
map during navigation. Researchers proposed largely top-
down navigation in this context, and bottom-up navigation
approaches and frameworks are still rarely utilized. Further,
seamlessly switching between different visual abstractions
and technical devices, such as displays, tablets, and smart-
phones, can further advance the collaborative exploration of
large multiscale information spaces.

Multiscale visualizations repeatedly claim to enhance
visual scalability. For instance, the visualization of multiple
abstraction scales (e.g., aggregation) allows analyzing and
extracting knowledge from large datasets [5]. However,
multiscale visualization scalability is typically not quanti-
fied, and existing approaches generally are not compared
against each other. Hence, the comparison of computational
and visual scalability of multiscale visualizations is still
outstanding. In this regard, a detailed trade-off analysis
between data and visual abstraction methods for multiscale
visualization may reveal useful information. For instance,
comparing the multiscale data and visual abstraction meth-
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ods in statistics and engineering will provide new insight
into the scalability of the recently proposed approaches.
Overall, we believe that more empirical studies are required
to assess the scalability of existing multiscale visualiza-
tions, especially interaction methods for particular user
tasks. Such empirical studies will considerably improve the
reusability of multiscale visualizations.

A further examination of paper codings also reveals
research gaps that have not been sufficiently studied. For
example, multiscale machine learning applications are no-
ticeably underrepresented in the reviewed papers. A po-
tential solution can be to design unique bottom-up inter-
action methods for machine learning models that combine
overview visualizations with navigational aids and annota-
tion methods to analyze and understand the functionality
of different layers and neurons in deep learning models.
Overall, researchers can utilize the resulting paper codings
in our online interface to identify further research gaps.
For instance, an analysis of the dataset type labels unveils
that “field” data is rarely used, implying that the multi-
scale visualization approaches for continuous fields (e.g.,
human magnetic resonance imaging scan) are still largely
unexplored.

5.2 Limitations

In our systematic literature review, we used the results of
our initial exploration of similar expressions (see Sec. 2.1) as
keywords to query the search engines. However, multiscale
visualization approaches might not necessarily use one of
the listed keywords explicitly. We tried to resolve the issue
by recursively scanning paper references and citations in
both directions. Consequently, some reviewed papers do not
necessarily list the expression, although the authors describe
similar concepts. Further, we did not include all multiscale
modeling approaches (e.g., hierarchical clustering) in vi-
sualization research since such a survey requires several
additional categories (e.g., type of model construction) that
reflect multiscale data models’ characteristics, which is far
beyond one paper’s scope. Moreover, the derived taxonomy
highlights only the most important design practices and
research challenges. For instance, there are more research
challenges for multiscale visualizations reported than previ-
ously discussed.

Despite all those limitations, we hope our resulting
taxonomy will stimulate new multiscale visualization ap-
proaches, including new multiscale visualization theory,
interaction methods, and evaluations.

6 CONCLUSION

In this work, we contribute a structured literature analysis
of design practices in multiscale visualization research. We
selected and reviewed 122 papers with an extensive coding
scheme to reveal general multiscale visualization designs,
such as typical visualization idioms, targets, and interac-
tion methods. Based on this systematic review, we derived
a taxonomy for multiscale visualizations, which describes
distinct design factors and design considerations to help
identify trends and gaps in research. We believe that our
results help researchers and practitioners design, present,
and analyze datasets at multiple abstraction scales.
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