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Visual Analytics for Temporal Hypergraph Model Exploration
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Fig. 1. HYPER-MATRIX, a novel approach to explore and refine temporal hypergraph models using visual analytics. The interactive
multi-level matrix-based visualization @) enables the inspection of the model, together with the upper interface & . The main area
shows the second semantic zoom level applied to an obfuscated real-world dataset in criminal investigations, while the five insets @
show the other drill-down levels for exploration. The technique allows to interactively (2} contribute domain knowledge, the resulting
implications have ripple effects on the whole machine learning model, thereby refining it.

Abstract— Many processes, from gene interaction in biology to computer networks to social media, can be modeled more precisely as
temporal hypergraphs than by regular graphs. This is because hypergraphs generalize graphs by extending edges to connect any
number of vertices, allowing complex relationships to be described more accurately and predict their behavior over time. However, the
interactive exploration and seamless refinement of such hypergraph-based prediction models still pose a major challenge. We contribute
HYPER-MATRIX, a novel visual analytics technique that addresses this challenge through a tight coupling between machine-learning and
interactive visualizations. In particular, the technique incorporates a geometric deep learning model as a blueprint for problem-specific
models while integrating visualizations for graph-based and category-based data with a novel combination of interactions for an effective
user-driven exploration of hypergraph models. To eliminate demanding context switches and ensure scalability, our matrix-based
visualization provides drill-down capabilities across multiple levels of semantic zoom, from an overview of model predictions down to
the content. We facilitate a focused analysis of relevant connections and groups based on interactive user-steering for filtering and
search tasks, a dynamically modifiable partition hierarchy, various matrix reordering techniques, and interactive model feedback. We
evaluate our technique in a case study and through formative evaluation with law enforcement experts using real-world internet forum
communication data. The results show that our approach surpasses existing solutions in terms of scalability and applicability, enables
the incorporation of domain knowledge, and allows for fast search-space traversal. With the proposed technique, we pave the way for
the visual analytics of temporal hypergraphs in a wide variety of domains.

Index Terms—Hypergraph, communication analysis, geometric deep learning, semantic zoom, matrix ordering, visual analytics.
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INTRODUCTION

A significant volume of real-world data consists of entities and their rela-
tionships and can accordingly be modeled mathematically using graph-
based approaches. Such approaches are widely applied in many do-
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mains, ranging from natural and social sciences to engineering and busi-
ness. Examples include modeling biological and chemical processes
like protein-protein interactions [34], relationships in computer [43]
as well as human communication networks [33], or knowledge net-
work exploration in business processes [21]. Whereas static graphs can
represent the fixed relationships between entities, using an undirected
or directed graph as a model, many of the examples presented above
are more accurately described as processes with complex interrelations
that may change or evolve. Here, geometric deep learning methods to-
gether with interactive visualization can help to more accurately model,
predict, and explore the model evolution. Considering, for example,
conversations, a topic is a time-dependent grouping encompassing
users, which cannot be described using a static graph. This evolution
of relations should be modeled by dynamic networks. Compared to
regular graphs, using edges or separate node types, such modeling



often reflects the actual process more accurately. Dynamic networks
are, however, more challenging to model and have traditionally been
modeled as regular, undirected graphs, mainly due to computational
and visualization limitations. In recent years, modeling has extended to
dynamic networks [26], but some limitations remain.

Consequently, one can take a step further and use temporal hyper-
graphs. Hypergraphs generalize graphs by extending edges to connect
any number of vertices, allowing complex relationships to be described
more accurately [36] while reducing ambiguity and network inflation.
Utilizing temporal hypergraph prediction models, however, introduces
its own set of challenges.

First, as the model structure is more complex, it is relevant how
the information is communicated to the analyst through visualization
(cf. [20]) and how domain knowledge feedback is incorporated. Static
hypergraphs can be considered as standard sets, with different visu-
alizations available [2]. Temporal hypergraphs, meanwhile, add a
time-dependent evolution, making it harder to convey the relevant
information meaningfully.

Secondly, many traditional graph-based concepts cannot directly be
applied to hypergraphs. Hyperedges, as arbitrary sized sets of con-
nected nodes, add another order of complexity. In previous works [6,7],
we presented how geometric deep learning can be applied to hyper-
graphs and showed how this method could be leveraged to predict
behavioral patterns in social media hypergraph models.

Consequently, the incorporation of machine learning techniques into
an interactive model to more accurately predict changes in the hyper-
graph due to changes in the data introduces new problems. While deep
learning avoids assiduous manual feature engineering and algorithm
design, it reduces explainability and accountability of the results. Do-
main experts usually have some domain-specific intuition—a mental
model and structure—about inherent and implicit relations and group-
ings not available in the data, enabling them to judge the plausibility
of hypotheses and to steer the exploration. Yet, they face difficulties
articulating their domain knowledge through machine learning into the
predictions and tracing its influence. This holds especially for very
complex models, like temporal hypergraphs. The knowledge formal-
ization requires a very detailed a priori understanding of the problem
by domain experts, which is not always available. For the same reason,
it is challenging to capture the knowledge independently of the model
without rapid, iterative feedback. Hence, the machine learning outcome
often correlates strongly with the adequacy of the initial problem mod-
eling and the quality of the training data, while domain expertise and
domain knowledge are frequently not leveraged to their full potential.

To address these issues, we present HYPER-MATRIX, making the
following contributions:

* A novel, interactive framework for temporal hypergraph explo-
ration through the use of semantic zooming relying on a multi-
level matrix-based approach and various exploration concepts.

* The extension of a geometric machine learning architecture [6, 7]
with a relevance feedback model.

* A tight coupling between the visualization and the machine learn-
ing relevance feedback model for evaluation and seamless refine-
ment, offering the integration of domain knowledge and making
the corresponding model changes visually transparent.

* One case study describing an application of the technique to the
law enforcement field.

A formative evaluation with law enforcement experts using real-
world communication data, demonstrating that our technique
surpasses existing solutions, enabling the effective analysis of
large amounts of information in a targeted way.

Our approach bridges the gap between visual exploration and separate
model training, allowing domain experts to enhance the machine learn-
ing predictions with implicit domain knowledge in the same step as
evaluating and exploring the temporal hypergraph model predictions.

2 RELATED WORK

This research is an entry into the interactive temporal hypergraph model
exploration in the context of explainable support by machine learning.
In the literature hypergraphs are studied from both a visualization as
well as a machine learning perspective. In the following discussion, we
adhere to the same distinction and relate our work to the visualization of
temporal hypergraphs as well as their application in machine learning.

2.1 Visualization of Hypergraphs

We first shortly discuss the situation for (static) hypergraphs as well as
dynamic graphs, before looking at temporal hypergraphs. Hypergraphs
can be considered as a set of sets. The survey on set visualizations by
Alsallakh et al. [2] shows that several visualizations are applicable to
hypergraphs. Hypergraphs are often drawn as regular graph networks
or bipartite networks. When making their dimensionality explicit, they
can be drawn as subsets—Ilike Venn diagrams or radial sets—or in
node-link form [42], using colored hulls or other, specifically adapted
approaches [31]. A third possibility is to use a matrix-based approach,
which improves scalability [25]. Subsets and node-link diagrams suffer
from limited scalability, quickly leading to occlusion and clutter. Bound
in the number of visual attributes they can employ, these techniques
typically reach their constraints in the order of one or two dozens of
hyperedges [40]. Further, they are difficult to extend with a temporal
component, having already used up most visual attributes.

In comparison to set based approaches, dynamic graphs change
over time, leaving the choice [12] between employing animation or
an additional timeline component. The former puts significant strain
on the mental map when many connections change, while the latter is
limited by the available screen space in the number of discrete timesteps
it can show. The survey [12] also points out that node-link diagrams
remain the most commonly used type of visualization. However, these
approaches mostly lack the extendability to hypergraphs.

When studying temporal hypergraphs, the issues arising from the
dimensionality and the temporal nature all build up. Indeed, there is
almost no prior work on the visualization of temporal hypergraphs
specifically. Two notable exceptions exist, which allow visualizing—
but not modifying or refining—temporal hypergraphs: First, the recent
works by Valdivia et al. [38-40]. Their visualization approach is also
shown later in Figure 6¢ as part of the case study. Second, the previous
work by Streeb et al. [37] introduces an in-line visualization of the
temporal evolution. Valdivia et al. begin to tackle the research gap by
proposing PAOHYvis, thereby claiming to provide the “first [... ] highly
readable representation of dynamic hypergraphs”. While this is a strong
claim to make, the literature review showed a broad diversity between
the approaches, but none—except the two mentioned above—is directly
suitable for temporal hypergraph visualization, supporting this conclu-
sion. Utilizing the previously discussed approaches as substitutes for a
tailored visualization often does not adequately leverage the additional
information available with temporal hypergraphs and does not address
the tasks that come with hypergraph topology and evolution. For those,
we refer to Section 2.3. Shortcomings in existing approaches include,
for example, Streeb et al. providing only the prediction abstraction level
in their visual interface (cf. Level 3 in Section 4.1). Similarly, this is
true for Valdivia, although they support coloring by a group. This can
lead to information overload, as filtering using thresholds is the only
way to reduce the information. In contrast, usage of semantic zoom
enables an exploration of the complete hypergraph (cf. Section 4.1)
without the need to preliminary apply filters while enabling tailored
visualizations showing detailed information when focusing on different
abstraction levels. Prominent examples of matrix-based visualizations
are the Zoomable Adjacency Matrix Explorer [17] that enables users
to zoom and pan with interactive performance from an overview to
the most detailed views and the visual analysis system of Behrisch
et al. [14]. It features a flexible semantic zoom to navigate through
sets of matrices at different levels of detail. Further, both Streeb and
Valdivia, only support sorting by weights and average (cf. size ordering
in Section 4.2), compared to our default matrix-based sorting, improv-
ing cluster identification. Significantly, all existing approaches aim
at analyzing a fixed hypergraph model. None focus on interactively
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working with the model and iteratively improving it (cf. Sections 3.2
and 4.3).

At last, while not strictly related to the research on temporal hyper-
graphs per se, we want to mention approaches that are, at least partly,
similar to ours, and also conventional tools so far applied in practice.
Here we concentrate on how hypergraph-like data is handled in the
law enforcement field, relevant for the case study and the evaluation
through domain experts (see also Sections 5 and 6). The visual analysis
of communication data—but without any hypergraph visualization or
a tunable model—is not novel and has been researched both from the
analytical side [30] as well as the visualization side [44]. Also, the idea
of semantic zooming for matrix-like visualizations has been described
previously [41], however, in a different way and in the area of software
management. Further, it was also described how an overlay magic
lens [19] can be used instead of zooming, to keep the context and allow
for faster search space traversal from locations far apart, which we
partly employ for the partition hierarchy (Section 4.2). In practice, for
the law enforcement field, we found that data which benefits from a
hypergraph modeling, like communication patterns or process analysis,
is prevalent, but not supported by any system. Gephi [9] is sometimes
used, but analysts often prefer Pajek [10, 11], as it supports larger net-
works. The most popular tool is IBM i2 Analyst’s Notebook’s [23]
graph component due to the prevalence and familiarity in this domain.

2.2 Machine Learning for Hypergraph Models

Learning with hypergraphs was introduced by Zhou et al. [46] to model
high-order correlations for semi-supervised classification and cluster-
ing. It generalizes the efficient methodology of spectral clustering to
hypergraphs by proposing a label propagation method to minimize the
differences in labels of vertices sharing the same hyperedge. The cor-
relation among hyperedges was further explored by Hwang et al. [22],
assuming that highly correlated hyperedges have similar weights. More
recent works [15] concentrate on parametric learning of weights using
propagation of node features across hyperedges [18,45].

Understanding communication patterns of users on social network-
ing sites has created opportunities for richer studies of social interac-
tions and better prediction of behavioral patterns. In multimedia, link
prediction on hypergraphs has been a popular topic of research in social
network analysis. This includes predicting metadata information such
as tags and groups for entities in social networks, e.g., images from
Flickr [7], music recommendation by exploiting network proximity
information of users in Last.fm [16] and predicting higher-order links
(such as tweets with a specific hashtag) in Twitter [28]. Besides, hy-
pergraph learning models are being used in multimodal data analysis
to integrate complementary information from multiple modalities ef-
fectively. Liu et al. [29] proposed a multi-hypergraph learning method
to handle incomplete multimodal data for disease diagnosis in neu-
roimaging and Arya et al. [S] proposed a framework to learn a compact
representation for each modality in a multimodal hypergraph using a
tensor-based representation. These works have shown the importance
of hypergraph based learning for predicting implicit links within a net-
work. However, none of these approaches pose an interactive learning
formulation that can assimilate user feedback as an external source of
information to either improve the predictive capability of a model or to
even change the intrinsic properties such as learnable parameters of a
model. In this work, we extend our previous work [6] on link prediction
in communication networks capable of fine-tuning the trained model
by incorporating external relevance feedbacks.

2.3 Tasks for Evaluation of Temporal Hypergraph Models

Tasks in temporal hypergraph analysis relate to dynamic networks and
set comparisons. A task taxonomy of the former is provided in the
survey by Beck et al. [12], and for the latter in the survey by Alsallakh
et al. [3]. For temporal hypergraphs, in particular, the tasks sometimes
substantially differ; for example, one being the analysis of changes
of both connections and attributes over time. The proposed technique
does not directly fit with any existing task taxonomy, positioning itself
between disciplines [4]. For a discussion on existing taxonomies and
their applicability to temporal hypergraphs, we refer to the existing

work by Valdivia et al. [40] and summarize only the main aspects here.
Our technique supports not all traditional tasks in set analysis [3], and in
dynamic network analysis [1,8,24,27], summarized in [12]. However,
it provides support for several additional tasks relevant to our driving
application. These include the clustering of related groups indepen-
dently of their temporal connection, the inspection of shared attributes
of connections, the following of temporal evolutions, while both retain-
ing an overview and simultaneously being able to explore details. In
short, the experts are interested in connectivity information involving
both graph topology as well as attribute values, which can be separated
between time ranges. One main requirement is the need to include
external (domain) knowledge that is not directly available as raw data
and includes conceptualized topics in line with their mental categoriza-
tion. These tasks are not sufficiently described or supported by existing
taxonomies, as they neglect the additional complexity incorporated by
hypergraphs and the domain knowledge integration.

Given the sparse research in hypergraph visualization, it is unsur-
prising that there is no prior work on bridging both fields; this is the
gap we aim to fill: offering a technique that addresses the shortcomings
discussed above, enabling the exploration and refinement of hypergraph
models using interactive visualization, closing the visual analytics loop.

3 EXTENSION OF MACHINE LEARNING TO HYPERGRAPHS

In the following two sections, we describe the overall workflow of our
approach, shown in Figure 2. We begin with an exemplary description
of one geometric deep learning model, adapted to a task relevant for our
law enforcement domain experts: the temporal prediction and analysis
of patterns in communication data. It acts as a blueprint for problem-
specific temporal hypergraph models. In Section 4, we then discuss the
interactive exploration using visual analytic principles.

3.1

In set theory, an undirected hypergraph H = (V,E) is defined as an or-
dered pair, where V = {v1,..,v, } represents the n vertices (hypernodes)
and subsets of these vertices E = {ey,..,e;, } constitute the m distinct
hyperedges. H is represented by the incidence matrix I=|V|x|E|, with
entries i(v;,ex) 1 if v;ee, and O otherwise. We define the neighborhood of
v; as the set N(v;) of nodes within the same hyperedges as v;.

In adapting a generic temporal hypergraph model to our use case,
we follow our previous work [6], representing the relationship between
internet forum users and their behavioral characteristics (both “explicit”
and “implicit”). The available metadata (in particular forum category)
forms the explicit characteristic of a user, while their topics of discus-
sion outline the implicit communication characteristic. Thereby, we
construct two separate hypergraphs depicting the connection of users
with these explicit and implicit behavioral characteristics. To model the
temporal component, let us define a temporal hypergraph by H;), at a
given time 7, where each user is represented as a node, and each type of
explicit/implicit characteristic is represented as a separate hyperedge.
We denote the explicit and implicit hypergraphs, at any given time 7,
by Hj) and Hj, respectively. Consequently, in Hj;, each topic is depicted
as a separate hyperedge and users (nodes) who adhere to a common
topic of interest are connected by it. Thus, forecasting the evolution of
users’ topics of interest for time #+1 becomes equivalent to the task of
finding new relations over the existing relations in hypergraph ;.

Notation and Formulation of a Temporal Hypergraph

3.2 Relevance Feedback to Deep Learning Model

As indicated, the underlying model for forecasting future interests of
internet forum users is based on predicting links in temporal hyper-
graphs. The task of link prediction on a hypergraph H; with a fixed
set of edges E aims at updating the set e;. This link prediction can be
formulated as missing value imputation or a matrix completion task
on . In the following, we extend our previous work [6, 7], to allow for
the incorporation of feedback in HYPER-MATRIX. Therefore, we first
reconsider the module for training a geometric deep-learning model.
Then, we formulate how feedback from the user can be employed to
update the model.
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Fig. 2. High-level workflow of our technique, showcasing the main components and the interaction flow for the exploration and refinement of temporal
hypergraph models, adapted to use case A in Section 5. The workflow begins with raw data [E extraction and the generation of a temporal

hypergraph model. The model state is visualized using a matrix-based

, allowing for various exploration
and matrix-reordering techniques @ .

The domain expert O can interact with the model by either refining the filter schemes or by contributing domain knowledge, which both update

the model. The model feedback can then be explored and accepted, closing the

. The chronology of interactions and

contributions are available for recovery or verification as a provenance history = , facilitating accountability.

Training Module  Let 1, denote the incidence matrix of Hj, at time
t which we can factorize as I,;=X,¥” with X, and ¥, the row and column
matrices, respectively. Hypergraph #j) will be utilized as an auxiliary
set of explicit information between users for predicting links in the
implicit hypergraph #,. The information in #}, is encoded by extracting
its Laplacian denoted by A,. The Laplacian A, gives a measure for the
relatedness between any pair of users [16]. Using such a similarity mea-
sure can significantly enhance the user-topic link prediction outcomes
by reducing extraneous noise and thus smoothing the model output.

To train the model, we employ a semi-supervised learning setup,
hence the predictive loss is backpropagated by using a small set (around
5-8 %) of known links in H; . These known links create an upper
bound for the number of timesteps the model can predict in ;). Details
can be found in [6, 7]. For training, we take the incidence matrix Ij,; at
time ¢ and use the hypergraph link prediction model Hgp;. to learn the
best parameter set ®[r] for predicting the incidence matrix I;,, at time

t+1:

~

Lity1), gy = Hepr (I, Lo) (D

Feedback Module 1In order to integrate domain knowledge into
the underlying model, we propose a novel interactive learning formula-
tion to incorporate feedback from the domain expert. These feedbacks
are assumed to contain definitive implicit information about the topic
of interest for certain users in the dataset. Instead of just updating the
information by directly changing the topic (hyperedge) of the respective
users (nodes), these feedbacks should also create a “ripple effect” on
the overall connections in the hypergraph #j,. That is, if the feedback
fuy at time ¢ involving the single user (#;) denoted by node v; in the
hypergraph Hj,, then incorporating f[r] will entail a twofold operation: 1.
Update: Topics for user u; are updated, i.e., add/remove v; to/from the
respective hyperedges E = {ej, ..,e,, } corresponding to f,,. 2. Predict:
Change topics for users in close communication with u; based on their
relatedness to uj, i.e., re-calculate the connection strength for vertices
in N(v;) with the hyperedges E = {ey,.., e, }. The first operation is a
straightforward updating of the matrix I, by updating new values
corresponding to nodes and edges suggested in the feedbacks f;;. The
change in the neighborhood connections are calculated by using the
updated matrix I+ f;; as input to our link prediction model Hep.. How-
ever, in the feedback module, instead of learning parameters through

an iterative process, the learned parameters @, are used as initialization
of the already trained model Hgp,. This ensures the model converges
in far less time after incorporating the feedbacks f;; than when learned
from scratch. The following equation shows the representation of the
feedback module in symbolic form:

Lits1) = Hept Ly 1)+ flg, Do, Ppyy) 2)

4 INTERACTIVE HYPERGRAPH MODEL EXPLORATION

In this section, we focus on the visualization and interaction with the
temporal hypergraph model, providing a tight coupling between the
data manipulation and display (see Figure 2). We begin by describing
how the model state can be depicted using a matrix-based visualization
that provides drill-down capabilities across multiple levels via semantic
zoom. Drill-down is thereby defined as the seamless zooming through
the different levels during exploratory analysis, starting from a general
overview to increasingly more focused and detailed information, as
highlighted in Figure 3. To facilitate the interactive exploration, we
present user-steering based on classical filters for standard search tasks,
a dynamically modifiable partition hierarchy to include user-based
structuring, and various matrix reordering techniques for the focused
analysis of connections and groups. We then specify the interactions
that allow domain knowledge to be incorporated into the machine
learning model via relevance feedback and highlight how the updated
predictions can be reflected in the existing visualization. This workflow
facilitates the explainability of the underlying model, thus enabling
the domain experts to provide more meaningful feedback. Finally, we
describe how all interactions, domain knowledge input, and model
output are stored in a provenance history, providing accountability and
making the decision-making processes more transparent.

4.1 Model Visualization

As discussed above, the complexity of temporal hypergraphs makes
them difficult to visualize. Hence, we propose a multi-level matrix-
based approach, specifically tailored to the hyper-dimensionality as
well as the temporal component. The visualization (see Figure 1)
consists of a menu bar on top, controlling the interaction concepts
discussed later, and, for the main part, a matrix-like viewport, showing
nodes as rows and hyperedges as columns, with corresponding row
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Fig. 3. Semantic zoom levels and the different filtering levels (cf. Section 4.1). At each zoom step, the analyst gains another type of information
about the model, filtering a different layer of complexity. As the focus becomes more detailed, the visualization takes up more space (zoom level and
viewport as shown not to scale), while the number of visible entities decreases accordingly. The temporal predictions are shown in different forms
throughout all levels (see fine grey line), with the detailed temporal evolution first shown in Level 3 and continuing down to Level 6.

and column headers. This viewport provides freely pan-able and zoom-
able drill-down capabilities across six levels of semantic zoom, shown
in Figure 3, increasing or decreasing the information detail: from an
overview of model predictions down to contents. For this purpose,
we use three different level types: cells, arrows, and content boxes.
Colored cell visualizations are used in Levels 1 and 2. An arrow-like
representation reflecting a timeline is used in Levels 3 and 4. The base
of the arrow represents the past, while the head reflects predictions.
As the predictions become more uncertain with time, the arrowhead
becomes smaller, reflecting the increased uncertainty and thus the
decreased relevancy of the prediction. Levels 5 and 6 add text-based
elements like keywords or raw content. Level 3 and beyond all contain
the temporal aspect.

The visualization depends on the zoom state of the viewport. During
drill-down, the focus shifts from a general structure overview over the
temporal evolution to the raw content, providing the expert with more
and more detailed information. Before we start with the description of
this process, we define some necessary terms. As the feedback model
outputs probabilities for the connections (see Section 3.2), gradual
differences can be analyzed. When setting a minimum threshold for a
connection to be meaningful, this allows for a binary choice. Showing a
color encoding of the connection strength allows for a more expressive
representation of the gradual differences. Setting a cutoff threshold
can still be used to avoid cluttering with low-probability entries. The
drill-down shifts the focus of the analysis. It starts at the (binary) con-
nectivity information, extends to gradual connection strength (Level 2),
to the temporal change represented as an arrow (Level 3), to the tem-
poral change encoded using position instead of only color (Level 4),
then to information summarizing the underlying content for the pre-
dictions, in this case, keywords (Level 5), and, at last, to the raw data
(Level 6). The design choice for an arrow glyph representation in
Levels 3 and 4 is based on five reasons: (1) The principal idea of an
arrow glyph was previously published [37] and found to be beneficial.
Then, (2) given the target audience, a representation as an arrow of time
is closely related to everyday experience. Further, (3) the separation
into arrow base and head allows a clear distinction between past data
and model predictions, which is very important for the target audience.
The arrowhead also allows to visually reflect the decreasing prediction
accuracy by becoming smaller. In terms of (4) visual advantages, an
arrow provides a distinct shape, while, e.g., a cell is easily perceived
to merge with neighboring cells, which is undesired. The choice also
comes with disadvantages, introducing white space and can sometimes
lead to distracting patterns. Finally, (5) a design study on combining
timeline and graph visualization by Saraiya et al. [35] shows that our
approach—simultaneously overlaying the timeline—is best suited for

detecting outliers. This is one of the main tasks for these levels, given
the focus on change. The study also supports the design choice of
showing only a single timestep in Levels 1 and 2, as the focus is on
the topological structure. However, different visual representations like
horizon graphs might be better suited when focusing on a continuous
analysis. The seamless changes between levels speed up navigating
through large models while eliminating demanding context switches.
Moreover, at each step, the information becomes more complex, requir-
ing more screen space to visualize. For a regular HD screen, we give
rough guidance (&'(n)) on the number of elements that can be usefully
shown on-screen, amounting to around 256k grid cells of connectivity
information and around four for the raw content.

4.2

To facilitate the interactive exploration, we contribute a user-steering
based on classical concepts and filters for standard search tasks, a
dynamically modifiable partition hierarchy to include user-controlled
structuring and various matrix reordering techniques for the focused
analysis of connections and groups. All these interactions concepts
are reactive, and the visualization can smoothly and instantly update
(< 100 ms), except for the domain knowledge integration in Section 4.3.

Interactive Exploration and Drill-Down

Interaction and Filter Concepts ®©  Standard methods avail-
able in an interactive visualization are included, like (1) highlighting
selected rows or columns, (2) highlighting hovered cells, (3) tooltip-
based menus, (4) marking (i.e., starring) individual entries to highlight
them for tracking and follow-up, (5) adding textual notes, and (6) show-
ing additional meta-information. Modal views allow to (7) control
the partition hierarchy (see details below), while setting an (8) over-
all cutoff threshold allows controlling the confidence threshold of the
underlying model. A (9) global search function provides the ability to
search for node- and edge information as well as content and highlights
the matching components. At last, the menu bar allows (10) controlling
the matrix reordering (see detail below).

# To allow do-
main experts to articulate their mental categorization to the model, the
experts can create (nested) groups of different nodes or hyperedges,
creating hierarchies. The nodes or hyperedges hereby relate to the
leaves of the dendrogram. The groups can be expanded or contracted
either directly from the node or hyperedge headers, visually indicated
by color, or by editing them inside the partition hierarchy viewer in a
modal overlay. The viewer shows a dendrogram-based representation
with freely reorderable entries. Each branch of this dendrogram can
be independently collapsed or expanded, i.e., the abstraction level is
local to each branch and not globally set. For example, it is possible to
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(a) Multi-step hierarchy

(b) Size

(c) First occurrence

Fig. 4. Comparison of different matrix reordering techniques to facilitate
the detection of similar groups and connections. Compared to the un-
ordered state and the slightly improved ordering by size, the adoption of a
default multi-step, dendrogram-based reordering, modified and adapted
from [13], enhances the clustering by similarity.

collapse a large, uninteresting sub-branch, including the nested nodes
it contains, while simultaneously having one branch fully expanded
and another only up to the penultimate level. This is also independent
of the overall visualization level, similar in concept to multiple fixed
magic lenses, visually supporting different analysis paths. The hier-
archy allows, for example, to group complementing entities together,
to build meta-entities, and even hierarchies of entities.

Matrix Reordering and Sorting @  To support the tasks relevant
for our driving application (see Section 2.3), a matrix reordering is
desirable such that related users and topics appear close to each other.
Due to the independent and often conflicting interpretations of both
axes and the sparseness of the underlying matrix, the direct application
of standard 2D numeric sorting algorithms (e.g., Multi-scale-, Chen-, or
Travelling salesman problem ordering) [13] often leads to unsatisfactory
results, as they are mainly applicable to pairwise comparison matrices.

As part of the visualization, we offer three main different reorder-
ing strategies, as shown in Figure 4: (a) matrix-reordering (default),
(b) sorted by size (connectivity), (c) first occurrence (original). The
reordering is applied individually for each axis, as the requirement may
differentiate between search tasks, not always favoring a block-like
clustering. It also provides more flexibility for adopting other sorting
methods in domain adaptions of our technique. The underlying sorting
principles build upon a dendrogram-based serial matrix reordering dis-
cussed by Behrisch et al. [13]. It forms a multi-step process, combining
the sorting of node and edge similarity vectors. Supported dendrogram
methods are ward-, single-, average-, and complete linkage, combined
with any pairwise distance function like Euclidean, cosine, or Jaccard.
We refrain from discussing individual choices, which can vary strongly
on domain adaption. For our case study, the Jaccard and cosine distance
provide consistent results.

4.3 Visual Analytics for Model Updates =

To increase the traceability of domain knowledge integration and ex-
plainability of the resulting model changes, we propose an interactive
change feedback visualization, that seamlessly integrates with our vis-
ualization. The two-step process is shown in Figure 5. An expert can
integrate domain knowledge by selecting a cell and setting a new con-
nection strength (Figure 5a), thereby complement missing or override
model input data. This input is used to partly retrain the model and
refine its predictions as described in Section 3.2, leading to a ripple
effect. Thereby, the model has prediction authority, i.e., the user cannot
manually fix the ultimate output to guarantee model authenticity. A
spinner indicates the few seconds long operation. The resulting changes
are displayed inside the same view (Figure 5b). A diverging color scale
is used, showing changes instead of predictions. Through two visually
distinct scales, it is immediately apparent if predictions or changes in
the predictions are shown. The view integration allows for consistency,
reducing the mental workload, and improving mental mapping.
Changes can be inspected on all levels of the visualization. The
exploration is not restricted to just the current viewport, finding even
weak connections. Change detection is facilitated, allowing rejection if
deemed implausible or acceptance if convincing, enabling the followup
of multiple analysis paths. By iteratively and interactively queering
the model and see how it responds to domain knowledge integration,
experts can discern better how connections and processes in the model
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(b) Resulting changes in the model predictions.

Fig. 5. Resulting changes in the model prediction (ripple effect) from an
input are visualized by a diverging color scale (from negative to no to
positive change). They can be explored and rejected or . This
allows for model verification and multiple, different analysis paths.

are related, improving understanding and increasing explainability.
Experts in many applications are interested in their analytical
progress and must reproducibly document the steps. We address this
by a re-loadable provenance, storing the interaction sequence, domain
knowledge input, model output, and fixed RNG seeds. This allows for
inspection, verification, and traceability while providing accountability
and making decision processes transparent. The provenance history
allows undoing analysis steps, preventing dead-ends, revisiting and
explaining past steps, but also bridging off to diverging analysis trails.

5 CASE STUDY: INTERNET FORUM COMMUNICATION DATA

To demonstrate the visual exploration of temporal hypergraph models
in HYPER-MATRIX, we conduct a case study, showing the applicability
of our technique and improvements compared to existing approaches.

The communication data was collected from an internet forum well-
known to law enforcement. It contains 335188 text posts from 4904
users. We pre-processed the data using standard NLP methods to extract
158 topics, based on a domain-specific ontology. As described in
Section 3, users are associated with nodes and topics become dynamic
hyperedges. To allow for a reasonable side-by-side comparison with the
existing approaches, shown in Figure 6, we had to restrict to a subset,
consisting of 35 users, 65 topics, and six timesteps. This is around
four times more than conventional approaches are designed for. We
confirmed that our prototype works for significantly larger networks
(cf. Section 7). Our prediction model is fed with four years (timesteps)
of historical data and then predicts the evolution of the next two years
as two timesteps. Almost any real-world data is noisy and may miss
some relationships. Consequently, some of the conclusions drawn here
may be inaccurate. However, we focus on demonstrating the concepts
and benefits of the visual analysis process HYPER-MATRIX provides.

The task we want to focus on in this case study is the identification
of related groups and missing links, common in criminal investigations.
To identify users discussing the same topics and topics discussed by
the same group, the matrix reordering and connectivity information in
Level 2 can be used to see structures, as shown in Figure 6b. Their
spatial closeness acts as primary identification criterion, as similar
row/column vectors are grouped closely. From this, their spatial close-
ness, describing the multi-step alignment, supports discovering related
users or topics discussed simultaneously, but also latent connections.
Distinct orderings can be applied separately to nodes and hyperedges,
for example, to either favor overall similarity (cosine) or matching parts
(Jaccard). For other requirements, it is also possible to include different
metrics. To reduce noise and exclude weak connections, the top menu
allows to set a threshold for the connection strength for historical and
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(a) IBM i2 Analyst’s Notebook. Automatically generated graph representation from
the hypergraph model displaying the connections (labels removed) for the furthest
predicted year using a modified bipartite representation. Data-wise, this can be
compared to the connectivity information in our Levels 1 and 2. Clutter and occlusion
prevent a meaningful global analysis, and while individual users and topics can be
explored, this is only possible slowly, not without difficulty, and likely requires moving
entities around to identify connections safely.

e

(c) PAOHVvis [39]. The temporal hypergraph evolution shows the individual hyperedges,
allowing to find connected users and topics. However, the hypergraph size is at the
upper limit for a feasible visualization, already leading to some cluttering. Also, due to
the temporal splitting, the comparability between years is hindered for such complex,
non-sparse hyperedges compared to our technique, but better suited for comparing
topics in the same year.

(b) Our technique at Level 2, showing the same predicted connectivity information
as Analyst’s Notebook in Figure 6a. Clusters and related users/topics can be
pinpointed more easily. The color scheme and filtering settings in the top menu
bar also facilitate to identify the prediction strength, which can be estimated by
using the overlayed legend in the bottom right corner. The blue buttons allow to
access the partition hierarchy modifier to view a dendrogram view of the grouped
entities.

> )

(d) Our technique at Level 3, showing the same temporal evolution information as
PAOHUvis in Figure 6¢. The scalability is increased, showing no occlusion and the
comparability of trends (important for the case study) is improved. This is due to
retained cell ordering and short comparison distance. The downside is a reduced
comparability between topics in the same year. The nature of the predictions
depend on the model.

Fig. 6. Case study comparison of different approaches using the same internet forum hypergraph model dataset and exactly the same data view
(connection strength > 0.1, min. 2 hyperedges). Compared are the state-of-the-art industry solution IBM i2 Analyst’s Notebook (Figure 6a), PAOHvis
(Figure 6¢) against our technique, showing the information at two different levels of abstraction (Figures 6b and 6d). Further, both external approaches
only support a fixed network while our technique allows for an interactive refinement and domain knowledge integration.

predicted data. A flag controls the ordering mode to either respect
the filtered or the full dataset (including filtered elements). To further
structure the view, the experts can manually click and select to group
users and topics to reflect their mental categorization of users and topics.
This allows to reflect domain-specific ontologies (e.g., similar concepts)
or represent known formations of users.

Zooming to the lower visualization levels shows the temporal devel-
opment. Compared to existing approaches (see Figure 6¢) our technique
(Figure 6d) increases the scalability and comparability for dense tempo-
ral evolution. Compared to the industry standard Figure 6a, presenting
the temporal evolution as a timeline-like arrow within each cell reduces
comparison distances. Levels 5 and 6 allow an expert to understand
the actual data on which a predicted connection is based: The main
keywords of the relevant text fragments and, respectively, the actual raw
text fragments (cf. Figure 3). This ability allows the expert to verify
predictions and detect shortcomings as, for example, irony and coded
synonyms are still difficult to be detected automatically. If the expert
has identified shortcomings on any level, e.g., missing connections or
wrong attribution of an ambiguous term, the technique allows for the
inclusion of this additional domain knowledge. To externalize knowl-
edge, the expert selects the corresponding connection and specifies the
proposed strength on a scale between 0 and 1. This translates to definite
knowledge about no and guaranteed connection, respectively. More nu-

anced values like .7 allow the expert to reflect his own uncertainty. This
allows them to try out hunches while simultaneously preserving some
model flexibility. For this reason, the change preview (cf. Figure 5b)
is extremely relevant for the domain experts, as it allows them to see
directly how their knowledge transforms the model prior to accepting
the changes. They can explore the consequences by zooming and pan-
ning through all levels and correlate their findings with their intuition
or other facts. If unsatisfied, they can go back. Otherwise, they can
continue and repeat this visual analytics loop multiple times. This rapid
feedback supports the expert in refining the model without being blind
to the resulting consequences, but being able to control and explore the
latest model state at all times. As the domain experts focus is on ex-
ploratory analysis the iterative refinement supports finding connections
and missing links faster. With domain knowledge that is difficult to be
integrated a priori, step-by-step changes are more understandable.

6 FORMATIVE EVALUATION

We performed formative evaluation sessions involving three domain
experts (P1-P3). P1 is a criminal investigator working for a European
law enforcement agency, having more than 30 years of experience, 20
years spent in digital and criminal investigations. His expertise includes
communication and network analysis, familiarity with commercial
systems like IBM i2 Analyst’s Notebook [23], the graph visualization



tool Gephi [9], as well as the large network analyzer Pajek [10, 11].
P2 works at the same agency in a different division, and has more
than 20 years of experience in criminal investigations, specialized in
group structure and content analysis. P3 is a senior project lead at a
governmental research institute, studying analytical raw data analysis
for more than ten years.

6.1 Study Procedure

The formative evaluation was conducted individually via remote screen
sharing, taking about 60 minutes. For later review of these remote
screen sharing sessions, they were recorded after receiving the formal
consent of the experts. In the first 10 minutes a demo presented how to
perform the visual analysis, explore and refine data and processes, and
integrate domain knowledge in the search process and in the machine
learning model. The next 30 minutes were spent between the experts
using the system and providing feedback, as well as additional on-
demand demonstrations. The tasks the experts performed include
overview, the identification of the most promising leads, and the drill-
down through the different zoom-levels down to the actual raw content,
in this case, communication data. Further, we demonstrated and debated
the different interaction techniques, like cutoff values and thresholds,
matrix sorting and reordering strategies, and the dynamically modifiable
partition hierarchy, as well as the machine learning feedback process.
In the last 20 minutes, the authors interviewed the experts asking
32 prepared questions (see annexes). During each of the formative
evaluation sessions, the experts engaged actively, trying out concepts,
asking questions, commenting on the features, and pointing out issues.
If an expert already partially gave comments during the 30 minutes
session, they were offered to extend their answer. For example, when
an aversion or surprising idea was mentioned, we additionally focused
on these aspects. The interview was designed to elicit aspects of our
technique that the experts find relevant for their work or confusing or
misinterpretable, as well as opinions on the individual approaches.

6.2 Findings and Lessons Learned

The main observations during the study are that our approach can
effectively support most analytical requirements of the experts and that
the experts favor both the rapid exploration of large datasets at differ-
ent levels as well as the ability to integrate and contribute with their
domain knowledge. This matches with their need to identify general
trends in single combinations of users and topics and simultaneously
identify co-occurrences. For this, the general prediction is more im-
portant than being able to identify differences between entities in the
same year (cf. Figure 6). The underlying model we built upon [6] has
proven to perform sufficiently well in this prediction task with an AUC
(area under curve) of the ROC (receiver operating characteristic) of .88
and a recall value of .81. Excluded from the requirements are concepts
outside the design scope, like purely mathematical capabilities as, for
example, general centrality calculations, for which algorithms exist and
could be included. In the following, we structure and summarize the
main findings based on the expert’s interactions and comments.

The domain experts agree that our approach of structuring informa-
tion in multiple levels of details, using a matrix-based approach, is
novel and therefore is not used in practice in their domain. For example,
so far P1 has worked with either text-based or graph-based tools, and
thinks our approach can “perfectly complement” existing workflows.
The experts highlight the ability to effortlessly explore so much infor-
mation (cf. P3), thereby “saving time” (P1), enabling a “quick analysis”
(P3), while providing a “great overview ... with much details, ... but
without overloading” (P2) the analyst, with an ease that is unexpected,
given previous experience with this amount of data (cf. P2). We ob-
served, that the experts often switch between the levels for targeting
(upper levels) and then exploration and confirmation (lower levels). As
P2 notes, this increases the size limit of the visually analyzable graph
models, enhancing upon existing systems. ‘“Together with the search
capability” (P1), this allows for a very flexible workflow, enabling a
good overview even for larger datasets.

The initial overview visualizations (Levels 1 and 2) are welcomed
for providing a fast overview (cf. P1). The color scheme in Level 2

is regarded as comprehensible without explanation and aligning with
expectations (cf. P1). It helps to provide guidance “where to start” (P1),
and supports analysts in “planing their actions” (P3). To make the
color scheme absolutely comparable, P3 requested the addition of a
color legend. The glyphs are appreciated for providing details on the
temporal distribution and future predictions (P2, P3). The glyph-based
arrow representation in Levels 3 and 4 is appreciated for providing
details on the temporal distribution (cf. P2, P3) interesting to the experts,
and, most importantly, “the future predictions” (P2) in context of the
historical data. Depicting future predictions in the arrowhead and
the past data in the shaft, and seeing both together was described as
“helpful” (P3). The alignment by fixed timesteps, like years, is regarded
as precise and practicable (cf. P1) by the experts. In comparison, the
distribution as line chart in Level 4 received mixed responses, with
P1 and P3 finding it beneficial for their understanding to get a better,
absolute reading, while P2 feels “it does not add much”. The keyword
visualization (Level 5) is regarded as fine for an abstract summary of
the content visualization but could be extended (cf. P3). This layer,
representing the “main connection” (P1) to the actual raw data, is
important (cf. P1), and only shown when relevant in high zoom levels,
“where the text content is relevant” (P1).

The ability to search through all underlying textual data and high-
light matches in the views was received enthusiastically by all experts,
as they can also transfer and fulfill some of their existing workflow, e.g.,
content- and text-based workflows, with our technique. It allows to
explore global tendencies while enabling to query locally (cf. P2), not
being distracted by other matches “not relevant at the moment” (P2).

While the visualization alone helps them already some ways, pro-
viding them “with improved degree of detail ... unknown so far” (P1),
all the experts also agree that the interaction concepts constitute an
essential and relevant part of the approach, “helping them with strategi-
cal and operational decision” (P1). The matrix reordering strategies
significantly improving the visual clarity of the overview, are regarded
as “very interesting” (P2), and enable the experts to detect “groups”
(P1) as well as connections easily, allowing them to “quickly iden-
tify hotspots” (P2), while putting less emphasis on weak connections.
This is regarded as very supportive, being rarely supported in analy-
sis systems (cf. P1), “saving costs and time” (P1). We observed that
the experts use this as system guidance. The partition hierarchy is
regarded by all experts as “essential” (P2), with P3 describing it as
a “core functionality”. It allows grouping different model parts into
physical concepts, applying structure comparable to existing mental
models (cf. P2), improving the mental mapping. It “makes decision
easier” (P3) and allows to “connect things” (P3).

The experts further describe that with existing tools, one major prob-
lem is that their mental concepts and models can “not [be integrated]
enough” (P2) in the exploration, making it harder and less compre-
hensible. They notice that our approach supports them in three ways
not present in existing tools: (1) the interactive exploration allow-
ing to follow their instinct, (2) the modifiable partition hierarchy to
express and capture their mental concepts, and, “most importantly”
(P1), (3) the ability to integrate their domain and external knowledge
directly in the model. While the experts wished that they could already
“generate a report [... and] export single entries” (P2) as commercial
systems do, they note the enormous conceptional benefits of our tech-
nique. They regard them as “optimal” (P1), as there “are concepts
and knowledge that cannot be modeled with machine learning [alone]”
(P1) and are not “available” (P1) in the data. This knowledge then
“cannot be integrated so far” (P1), is often documented in the head of
the domain expert or “on a post-it note on the desk” (P1), leading to a
high risk of the knowledge being “lost” (P1) or not leveraged. Accord-
ing to P1, the knowledge integration is performed iteratively during
exploration, which we also observed as the experts adding knowledge
intermittently, beginning with their main suspects and then expanding,
adding knowledge when necessary either from post-its or when read-
ing a name triggers a memory. The experts think that our feedback
loop contributes to their analysis (cf. P1), replacing and “perfectly
complementing” (P1) existing workflows. They regard the ability to
interactively insert their knowledge as versatile. P1 noted that insert-
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ing all knowledge beforehand would be error-prone and “practically
impossible” for larger datasets. To see “validation [possibilities] on
changes” (P3) is especially important for vetting, and the change view
is regarded as “very clear” (P1), allowing them a first glance, beneficial
for prefiltering, steering and follow-up search guidance (cf. P1) to better
divide their time for exploration. For improved usability P1 suggested
to enable clicking to jump directly to the raw data in the change preview
mode for validation. P1 regards the ability for a global accept/reject
as sufficient for now, conceding that a partial accept could be explored
in the future, although he does not see an immediate benefit. They state
that the 0-1 scale is “understandable and usable” (P1), but note that
using the “5x5x5 system” (P1)—a commonly used police system based
on letters A—E and 1-5 for source and intelligence evaluation [32]—
would be immediately understood and universally accepted in the target
domain. The approach allows them to integrate their domain knowl-
edge on multiple levels, together with the ability to perform a “quick
analysis” (P3) of “large amounts of information” (P2) “in a targeted”
(P1), non-overloading manner. From the observations of the experts,
we derived a set of tentative tasks, relevant in law enforcement: (1)
finding linked users/topics, (2) connecting users which share related
topics to identify co-conspirators, (3) using classical text-based search
in the raw data to identify users, (4) finding and judging an in/decrease
of user activity for a topic, (5) finding a temporal co-occurrence be-
tween topics and users, (6) adding domain knowledge to a specific
user and specific topic and judging the implications, (7) transfer raw
data patterns and identify related users, and (8) confirming the model
predictions by cross-validation plausibility with the raw data texts.

7 DiscussION AND FUTURE WORK

During the evaluation, we received multiple proposals on how our ap-
proach could be extended further, including by mathematical analysis
methods and industry-grade interfaces. In the following, we discuss
the limitations and broader applicability of our approach, also in the
context of future work. For our prototype approach, we adapted the
generic blueprint of a machine learning model to the case study. This
use case has its own limitation, requiring structured data with time
and author information, and dependent on advanced topic extraction
models. We tested our prototype successfully with 1000 users, 800
topics, and 15 timesteps on an HD screen, typically the upper size
for large investigations. In terms of data type, the technique can cope
both with sparse and none-sparse matrix structures. For the former,
the matrix reordering allows to prioritize more relevant connections
and order them further on the top left, reducing the required screen
usage for the main parts. Of course, a homogeneous sparse matrix does
not benefit from that. In this case, and for none-sparse matrices, the
different zoom levels shift the size limitations. Nevertheless, they do
not scale infinitely. Scrolling would be needed when scaling further,
even for the overview level. According to domain expert P1, there the
primary concern would be the number of users (y-axis), but using the
partition hierarchy and matrix reordering could partially mitigate the
issue. When increasing the number of time steps, the arrow becomes
more detailed, shifting from blocks to a more continuous stream, be-
coming less distinguishable. For our use case, this fine-grained time
is not primarily relevant because the experts aim at seeing who has
recently been interested in a topic. However, it might become an issue
when the task requires to extract detailed timestamps. Therefore one
could use hovering, magnification on demand, or a more specialized
visualization. Also, the visualization presented is better at analyzing
trends and connectivity tasks on an overview level. Comparing the
same time step in Levels 3 and beyond between two non-aligned nodes,
however, becomes harder. For further work, we envision an adaptable
overview layer showing a specific time point, allowing cross-cell com-
parability. When adapting to different use cases, some of the filtering
methodology likely has to be changed. For example, when supporting
biochemical process analysis, the raw attributes are not texts anymore,
which (1) would need a different visualization for the content in the
two lowest display level, but would also impact (2) the search function-
ality, which would need to be adapted to search and filter for biological
and chemical properties instead of text. The discussed visualization

components serve only as examples for the visual analytics workflow
presented. When adapting to a different field, there exist manifold pos-
sibilities for extensions, by integrating domain-specific visualization
components. We provision this by a modular view architecture, sup-
porting independent layer modules. Further enhancements are multiple
magic lenses to allow for simultaneous drill-down to different levels.
In the future, we envision improvements to the feedback system,
for example, showing how domain knowledge propagates not only
between two model states, i.e., before and after adding knowledge
but also explaining the effects of previously introduced knowledge,
for example, by interactively highlighting the individual influences on
hover. This is supported by our architecture, but the computation time
scales linearly with the number of domain knowledge inputs, which
leads to computation times of several minutes and more, making it
infeasible in an interactive environment for fast iterations. We hope to
improve this by enhanced engineering, reducing the model setup and
reloading times by advanced ways of updating the hypergraph model.

8 CONCLUSION

Many processes are difficult to describe using traditional graph-based
concepts and benefit from more precise yet more complex modeling as
temporal hypergraphs. We address this challenge by using a geometric
deep learning approach and extend it to hypergraphs. However, such
deep learning models typically do not incorporate domain knowledge,
usually unavailable in the data. This is not least because domain experts
struggle to articulate their knowledge without rapid, iterative feedback
and intuitive representations matching their mental models, alterna-
tively requiring a detailed a priori understanding of the problem. Hence,
domain expertise is often not leveraged to its full potential.

We contribute a technique, named HYPER-MATRIX, to make tempo-
ral hypergraph model exploration more accessible for domain experts
by enabling the integration of domain knowledge into the process and
support their mental models through a multi-level matrix-based visual-
ization architecture. The technique enables the interactive evaluation
and seamless refinement of such models while providing a tight cou-
pling and rapid, iterative feedback cycles to the underlying machine
learning model. Model changes in response to the integration of domain
knowledge are visualized transparently by a change preview, allowing
experts to foster a more detailed understanding of how the underlying
model works while externalizing their knowledge to teach the machine.

The approach allows to swiftly explore vast search spaces while
maintaining focus and eliminating demanding context switches. Drill-
down capabilities across multiple levels allow studying details and
model contents on demand while retaining the overview. This architec-
ture facilitates a focused analysis of relevant model aspects, allowing
experts to detect patterns more rapidly and accurately. It is comple-
mented by interactive filtering and search, various matrix reordering
techniques, and a dynamically modifiable partition hierarchy, allowing
the integration of domain knowledge in the visualization layers.

We evaluate our approach in one case study and through formative
evaluation with law enforcement experts using real-world communi-
cation data. The results show that our approach surpasses existing
solutions in terms of scalability and applicability, enabling the incorpo-
ration of domain knowledge and allowing fast and targeted search-space
traversal. While we focused on topic prediction for law enforcement
as driving application, the interactions and concepts work with any
temporal hypergraph, being model agnostic and applicable more gener-
ically to a wider variety of domains. With our technique, we hope to
pave the way for domain experts to a more interactive exploration and
refinement of temporal hypergraph models, enabling them to use their
knowledge not only for steering but also to articulate it into the machine
learning model.

ACKNOWLEDGMENTS

This project has received funding from the European Union’s Hori-
zon 2020 research and innovation programme under grant agreement
No. 700381. This material reflects only the authors’ views, and the
Commission is not liable for any use that may be made of the informa-
tion contained therein.



REFERENCES

(1]

(2]

[3

—

[4]

(5]

(6]

(71

(8]

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

J. Ahn, C. Plaisant, and B. Shneiderman. A Task Taxonomy for Network
Evolution Analysis. IEEE Transactions on Visualization and Computer
Graphics, 20(3):365-376, 2014. doi: 10.1109/TVCG.2013.238

B. Alsallakh, L. Micallef, W. Aigner, H. Hauser, S. Miksch, and P. J.
Rodgers. Visualizing Sets and Set-typed Data: State-of-the-Art and Future
Challenges. In Proceedings of the Eurographics Conference on Visualiza-
tion (EuroVis), 2014. doi: 10.2312/eurovisstar.20141170

B. Alsallakh, L. Micallef, W. Aigner, H. Hauser, S. Miksch, and P. J.
Rodgers. The State-of-the-Art of Set Visualization. Computer Graphics
Forum, 35(1):234-260, 2016. doi: 10.1111/cgf.12722

N. Andrienko and G. Andrienko. Exploratory Analysis of Spatial and
Temporal Data. Springer-Verlag, Berlin/Heidelberg, 2006. doi: 10.1007/3
-540-31190-4

D. Arya, S. Rudinac, and M. Worring. HyperLearn: A Distributed Ap-
proach for Representation Learning in Datasets With Many Modalities. In
Proceedings of the 27th ACM International Conference on Multimedia,
pp. 2245-2253, 2019.

D. Arya, S. Rudinac, and M. Worring. Predicting Behavioural Patterns in
Discussion Forums Using Deep Learning on Hypergraphs. In International
Conference on Content-Based Multimedia Indexing (CBMI), 2019.

D. Arya and M. Worring. Exploiting Relational Information in Social Net-
works Using Geometric Deep Learning on Hypergraphs. In Proceedings
of the 2018 ACM on International Conference on Multimedia Retrieval,
pp. 117-125, 2018.

B. Bach, E. Pietriga, and J.-D. Fekete. GraphDiaries: Animated Transitions
and Temporal Navigation for Dynamic Networks. IEEE Transactions on
Visualization and Computer Graphics, 20(5):740-754, 2014. doi: 10.
1109/TVCG.2013.254

M. Bastian, S. Heymann, and M. Jacomy. Gephi: An Open Source
Software for Exploring and Manipulating Networks. In Proceedings of the
International AAAI Conference on Weblogs and Social Media, ICWSM,
pp. 361-362. AAAI 2009.

V. Batagelj and A. Mrvar. Pajek - Program for Large Network Analysis.
Connections, 21(2):47-57, 1998.

V. Batagelj and A. Mrvar. Pajek - Analysis and Visualization of Large
Networks. In Graph Drawing, Lecture Notes in Computer Science, pp.
77-103. Springer, Berlin, Heidelberg, 2002.

F. Beck, M. Burch, S. Diehl, and D. Weiskopf. A Taxonomy and Survey of
Dynamic Graph Visualization. Computer Graphics Forum, 36(1):133-159,
2017. doi: 10.1111/cgf. 12791

M. Behrisch, B. Bach, N. Henry Riche, T. Schreck, and J.-D. Fekete. Ma-
trix Reordering Methods for Table and Network Visualization. Computer
Graphics Forum, 35(3):693-716, 2016. doi: 10.1111/cgf.12935

M. Behrisch, J. Davey, F. Fischer, O. Thonnard, T. Schreck, D. A. Keim,
and J. Kohlhammer. Visual Analysis of Sets of Heterogeneous Matri-
ces Using Projection-Based Distance Functions and Semantic Zoom. In
Computer Graphics Forum, vol. 33, pp. 411-420, 2014.

M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst.
Geometric Deep Learning: Going Beyond Euclidean Data. IEEE Signal
Processing Magazine, 34(4):18-42, 2017.

J. Bu, S. Tan, C. Chen, C. Wang, H. Wu, L. Zhang, and X. He. Music
Recommendation by Unified Hypergraph: Combining Social Media Infor-
mation and Music content. In Proceedings of the 18th ACM International
Conference on Multimedia, pp. 391-400, 2010.

N. Elmgqvist, T.-N. Do, H. Goodell, N. Henry, and J.-D. Fekete. ZAME:
Interactive Large-Scale Graph Visualization. In 2008 IEEE Pacific Visual-
ization Symposium, pp. 215-222, 2008.

Y. Feng, H. You, Z. Zhang, R. Ji, and Y. Gao. Hypergraph Neural Networks.
In Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33,
pp. 3558-3565, 2019.

M. Ghoniem, G. Shurkhovetskyy, A. Bahey, and B. Otjacques. VAFLE:
Visual Analytics of Firewall Log Events. In P. C. Wong, D. L. Kao, M. C.
Hao, and C. Chen, eds., Visualization and Data Analysis 2014, SPIE
Proceedings, p. 901704. SPIE, 2014. doi: 10.1117/12.2037790

B. Heintz and A. Chandra. Beyond Graphs. ACM SIGMETRICS Per-
formance Evaluation Review, 41(4):94-97, 2014. doi: 10.1145/2627534.
2627563

R. Helms and K. Buijsrogge. Knowledge Network Analysis: A Technique
to Analyze Knowledge Management Bottlenecks in Organizations. In 16th
International Workshop on Database and Expert Systems Applications
(DEXA’05), pp. 410-414, 2005.

10

[22]

(23]
[24]

(25]

[26]

(27]

(28]

(29]

[30]

(32]

(33]

[34]

[35]

(36]

[37]

(38]

(391

(40]

[41]

[42]

[43]

(44]

T. Hwang, Z. Tian, R. Kuangy, and J.-P. Kocher. Learning on Weighted
Hypergraphs to Integrate Protein Interactions and Gene Expressions for
Cancer Outcome Prediction. In 2008 Eighth IEEE International Confer-
ence on Data Mining, pp. 293-302, 2008.

IBM. i2 Analyst’s Notebook, 2020.

N. Kerracher, J. Kennedy, and K. Chalmers. A Task Taxonomy for Tempo-
ral Graph Visualisation. IEEE Transactions on Visualization and Computer
Graphics, 2015. doi: 10.1109/TVCG.2015.2424889

B. Kim, B. Lee, and J. Seo. Visualizing Set Concordance with Permutation
Matrices and Fan Diagrams. Interacting with computers, 19(5):630-643,
2007. doi: 10.1016/j.intcom.2007.05.004

F. Kuhn and R. Oshman. Dynamic Networks: Models and Algorithms.
ACM SIGACT News, 42(1):82-96, 2011.

B. Lee, C. Plaisant, C. S. Parr, J.-D. Fekete, and N. Henry. Task Taxon-
omy for Graph Visualization. In Proceedings of the 2006 AVI workshop
on Beyond time and errors novel evaluation methods for information
visualization - BELIV °06, p. 1, 2006. doi: 10.1145/1168149.1168168

D. Li, Z. Xu, S. Li, and X. Sun. Link Prediction in Social Networks Based
on Hypergraph. In Proceedings of the 22nd International Conference on
World Wide Web, pp. 41-42, 2013.

M. Liu, Y. Gao, P--T. Yap, and D. Shen. Multi-Hypergraph Learning for
Incomplete Multimodality Data. IEEE Journal of Biomedical and Health
Informatics, 22(4):1197-1208, 2017.

Q. Luo and D. Zhong. Using Social Network Analysis to Explain Commu-
nication Characteristics of Travel-related Electronic Word-of-Mouth on
Social Networking Sites. Tourism Management, 46:274-282, 2015. doi:
10.1016/j.tourman.2014.07.007

W. Meulemans, N. H. Riche, B. Speckmann, B. Alper, and T. Dwyer.
KelpFusion: A Hybrid Set Visualization Technique. IEEE Transactions
on Visualization and Computer Graphics, 19(11):1846-1858, 2013. doi:
10.1109/TVCG.2013.76

National Policing Improvement Agency, ed. Guidance on the Management
of Police Information - Appendix 2. 2nd ed., 2010.

J.-P. Onnela, J. Saramiki, J. Hyvonen, G. Szabd, M. A. de Menezes,
K. Kaski, A.-L. Barabdsi, and J. Kertész. Analysis of a Large-Scale
Weighted Network of One-to-One Human Communication. New Journal
of Physics, 9(6):179, 2007.

N. Przulj. Protein-Protein Interactions: Making Sense of Networks Via
Graph-Theoretic Modeling. Bioessays, 33(2):115-123, 2011.

P. Saraiya, P. Lee, and C. North. Visualization of Graphs with Associated
Timeseries Data. In J. Stasko and M. O. Ward, eds., Proceedings of the
IEEE Symposium on Information Visualization, InfoVis, pp. 225-232.
IEEE, 2005. doi: 10.1109/INFVIS.2005.1532151

F. Shi, J. G. Foster, and J. A. Evans. Weaving the Fabric of Science: Dy-
namic Network Models of Science’s Unfolding Structure. Social Networks,
43:73-85, 2015. doi: 10.1016/j.socnet.2015.02.006

D. Streeb, D. Arya, D. A. Keim, and M. Worring. Visual Analytics Frame-
work for the Assessment of Temporal Hypergraph Prediction Models. In
Proceeedings of the Set Visual Analytics Workshop at IEEE VIS 2019,
2019.

P. Valdivia, P. Buono, and J.-D. Fekete. Hypenet: Visualizing Dynamic
Hypergraphs. doi: 10.2312/eurp.20171162

P. Valdivia, P. Buono, C. Plaisant, N. Dufournaud, and J.-D. Fekete. Using
Dynamic Hypergraphs to Reveal the Evolution of the Business Network
of a 17th Century French Woman Merchant. In VIS 2018 - 3rd Workshop
on Visualization for the Digital Humanities. Berlin, Germany, 2018.

P. Valdivia, P. Buono, C. Plaisant, N. Dufournaud, and J.-D. Fekete. Ana-
lyzing Dynamic Hypergraphs with Parallel Aggregated Ordered Hyper-
graph Visualization. IEEE Transactions on Visualization and Computer
Graphics, 2019. doi: 10.1109/TVCG.2019.2933196

F. van Ham. Using Multilevel Call Matrices in Large Software Projects.
In IEEE Symposium on Information Visualization 2003 (IEEE Cat.
No.03THS8714), pp. 227-232. 1IEEE, 19-21 Oct. 2003. doi: 10.1109/
INFVIS.2003.1249030

C. Vehlow, F. Beck, and D. Weiskopf. Visualizing Group Structures in
Graphs: A Survey. Computer Graphics Forum, 36(6):201-225, 2017. doi:
10.1111/cgf. 12872

Y.-J. Wang, M. Xian, J. Liu, and G.-y. Wang. Study of Network Security
Evaluation Based on Attack Graph Model. Journal of China Institute of
Communications, 28(3):29, 2007.

Y. Wu, S. Liu, K. Yan, M. Liu, and F. Wu. OpinionFlow: Visual Analysis
of Opinion Diffusion on Social Media. IEEE Transactions on Visualization
and Computer Graphics, 2014. doi: 10.1109/TVCG.2014.2346920



© 2020 IEEE. This is the author’s version of the article that has been published in IEEE Transactions on Visualization and
Computer Graphics. The final version of this record is available at: 10.1109/TVCG.2020.3030408

[45] N. Yadati, M. Nimishakavi, P. Yadav, V. Nitin, A. Louis, and P. Talukdar.
HyperGCN: A New Method For Training Graph Convolutional Networks
on Hypergraphs. In Advances in Neural Information Processing Systems,
pp. 1509-1520, 2019.

[46] D. Zhou, J. Huang, and B. Scholkopf. Learning With Hypergraphs: Clus-
tering, Classification, and Embedding. In Advances in Neural Information
Processing Systems, pp. 1601-1608, 2007.

11



