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Abstract

Automated systems for analyzing digital communication, often reliant on AI-driven
models and deployed in operational analytics solutions, have become increasingly
common in investigative journalism, the intelligence community, and business envi-
ronments. These automated solutions, however, typically focus on specific aspects
like content or network structure in isolation. Additionally, they face challenges
related to ethical and privacy concerns and difficulties in efficiently combining
heterogeneous data sources for cross-methodological, holistic, and multimodal
analytics. Visual analytics, which combines machine learning methods with interac-
tive visual interfaces to enable human sense- and decision-making, can be vital for
designing and operating meaningful communication analysis techniques that tackle
these challenges. This dissertation explores how communication analysis can be
conducted in the digital age, thereby advancing the field of semi-interactive, holistic
communication analysis and is divided into four parts: Part I lays the conceptual
foundations, reviews the state-of-the-art, and formalizes the field while identifying
key challenges. Additionally, it discusses ethical and privacy considerations and
proposes ways in which visual analytics can address those issues. Part II introduces
techniques related to the identification and interpretation of communication, in-
cluding a survey of hypergraph visualizations, a technique for the identification of
communication, and a method for metadata pattern analysis. Informed by these
insights, Part III explores holistic approaches to communication analysis, first from
a text-centric perspective and then from a multimodal viewpoint. The concluding
Part IV summarizes the findings and anticipates future research directions. The
presented techniques and methods are rigorously evaluated through comparative
analyses, case studies, and expert evaluations, further discussing their applicability
and generalizability. In conclusion, this dissertation frames communication in a
coherent context of digital and semi-automated analysis within computer science,
structures the field, probes ethical and privacy aspects, and describes how AI-based,
multimodal, human-in-the-loop approaches can enhance intelligence analytics.
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Zusammenfassung

Automatisierte Systeme zur Analyse digitaler Kommunikation, häufig basierend auf
KI-gestützten Modellen und als Teil operativer Analyselösungen, sind in Feldern
wie investigativem Journalismus, Nachrichtendiensten und Geschäftsumgebungen
immer häufiger anzutreffen. Diese automatisierten Lösungen konzentrieren sich
jedoch in der Regel ausschließlich auf bestimmte Aspekte wie Inhalte oder Netzw-
erkstrukturen. Darüber hinaus stehen sie vor ethische und datenschutzrechtliche
Herausforderungen und Schwierigkeiten bei der Kombination heterogener Daten-
quellen für eine methodenübergreifende, holistische und multimodale Analyse.
Visuelle Analytik, die Methoden des maschinellen Lernens mit interaktiven visuellen
Schnittstellen kombiniert um menschliche Sinnes- und Entscheidungsfindung zu
ermöglichen, kann für die Entwicklung und den Betrieb sinnvoller Kommunikations-
analysetechniken, die diese Herausforderungen lösen, entscheidend sein. Diese
Doktorarbeit untersucht, wie Kommunikationsanalyse im digitalen Zeitalter funktion-
ieren kann, um so das Feld der semi-interaktiven, ganzheitlichen Kommunikations-
analyse voranzutreiben und gliedert sich in vier Teile: Teil I legt die konzeptionellen
Grundlagen, gibt einen Überblick über den Stand der Technik, formalisiert das Feld
und identifiziert zentrale Herausforderungen. Darüber hinaus werden ethische und
datenschutzrechtliche Erwägungen erörtert und Möglichkeiten vorgeschlagen, wie
die visuelle Analytik diese Probleme angehen kann. Teil II stellt Techniken vor,
die sich auf die Identifizierung und Interpretation von Kommunikation beziehen,
einschließlich einer Übersicht über Visualisierungen von Hypergraphenmodellen,
einer Technik zur Identifizierung von Kommunikation und einer Methode zur Analyse
von Metadatenmustern. Auf der Grundlage dieser Erkenntnisse werden in Teil III
holistische Ansätze zur Kommunikationsanalyse untersucht, zunächst aus einer
textzentrierten Perspektive und dann aus einer multimodalen Sichtweise. Der ab-
schließende Teil IV fasst die Ergebnisse zusammen und gibt einen Ausblick auf
zukünftige Forschungsfragen. Die vorgestellten Techniken und Methoden werden
anhand von vergleichenden Analysen, Fallstudien und Experteneinschätzungen
rigoros evaluiert, um ihre Anwendbarkeit und Verallgemeinerbarkeit zu diskutieren.
Zusammenfassend stellt diese Dissertation Kommunikation in einen kohärenten
Kontext der digitalen und halbautomatischen Analyse innerhalb der Informatik,
strukturiert die Thematik, untersucht ethische und datenschutzrechtliche Aspekte
und beschreibt, wie KI-basierte, multimodale, Human-in-the-Loop-Ansätze die Kom-
munikationsanalyse verbessern können.
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Preface

When I started my Ph.D. in late 2019 at Daniel’s lab, the world seemed a different
place. So much has happened since then, and the consequences of these events
will likely come to define our generation and forever alter the world we live in. Some
ramifications will be predictable; some will happen in the shadows and only be
apparent in hindsight, while others will be unexpected in ways we cannot possibly
envision nowadays. Old world orders are breaking down, and things we took for
granted have disappeared, only to be replaced by a new, much more uncertain,
multi-lateral world. Few would have imagined back then that—in our modern, global,
and interconnected world—we are currently facing the most significant land war
in Europe since World War II on Ukrainian soil. Or how fundamentally our way
of living was impacted and changed due to the COVID-19 pandemic, especially in
2020 and 2021. Simultaneously, we continue to face global challenges, which we
have known about for a long time but still could be more ambitious about, like
gender equality and diversity, sustainability, and climate change, to name only a few.
Computer science, in particular data science, can support us in these endeavors,
and I’m happy to be a part of it. Technological progress and disruptive innovations
are accelerating, and the progress that has been made in just slightly more than
three years from when I started my Ph.D. continues to amaze me. Especially in the
last months of my doctorate (early 2023), we have seen progress and unmatched
speed in AI that we did not dare to imagine only two or three years ago.

Personally, for me, it has been one of the most exciting and educational but
also the most challenging phases of my life. It has been an incredibly enriching
opportunity to participate in state-of-the-art scientific research. My doctorate has
primarily coincided with COVID-19, so I spent large parts of 2020 and 2021 working
from home, researching, teaching, and presenting remotely. I spent much of this
time in Hamburg, my home of choice, and despite COVID-19, this has been one of the
happiest times of my life, not least due to very particular personal circumstances.
However, as we have learned, the things and persons we took for granted might not
be there forever, and a world in turmoil can take much: I’m incredibly grateful for
everything and could not have undertaken this journey without my friends during
my times in Zurich, Konstanz, and Hamburg.

I’m happy that, also during this time, I was finally able to give back to the
Studienstiftung des Deutschen Volkes, from which I received a scholarship as a
student, by teaching the next generation about deep learning and AI as a working
group leader in an academy in 2021 (Roggenburg) and later this summer again at a
summer academy in Ljubljana 2023, as well as being part of the selection committee.
I feel honored about the trust my advisor Daniel A. Keim placed in me for overseeing
and being responsible for several large research projects and facilitating successful
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grant applications. The names PRIMAGE, AIDA-TI, RPM-BW, EACDTA, DAYDREAMS,
ASGARD, and PEGASUS, will always be kept in fond memory, especially as the latter
two form the conceptual basis for my research. Throughout my work, I had the
unique opportunity to travel to many different places. While I could only be virtually
present in Lyon (France), Salt Lake City (USA), and New Orleans (USA), I’m more
than happy that I could participate in person in many different places. In Germany,
these were Berlin, Bochum, Cologne, Frankfurt, Hamburg, Stuttgart, Leipzig, Munich,
Oldenburg, Würzburg and internationally in Athens (Greece), Lisbon (Portugal), Porto
(Portugal), Nice (France), The Hague (The Netherlands), Dublin (Ireland), Seoul (South
Korea), Oklahoma City (USA), Vienna (Austria), Zurich (Switzerland), Valencia (Spain),
Brussels (Belgium), Ljubljana (Slovenia), as well as Boston/Cambridge (USA).

I’m especially thrilled that one of my last large conference participations led me
to Boston, my former hometown. For me, working at the intersection of AI, human
intelligence, and national security in a geopolitical context, the German American
Conference 2022 at Harvard Kennedy School felt like a great closure and also a good
starting point. I enjoyed the high-profile conference not only from an academic
perspective with core topics in AI, security, digitalization, foreign policy, and climate
change - as ultimately, it is all about the people! It was an excellent opportunity to
bring together minds from both sides of the Atlantic, policy leaders and pioneers
in their fields, with many bright young students and young professionals to foster
exchange across generations and arrive at new insights to tackle the challenges of
our time, which we are facing. As such, I’m very happy that during my Ph.D., Daniel
allowed me to not only work on my primary research topic (communication analysis)
but also follow my passion, work as a data science consultant and project manager
on the side (in my own time) to solve and communicate challenging problems, and
actively shape and be engaged in projects in the infrastructure domain, in particular
smart mobility, renewables, and the energy transition. There—as well as during
all my work travels and over the whole course of my research—I have met many
extraordinary personalities, and our discussions and their guidance, mentorship,
and friendship have shaped this work—as well as me personally.

Konstanz, Germany Maximilian T. Fischer
July 2023
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The principal impulse by which I was directed was the earnest endeavor to
comprehend the phenomena of physical objects in their general connec-
tion, and to represent nature as one great whole, moved and animated
by internal forces.

— Alexander von Humboldt, Explorer
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Communication is something inherently nat-
ural to all of us—and we all have some kind of
ingrained conceptualization and understanding
of what communication does mean to us per-
sonally. We all do communicate constantly: We
write, we speak, and we use gestures and facial
expressions virtually every day, to name just a few examples of communication
behavior. Communication, of course, also happens with and between animals and,
in fact, between many different kinds of living organisms in a variety of ways. It forms
the basis for group behavior; it is essential to facilitate the buildup of civilization
and underpins the inner workings of communities. As such, the definition of the
term communication is not as clear cut, and its precise definition slightly varies over
time and between disciplines: The etymology of the term is rooted in the Latin verb
communicare, which can be roughly translated as sharing, transferring, or making
common. As such, it describes the complex process of participating in an exchange
of information between individuals, often embedded in a particular context as well
as the interpretation of said information to some form or meaning [HW13].

Communication as a broader topic has been studied for millennia, often with a
focus on rhetorics, with many famous works produced in Ancient Greece and Rome
by scholars such as Socrates, Plato (e.g., Gorgias [Pla11]), or Cicero (e.g., De Ora-
tore [Cic76]). More modern studies on communication as a process began in the 20th
century, where researchers such as Charles Cooley [Coo09] are credited with starting
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a more systematic research direction, and the origins of human communication
have been explored extensively [Tom08]. Nowadays, communication behavior is
studied in many different disciplines, such as social psychology, behavioral biology,
linguistics, and the digital humanities, with an accompanying large body of research.
However, this research has not been compiled and considered in a coherent frame-
work in the context of digital communication and its semi-automated analysis in
computer science, which is the focus of this dissertation.

1.1 Motivation and Research Objectives

Over the past two decades, human interactions have seen a significant shift towards
digital media and modalities [NGF+20]. This increasing prevalence of digital commu-
nication has led to a growing interest as well as need in the exploration of human
communication data across a diverse set of research areas, from digital humanities
to business sectors to national security applications. Advances in computer science,
and most notably in the field of big data analytics, have facilitated this endeavor
by offering novel opportunities to explore and extract meaningful insights and
knowledge from vast amounts of data. As a result, there has been a proliferation of
sophisticated digital systems designed to analyze such data. This development was
primarily prompted by the complexities involved in manually (or supported only by
basic analytical tools) managing such extensive, heterogeneous, and multifaceted
data sets. Innovative methods have been developed to address these challenges
more effectively: These entail complex big data analysis techniques like meta-data
analysis [MHVB13], pattern recognition [HDL+09], social network analysis [Sco17],
and natural language processing [EGJ+16]. All these approaches are often assisted
through machine learning [FAS+20].

Despite the considerable volume of prior research focused on these individual
aspects of (semi-) automated communication analysis, the integrated and interactive
analysis has received comparatively less attention. However, the increasingly com-
plex nature of communication data poses significant challenges to the process of
knowledge extraction. This necessitates further research into this cross-disciplinary
area. Challenging is that the field remains unformalized, and the disparate re-
sults stemming from the individual analysis modalities can yield contradictory
findings, making their comparison difficult. This is because relevance tends to be
highly subjective and heavily reliant on specific users, domains, and tasks while
experts grapple with articulating and formalizing their constraints into algorithmic
terminology a priori. Moreover, without automation, integrating and evaluating
the results within a shared context remains an almost insurmountable task. Each
approach is limited to its local context, hindering support for cross-matching and
inter-modal analysis. Considering the case of investigative journalists, analyzing
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transcripts obtained from confidential sources, applying different methodologies in
isolation might yield conflicting or inconsistent information. Yet, when considered
in unison, these various methodologies could paint a more comprehensive and
meaningful picture, revealing valuable insights. Additionally, the previous expertise
expressed through domain knowledge and contextual interpretation cannot be
understated, playing a significant role. Classical communication research, primarily
in psychology, has demonstrated that the evaluation of diverse communication
modalities [McL64; WBJ74; Sch81] can lead to disparate results, and, therefore, a
holistic, context-oriented approach to communication analysis is recommended
as opposed to isolated analysis. As such, analysts working with communication
data often cannot solely rely on completely automated, single-paradigm solutions.
Instead, they require techniques that support a broader analysis and provide them—
as human operators—with some agency that (in combination) can considerably
improve interpretation.

Visual analytics [KAF+08; KKEM10] combines machine learning methodologies
and interactive visual interfaces to enable and enhance human sense- and decision-
making. The field is characterized by the combination of computational data analysis
and multi-faceted, interactive data visualizations, which are tightly coupled through
rapid feedback loops, leveraging interactive human sense-making and intuition. The
aim is to seamlessly integrate human cognitive and decision-making processes with
computational capabilities, facilitated through an iterative, frequent feedback loop.
This iterative analysis process forms the core of visual analytics and can be expressed
as an explicit process model for knowledge generation [SSS+14]. Based on research
in human sense-making, the information visualization pipeline [CMS99], and the
knowledge discovery process in databases [FPM92], this model illustrates how a
user receives support at each step, starting from exploratory analysis, proceeding to
hypothesis verification (confirmatory), and finally arriving at knowledge generation.
Thereby, visual analytics is better suited for handling ill-defined or open-ended
tasks—which are frequently encountered in communication analysis across fields
such as intelligence or investigative journalism—while surpassing the capabilities of
fully automated systems. With this human supervision and oversight, visual analytics
proves highly effective for the design and operation of interactive communication
analysis systems that consider multiple information sources and modalities in
context, taking into account ethical and privacy aspects, simplifying implementation
details, and facilitating an interactive and iterative knowledge generation process,
while maintaining high levels of explainability and transparency.

This dissertation considers how modern technology facilitates a comprehen-
sive and holistic analysis of human communication. A particular focus is given
to investigative domains, like intelligence and investigative journalism, but very
similar use cases equally occur in business environments. We consider previous
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research on communication analysis from other disciplines but adapt, transfer, and
apply the results to discuss relevant aspects of digital interaction from a computer
science perspective. The result is a coherent framework in the context of digital
communication and its semi-automated analysis that encompasses both aspects
of social psychology and technical considerations. As part of this dissertation,
we investigate existing approaches, consider and discuss important ethical and
privacy considerations, and develop several techniques and approaches to improve
communication analysis through the use of interactive visualization methods for
steering the analysis while incorporating domain knowledge. Thus, this dissertation
focuses on these challenges and its main focus can be summarized in the following
three research questions:

� (RQ1) What is the potential role of visual analytics techniques in enhancing
the interactive analysis and understanding of human communication data?

� (RQ2) What ethical challenges are faced by communication analysis in a
digital age, and what role can visual analytics play in addressing them?

� (RQ3) What are the challenges and potential strategies for using visual
analytics techniques to investigate human communication data, foster inter-
disciplinary analysis, and support investigations across domain boundaries?

1.2 Scientific Contributions and Thesis Structure

This dissertation contributes, develops, discusses, and evaluates visual analytics
methods for analyzing digital human communication, considering it a holistic and
multimodal challenge. To achieve this goal, the following contributions are made:

• A state-of-the-art survey and comparison of existing and related approaches
of communication analysis systems. From this survey, as well as traditional
communication research and technical considerations, we derive a conceptual
framework of communication analysis. This overview allows us to identify
open challenges and research opportunities, enabling us to discuss RQ1,
while addressing them within this dissertation (Chapter 2)

• A detailed analysis on the ethical frictions and tensions involved in com-
munication analysis, in particular in the intelligence domain, as well as a
scenario-based stakeholder analysis of the different actors involved. Based
on this, we perform a critical reflection on how visual analytics solutions
can foster ethical and privacy awareness, negotiate between the inherent
trade-offs as an integral part of the design process, and support communica-
tion analysis in investigative domains, thereby further investigating RQ1 and
primarily addressing RQ2 (Chapter 3).
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• To address the identification of communication and communication partici-
pants, and thereby the first part of RQ3, we initially survey hypergraph-based
model visualization techniques before we present a novel technique, Hyper-
Matrix, to explore and refine underlying temporal hypergraph prediction
models through the use of an interactive framework. It encompasses a new,
multi-level matrix-based approach and a tight coupling through a relevance
feedback loop to integrate and leverage user knowledge for the exploration
process. The approach is evaluated through a case study, and the prototype
is assessed through a formative expert evaluation (Chapter 4 and Chapter 5).

• To interpret communication behavior, we present and evaluate a technique,
Conversational Dynamics, presenting a different potential strategy to investi-
gate human communication as raised with the first part of RQ3, proposing to
model communication based on its metadata, detect individual communica-
tion episodes, and define features to characterize the resulting communica-
tion behavior between entities. The feasibility of this approach is presented
through a prototype and an expert interview (Chapter 6).

• To facilitate a more holistic approach to communication analysis, address-
ing the second part of RQ3, we present a blueprint for a novel, interactive
framework, CommAID, that enables a combined network and content analysis,
primarily focusing on text data. We discuss the challenges and design choices
involved, describe a case study, as well as evaluate the prototype through an
expert user evaluation (Chapter 7).

• Finally, we contribute MULTI-CASE, a holistic and multimodal visual explo-
ration framework for intelligence analysis, further rounding off the answer to
the second part of RQ3. The framework is based on the lessons learned in the
previous chapters. It covers some of the shortcomings identified in current
research, encompasses ethical and privacy considerations, and facilitates a
joint agency between the underlying machine learning (transformer) model
and the human user. We conduct an extensive evaluation of this technique
based on all the aspects considered before, describe a case study scenario,
and evaluate the prototype as part of an expert evaluation (Chapter 8).

For the purpose of this dissertation, the contributions are logically structured
to build upon each other, starting with a formalization of the field and general
considerations before investigating individual approaches and then combining the
lessons learned in overarching techniques. The overall conceptual structure is
described in Figure 1.1, which aligns with the individual chapters:
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1 How can the field be formalized?

Relevance of individual communication aspects?

IV Closing

2

1 What are potential (ethical) risks?

How can visual analytics help to mitigate this?2

- Communication Analysis through Visual Analytics: Current Practices,
  Challenges, and New Frontiers

II Identification and Interpretation

III Holistic Approaches

When/with whom is communication performed? How is communication performed?

How can analysis modalities be combined?

- Towards a Survey on Static and Dynamic
  Hypergraph Visualizations

- Visual Analytics of Conversational
   Dynamics

- CommAID: Visual Analytics for Communication Analysis through
  Interactive Dynamics Modeling

I Setting the Stage

- Promoting Ethical Awareness in Communication Analysis: Investigating
  Potentials and Limits of Visual Analytics for Intelligence Applications

- MULTI-CASE: A Transformer-based Ethics-aware Multimodal Investigative
Intelligence Framework

Conceptual Framework

Introduction

- Visual Analytics for Temporal Hypergraph
   Model Exploration

Survey Hypergraph Modeling Metadata Analysis

Ethical Considerations

Text / Matrix-based Multimodal / Node-link-based

Conclusion

Figure 1.1: Overview of the conceptual structure of this dissertation: This dissertation
focuses on how human communication analysis can be performed through semi-automated
analysis in the context of computer science. The work is divided into four parts: After
the introduction, the Part I sets the stage, covering the conceptual framework, evaluating
the state-of-the-art, formalizing the field as well as discussing ethical considerations
while proposing how visual analytics can support communication analysis. In Part II,
different techniques are discussed that relate to the identification and interpretation of
communication. We survey hypergraph model visualizations and present a technique for the
identification of communication, as well as metadata pattern analysis for its interpretation.
In Part III, we discuss holistic approaches, first on a primarily text-based level and then
from a multimodal perspective to communication analysis. The conclusions in the closing
Part IV summarizes the results and gives an outlook on the field.
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After this introduction, Chapter 2 positions this dissertation within the context
of related work and the state-of-the-art while outlining the research gaps it fills.
Chapter 3 investigates ethical and privacy risks of communication analysis and
shows ways in which visual analytics can address them. Chapter 4 and Chapter 5
consider the identification of communication patterns, while Chapter 6 focuses
on their interpretation. The following two Chapter 7 and Chapter 8 both present a
holistic and a multimodal framework that combines and summarizes the lessons
learned in this dissertation. Finally, Chapter 9 summarizes and concludes this dis-
sertation and presents an overview of further research perspectives.

Citation Rules and Good Scientific Practices
At the beginning of each chapter in this dissertation, I explicitly state the publications
this chapter is based upon and the origins of the texts. To avoid any plagiarism and
unintended self-plagiarism, I use the following notation to refer to which content I
use from the corresponding papers and in which form.

• Sections that are ”taken from” the listed publications have been largely copied
from the corresponding papers and contain only minor structural or literal
changes, if not indicated otherwise. In these publications, I was responsible
for the main contributions as well as writing virtually the entire paper.

• Sections that are ”based on” the listed publications are mostly restructured
versions of the corresponding papers, and some content has been modified.
In these publications, I was responsible for the main contributions as well
as writing virtually the entire paper. However, the contributions have been
adapted, restructured, or extended to fit nicely into this dissertation.

• A few aspects in this dissertation rely on the groundwork of—or are easier to
understand in context with—contributions of other authors that were originally
part of joint publications, and where I cannot claim sole authorship of idea
and text. When absolutely necessary for the storyline in this work, I have—
with their permission—paraphrased and summarized their findings in this
dissertation, based on the publication record. This only concerns a few minor
subsections, namely subsections 3.2, 3.4.2, 3.4.3, and 3.4.4 based on co-author
contributions in [FHJ+22] as well as subsections 5.2.2 and 5.3.2 based on co-
author contributions in [FAS+20]. For details of the contributions, in particular
regarding these subsections, check the contribution clarification in Section 1.3.

All ideas and concepts presented in this thesis originate from me, if not otherwise
indicated, or are quoted appropriately. To be as transparent as possible regarding
the emerging use of digital tools and good scientific practices, their use did not
play a role for the ideas and content of this thesis and was strictly limited to
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stylistic, phrasing, and corrective actions (e.g., spell-checking, style- and phrasing
suggestions, rewording, translation), operating on existing, self-written texts and all
tool suggestions were manually verified and adapted.

1.3 Publications

During my time as a doctoral student and research associate, I have contributed to
and been part of several scientific works, which have been published in international
peer-reviewed journals and conference proceedings, some of which serve as the
basis for this dissertation.

Thesis-Relevant Publications and Contribution Clarification
The following list gives an overview of the publications that form the basis of this
thesis and the division of work between the authors. The publications are sorted
by their appearance in the following chapters.

• [FDS+22b]: Maximilian T. Fischer, Frederik Dennig, Daniel Seebacher, Daniel A.
Keim, and Mennatallah El-Assady. “Communication Analysis through Visual
Analytics: Current Practices, Challenges, and New Frontiers”. In: 2022 IEEE
Visualization in Data Science (VDS). 2022, pp. 6–16. isbn: 978-1-6654-5721-7. doi:
10.1109/VDS57266.2022.00006
Contribution clarification: This paper originates from a discussion between
Menna and myself. I took the project lead, coming up with the overall structure.
Further, I identified the basic research question as well as contributions and
provided background on related work. The initial survey collection and the
construction of the conceptual framework, its findings, and their discussion
were also done by me. Frederik Dennig and Daniel Seebacher helped me in
that task, also in particular in giving feedback and suggestions for multiple
iterations of the framework. Daniel Keim and Menna El-Assady provided
comments on the paper drafts, and all helped in revising the sections through
helpful comments. I wrote all sections myself and revised suggestions from
my co-authors several times. Thus, I will reuse the paper text in Chapter 2.

• [FHJ+22]: Maximilian T. Fischer, Simon D. Hirsbrunner, Wolfgang Jentner,
Matthias Miller, Daniel A. Keim, and Paula Helm. “Promoting Ethical Aware-
ness in Communication Analysis: Investigating Potentials and Limits of Visual
Analytics for Intelligence Applications”. In: Proceedings of the 2022 ACM Con-
ference on Fairness, Accountability, and Transparency (FAccT ’22). Association
for Computing Machinery, 2022, pp. 877–889. isbn: 978-1-4503-9352-2. doi:
10.1145/3531146.3533151
Contribution clarification: This paper was a close collaboration between
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Simon David Hirsbrunner and Paula Helm from the IZEW (Internationales
Zentrum für Ethik in den Wissenschaften, i.e., International Center for Ethics
in the Sciences and Humanities) located at the University of Tübingen. The
original idea for this paper was based on a discussion I had with several of
my students during a week-long academy (Roggenburg A) which I was offered
to teach as part of the Studienstiftung des Deutschen Volkes academy cycle
in the spring of 2021. I initially took the lead on this paper, coming up with
the overall structure and content topics, as well as being responsible for the
background, scenario, stakeholder, and technical considerations. In particular,
my contributions focus on the introduction (Section 1), the scenario analysis
(Section 3), together with the stakeholder analysis, the technical measures
(Section 4.1), and the conclusion (Section 5), which I all wrote as initial drafts.
Simon David Hirsbrunner, Paula Helm, and I worked together on the ethi-
cal dimensions (Section 2) as well as the advantages, risks, and interfacing
debates (Sections 4.2-4.4) as initial drafts. I reworked those sections again
to streamline, extend, and sharpen them, adding technical considerations
and backlinks, and both also provided helpful suggestions for my draft parts.
Wolfgang Jentner, Matthias Miller, and Daniel Keim provided comments on the
paper drafts and some conceptual discussions. Accordingly, I will reuse the
paper text for Sections 1, 3, 4.1, and 5 while summarizing Sections 2 and 4.2-4.4
as Sections 3.2 and 3.4.2, 3.4.3, 3.4.4 as part of Chapter 3.

• [FFKS21]: Maximilian T. Fischer, Alexander Frings, Daniel A. Keim, and Daniel
Seebacher. “Towards a Survey on Static and Dynamic Hypergraph Visualiza-
tions”. In: 2021 IEEE Visualization Conference (VIS). IEEE, 2021, pp. 81–85. doi:
10.1109/VIS49827.2021.9623305
Contribution clarification: This paper was a close collaboration between
Alexander Frings and myself as part of a seminar (I proposed, sketched, and
supervised his seminar work). I defined the initial research objective and
contributions while providing a starting ground. Based on the initial literature
search conducted by Alexander Frings under my guidance and feedback, he
summarized his search results in the seminar before we designed the final
evaluation criteria used in this paper. I later extended these criteria and also
added some additional approaches that were not uncovered during the initial
literature search. Daniel Seebacher and Daniel Keim provided feedback on
the general idea and commented on paper drafts. I proposed and closely
oversaw the research process, wrote the major parts of the text based on
the search conducted by Alexander Frings, and extended them with my own
ideas as discussed above, while I also revised and extended suggestions by
Alexander Frings several times during the writing process. Thus, I reuse the
major content in Chapter 4.
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• [FAS+20]: Maximilian T. Fischer, Devanshu Arya, Dirk Streeb, Daniel Seebacher,
Daniel A. Keim, and Marcel Worring. “Visual Analytics for Temporal Hypergraph
Model Exploration”. In: IEEE Transactions on Visualization and Computer
Graphics 27.2 (2020), pp. 550–560. doi: 10.1109/TVCG.2020.3030408
Contribution clarification: This paper originated from a close collaboration
and joint work with Devanshu Arya and Marcel Worring from the University
of Amsterdam (UVA) and was based on an initial discussion with Dirk Streeb.
I took the project lead and came up with the framework idea, and designed
the visualization and interactive prototype. The whole interface and backend
system was developed by me, except that Devanshu Arya contributed the re-
trainable geometric machine learning model as a plugin. I also designed the
case study and performed the formative evaluation. I wrote the large majority
of the sections myself, namely the introduction (Section 1), the Related Work
(Section 2, except 2.2), the first Section on Machine Learning for Hypergraphs
(Section 3.1), the system design (Section 4), the case study (Section 5), the
formative evaluation (Section 6) with the findings, the discussion (Section 7),
as well as the conclusion (Section 8). Devanshu Arya contributed a background
on geometric deep learning (Paper Section 2.2) as well as the extension of
previous work for interactive retraining (Paper Section 3.2). Dirk Streeb, Daniel
Seebacher, and Marcel Worring provided comments on the paper drafts and
helped in revising and streamlining the sections, while Daniel Keim provided
feedback on the approach and advised on the paper drafts. I wrote all sections
myself, with the above-mentioned exceptions. Thus, I will reuse the paper
text for all sections, except for the original Sections 2.2 and 3.2, which have
been summarized in Sections 5.2.2 and 5.3.2 as part of Chapter 5.

• [SFS+19]: Daniel Seebacher, Maximilian T. Fischer, Rita Sevastjanova, Daniel
A. Keim, and Mennatallah El-Assady. “Visual Analytics of Conversational Dy-
namics”. In: EuroVis Workshop on Visual Analytics (EuroVA). ed. by Tatiana von
Landesberger and Cagatay Turkay. EuroVA. Porto, Portugal: The Eurographics
Association, 2019. isbn: 978-3-03868-087-1. doi: 10.2312/eurova.2019113
0
Contribution clarification: This work was a continuation, formalization, and
evaluation of the overall research direction I started inmy Bachelor’s Thesis (Vi-
sual Analytics for Detecting Patterns in Large Communication Networks [Fis18])
and piqued my interest in my doctorate’s research field. It was a close collab-
oration with my then advisor Daniel Seebacher, as well as Rita Sevastjanova,
Daniel Keim, and Menna El-Assady. I designed and implemented the research
prototype and further conducted the expert study and the literature review.
Daniel Seebacher provided guidance and supervision for my first paper as well
as helpful feedback. Rita Sevastjanova, Daniel Keim, and Menna El-Assady
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provided feedback on the general idea and commented on paper drafts. I
wrote the major parts of the text and revised all sections several times. Thus,
I reuse the text in Chapter 6.

• [FSS+21]: Maximilian T. Fischer, Daniel Seebacher, Rita Sevastjanova, Daniel A.
Keim, and Mennatallah El-Assady. “CommAID: Visual Analytics for Communica-
tion Analysis through Interactive Dynamics Modeling”. In: Computer Graphics
Forum 40.3 (2021), pp. 25–36. issn: 01677055. doi: 10.1111/cgf.14286
Contribution clarification: This work was a close collaboration between Daniel
Seebacher, Rita Sevastjanova, Daniel Keim, and Menna El-Assady. I took the
project lead and came up with the initial idea. Further, I set out the research
goals and the contributions, performed the literature review, conducted the
domain expert evaluations, and defined the case study. Daniel Seebacher
implemented a first draft prototype, which I extended and advanced further.
Rita Sevastjanova contributed the named-entity pattern search method, while
Daniel Keim and Menna El-Assady provided feedback on the general idea and
commented on paper drafts. I wrote all sections myself and revised sugges-
tions from my co-authors several times. Thus, I reuse the text in Chapter 7.

• [FMJ+24]: Maximilian T. Fischer, Yannick Metz, Lucas Joos, Matthias Miller, and
Daniel A. Keim. “MULTI-CASE: A Transformer-based Ethics-aware Multimodal
Investigative Intelligence Framework”. In: (2024), pp. 1–16. doi: 10.48550/ar
Xiv.2401.01955
Contribution clarification: This work is both an extension of the holistic
idea started with CommAID, as well as a bringing together of the ideas and
approaches presented throughout the thesis. It was a close collaboration
between Yannick Metz, Lucas Joos, Matthias Miller, and Daniel Keim. I was
responsible for the overall paper idea and research objectives. I conducted
the literature review, designed the system’s architecture, wrote the technique
description, and performed the comparative evaluations, as well as wrote the
case study. Yannick Metz performed the machine learning training. In particu-
lar, he wrote and supervised the training scripts. Lucas Joos, Matthias Miller,
and Daniel Keim provided feedback on the general idea and commented on
the paper drafts. I wrote all sections of the text myself and revised suggestions
from my co-authors several times. Thus, I reuse the text in Chapter 8.

Additional Publications
In addition to this, there were a number of publications that I authored or con-
tributed to, which are listed here for additional context, but have not been included
in this thesis:

• [FKS19]: Maximilian T. Fischer, Daniel A. Keim, and Manuel Stein. “Video-
Based Analysis of Soccer Matches”. In: Proceedings of the 2nd International
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Workshop on Multimedia Content Analysis in Sports. MMSports. New York, NY,
USA: ACM, 2019, pp. 1–9. doi: 10.1145/3347318.3355515

• [DFB+21]: Frederik L. Dennig, Maximilian T. Fischer, Michael Blumenschein,
Johannes Fuchs, Daniel A. Keim, and Evanthia Dimara. “ParSetgnostics: Quality
Metrics for Parallel Sets”. In: Computer Graphics Forum 40.3 (2021), pp. 375–386.
issn: 01677055. doi: 10.1111/cgf.14314

• [JSS+22]: Wolfgang Jentner, Fabian Sperrle, Daniel Seebacher, Matthias
Kraus, Rita Sevastjanova, Maximilian T. Fischer, Udo Schlegel, Dirk Streeb,
Matthias Miller, Thilo Spinner, et al. “Visualisierung der COVID-19-Inzidenzen
und Behandlungskapazitäten mit CoronaVis”. In: Resilienz und Pandemie. Ed.
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The purpose of visualization is insight, not pictures.

— Ben Shneiderman, HCI researcher
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Communication behavior is studied in many
different scientific disciplines. In computer sci-
ence, traditionally, the automated analysis of
digital human communication data often fo-
cuses on specific aspects, such as content or
network structure, in isolation. This can pro-
vide limited perspectives while making cross-
methodological analyses difficult, for example,
in domains such as investigative journalism. Communication research in psychology
and the digital humanities instead stresses the importance of a holistic approach to
overcome these limiting factors. However, for many of the research aspects consid-
ered in social psychology, it is not inherently obvious how they can be transferred
and applied in computer science or even automated as part of analysis processes.

In the following, we begin to construct a conceptual framework of digital commu-
nication analysis that supports a computer science-based discussion and analysis
of the topic. We base this framework on communication research, technical con-
siderations, and distinguishing features we observe in existing applications. In the
following, after a historical overview of the field, we conduct an extensive survey on
the properties of over forty semi-automated approaches that can be considered, to
one degree or another, as communication analysis systems. We then investigate
how these approaches cover concepts described in theoretical communication
research. From these investigations, we derive our design space and contribute a
conceptual framework based on communication research, technical considerations,
and the surveyed approaches. The framework describes the systems’ properties,
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capabilities, and composition through a wide range of criteria. These are organized
in the dimensions (1) Data, (2) Processing and Models, (3) Visual Interface, and (4)
Knowledge Generation. These criteria enable a formalization of digital communi-
cation analysis through visual analytics, which, we argue, is uniquely suited for
this task by tackling automation complexity while leveraging domain knowledge.
With our framework, we identify shortcomings and research challenges, such as
group communication dynamics, trust, and privacy considerations (see Chapter 3),
and holistic approaches (see Chapter 7 and Chapter 8), among others. Simultane-
ously, our framework supports the evaluation of systems and promotes the mutual
exchange between researchers through a structured, common language, laying
the foundations for future research on communication analysis while forming the
conceptual basis of this dissertation.

This chapter is based on the publication [FDS+22b] and major parts of the
following sections have appeared in:

• [FDS+22b]: Maximilian T. Fischer, Frederik Dennig, Daniel Seebacher,
Daniel A. Keim, and Mennatallah El-Assady. “Communication Analysis
through Visual Analytics: Current Practices, Challenges, and New Frontiers”.
In: 2022 IEEE Visualization in Data Science (VDS). 2022, pp. 6–16. isbn: 978-
1-6654-5721-7. doi: 10.1109/VDS57266.2022.00006.

For a statement of the scientific contributions, as well as the division of respon-
sibilities and work in this publication, please refer to Chapters 1.2 (p. 22ff) and
1.3 (p. 26ff), respectively.

2.1 Formalizing Communication Analysis

Human communication has been fundamentally transformed, especially in the last
two decades, becoming increasingly digital, with cost-effective, location-independent,
and instant access changing communication behavior. With this transformation to
digital communication [Sco09], new research opportunities have emerged in a wide
variety of different domains, ranging from engineering to social sciences to business:
For example, it has been studied how to visualize the evolution of dynamic commu-
nication networks [Tri08], how discourse analysis for digital communication can be
enhanced [Her19], or how team communication performance in business settings
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can be evaluated [FM08]. For such analyses, digital analysis methods are often used
to aid and support the (semi-)manual, domain-specific research methodologies.

In this dissertation, we focus on the field of interactive human communication
analysis and specifically on automated and interactive communication analysis
systems targeting written human communication (in the following: communication
analysis systems), most commonly e-mails, chats, or documents. For this disserta-
tion, we define these systems as semi-automated applications that employ visual
components for an interactive analysis. We do not consider approaches focusing
primarily on a single methodology like sentiment analysis, but those that aim at
a cross-methodological analysis among multiple parties. This analysis becomes
increasingly relevant in many investigative domains [BISM14; FHJ+22].

The research into communication analysis systems often lacks [vv14; BISM14]
cross-methodological aspects: the majority of systems focus on either the content
of communication or on the network aspect in isolation instead of considering
the fundamental dynamics holistically. This is in contrast to seminal works on
human communication research [McL64; WBJ74], recent textbooks [Pea11; McL17],
or current communication research in psychology or digital humanities [FM08;
Mes09], where often—even when digitally supported [FG14; WCG+16]—a holistic view
is taken to consider explicit and implicit connotations in context. In contrast, the
individual analysis of content, network, and metadata can—for interrelated tasks—
lead to an incomplete or biased view, while isolated approaches often introduce
discontinuities, increase manual work and hamper cross-methodological detection.

Existing frameworks on digital communication analysis systems do not ade-
quately cover this issue due to four reasons: First, the need for such a revised
formalization has been recognized [vP18] in communication sciences. So far, the
opportunities, challenges, and pitfalls have primarily been described from an
application domain-oriented perspective [FG14; WCG+16] in the social sciences,
while a systematic description is missing, only available for social-media-based
approaches [FG14; WCG+16]. Ethical considerations [FHJ+22] so far play only a small
role in the system design. Second, recent efforts have begun to map digital com-
munication systems as a whole [FL20], with a focus on content, infrastructure, and
policy aspects, but leaving out the technical considerations, like methods, interfaces,
and interaction concepts. Third, the same is true for the classical communication
analysis research [McL64; WBJ74; Pea11], which lacks technical considerations and is
primed for analog but not digital communication. Fourth, digital communication
has also transformed the way we communicate and the modalities we use [OO19],
like shorter messages or emoji reactions, requiring an updated framework.

In this work, we want to bridge the gap between communication research and
modern communication analysis system development. As evident in a few academic
works [HDL+09; WLY+14; KFS+19; FSS+21; Gro23] and recent commercial systems [Nui20;
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Pal20; Dat20], visualization and interactive user steering are a promising way [KAF+08;
YKSJ07; GKL+13; SSS+14; Her15; WCG+16; CSJ+18] to begin to tackle the gap between
different analysis modalities. Lack of a common description from both a technical
perspective and psychological communication research has made the systematic
exploration of the field difficult. This also prevented a broader review of how visual
analytics principles are—and could be—employed in communication analysis, how
such systems can be categorized, and what a relevant taxonomy would look like. The
main objective of this work is to explore these systems from a primarily capability-
oriented perspective, in terms of communication research, technical state of the
art, and human factors. While we consider and point out these human factors
and ethical considerations as much as possible within this framing, we also refer
to Chapter 3 for a more detailed background and in-depth discussion on ethical
awareness and human factors in communication analysis.

As part of this chapter, we survey state-of-the-art approaches and investigate
concepts in communication research to derive a design space on communication
research, making the following contributions:

Co
nt
rib
ut
io
ns

� The creation of a conceptual framework (see Figure 2.3) of communi-
cation analysis systems based on communication research, technical
considerations, and a systematic review.

� A state-of-the-art survey and comparison of existing approaches, as-
sessing their maturity and coverage (see Table 2.2)

� A discussion on the open challenges and implications for future re-
search opportunities on communication analysis systems.

With this contribution, we identify research challenges and aid the comparison
of approaches while creating a taxonomy for future research on communication
analysis through visual analytics.

2.2 A Short History of Communication Analysis

Communication analysis can use a variety of different techniques to analyze com-
munication behavior in its entirety. The origins of communication research can be
traced backed to rhetoric and oratory in ancient times, with the study of rhetoric
and oratory as well as persuasion in Ancient Greece and Rome. Many famous works
were produced by scholars such as Sokrates, Plato (Gorgias [Pla11]), or Cicero (De
Oratore [Cic76]). The communication process itself started to be studied in the
early 20th century, where a more systematic research direction is often credited
to researchers such as Charles Cooley [Coo09] (investigating the human nature of
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communication), Georg Simmel [Sim08] (studying interaction and group formation
in sociology), Walter Lippmann [Lip22] (considering the disparity of expression), and
Jacob Moreno [Mor34] (researching human networks and interpersonal connections).
The works were extended to communication patterns inside groups (Bevelas [Bav50]
and Leavitt [Lea51]) as well as to computer-aided modeling (Shannon [SW49] and
Savage and Deutsch [SD60]). From the 1960s onward, the seminal works on media
(McLuhan [McL64]), communication theory (Watzlawick et al. [WBJ74]), inter-human
communication (von Thun [Sch81]), and communication networks (Roger [RK80])
established the field. It now encompasses diverse techniques [Pea11; McL17], from
natural language processing over social network analysis to metadata exploration.
All focus on the human factors and communication context, with channels (Wat-
zlawick et al.) / medium (McLuhan) forming an essential analysis aspect: Be it
phrasing or omissions, narrow- or broadcasting to target audiences, subtle implicit
messages, expectations of confidentiality (and frankness), or effort in crafting the
messages.

With the advent of digital processing, the laboursome manual analysis [Ger69]
shifted first to digitally supported [LSB02] and later to highly automated analysis.
However, it is noticeable [FSS+21] that the analysis’ completeness developed counter
to automation level, with increasing specialization and isolation. For example, mod-
ern systems can analyze communication behavior using centrality measures [LZ15]
or describe network ties in social sciences [BMBL09]. Specialized visual toolkits
have been developed to analyze such networks, like Pajek [BM98] or Gephi [BHJ09].
However, all these approaches primarily focus on the network aspects, omitting
most of the meta-data and especially the content. Others focus on content instead,
like keyword-based searches [YP04] to filter communication or aim to improve the
understanding of communications meaning through sentiment analysis [PL08] or
topic modeling [ŘS10].

However, visual analytics could support a more comprehensive analysis, as
we outline in Part III, discussing the potential for holistic systems. Even existing
visual approaches often follow insular approaches, like using node-link-diagrams
(e.g., Gephi [BHJ09], and many commercial solutions like IBM’s i2 Analyst’s Note-
book [IBM20], Pajek [BM98], Palantir Gotham [Pal20], DataWalk [Dat20], and Nuix
Discover and Nuix Investigate [Nui20]). Another class of approaches uses matrix-
based approaches to analyze the communication (or social) relations, for example,
MatrixExplorer [HF06] or NodeTrix [HFM07]. Another set of approaches use timeline
designs like CloudLines [KBK11], while others like Fu et al. [FHN+07] modify graph
presentations through multiple planes.

The complexity and ambiguity of the exchanges and modalities [JFDK00] make
complete automation difficult, simultaneously raising serious ethical and privacy
considerations [FHJ+22]. As such, visual analytics [KAF+08] (for a definition, see Sec-
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tion 1.1) is uniquely suited [FSS+21; FHJ+22] for a holistic approach to communication
analysis, considering the subtleties of human communication.

2.3 Framework Methodology

In the following, we aim to tackle the central question of a common description of
communication analysis:

How can the different approaches in communication analysis systems
be described within a common, conceptual framework to allow their
mutual comparison?

Framework Basis — We propose to base such a framework on three areas of
consideration:

1. The existing research landscape of interactive communication analysis sys-
tems provides a foundation for the classification of approaches based on
measures such as analytical goals, visualization, and interaction methods, or
the power of the knowledge generation process.

2. Communication research offers decades of research on the particularities
of (often non-technical) communication analysis. For this work, we consider
concepts from seminal and more recent summary works [SW49; McL64; WBJ74;
Sch81; Mes09; Pea11; McL17; CSJ+18], described in Section 2.2. Additionally, we
study relevant theoretical (non-system) works in computer science, like a sur-
vey on text visualization [KK15], group discourse and role analysis [HC15; HC16;
FWY+18; LPT+21], as well as works dealing with semi-manual approaches and
user studies, including the human factors (e.g., [JAF10; FNS13; BISM14; SSK+16;
GF17; MKMS20; Cor19; FHJ+22]). However, many of these works miss the transfer
from a theoretically analyzed concept to an actual system implementation.

3. Technical considerations of the approaches, taking into account design proper-
ties such as analyzable data types, data representation, and flow, or limitations
like scalability from a technical standpoint.

We discuss the findings from considerations (2) and (3) later in Section 2.4, while
(1) requires a broad review:

Existing Research Landscape – Seed Papers — To analyze the state-of-the-art
and contribute one angle of classification criteria, we start with a keyword-based
seed literature survey. As we aim to inform about the most common ideas in
visual analysis applications, we restrict the search to high-quality journals and
conferences: IEEE Trans. of Vis. and Comp. Graph. (TVCG and IEEE VIS), Comp.
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Figure 2.1: Paper collection and coding process steps: (1) Automated filtering, (2) manual
filtering, (3) manual coding, (4) manual validation.

Table 2.1: The publications per venue and paper count statistics for each of the steps in
the collection and coding process.

Venue #Collected #Filtered #Coded #Final

IEEE TVCG / IEEE VIS 790 35 27 23
Computer Graphics Forum 495 17 11 8
CHI Proceedings 4789 49 10 4
Commercial Systems - 6 6 6

Total 6074 107 54 41

Graph. Forum (EuroVis), Proc. of the CHI Conference on Human Factors in Comp. Sys.
and their co-located events. We focus on more recent solutions that can leverage
technological advances in the last 15 years (i.e., beginning in mid-2007). We are aware
that thereby we exclude some useful techniques (e.g., [FHN+07]). Outside the VIS
community, in journals like Digital Investigation, only few visualization approaches
(e.g., E-Mail Forensics [HDL+09]) have been published. Due to the absence of novel
visualizations or integrations, they were not included.

Selection Methodology — For the actual paper selection methodology, we follow
a four-step approach (see also Figure 2.1). For context, the publications per venue
and paper counts analyzed in each step are detailed in Table 2.1. First, we conducted
a keyword-based seed search for the words communication and analysis on the
titles, abstract, index terms, and contents of publications in each of the venues
described above. Secondly, we went through all these papers’ titles and abstracts
manually, discarding those which clearly are not concerned with communication
analysis systems, reducing the selection significantly. For CHI, the high number
of initial approaches and the high discard rate is due to the abundant use of the
phrase communication when referring to user actions. In this step, we included
approaches suggested by the domain experts. Third, we manually looked at the
remaining papers and decided whether they describe a communication analysis
system (as defined above) or list it as a potential application. In the final step, we
validated the results by checking borderline cases, consequently removing seven
papers. Our final collection includes 41 approaches.

Domain Expert Consultation — To broaden the perspective, we consulted with
eight domain experts by conducting an informal interview. The experts belong to the
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field of law enforcement, working for various European law enforcement agencies,
and each has extensive experience with digital investigations, including communi-
cation analysis, working in the field from ten to over 30 years. They contributed (1)
a collection of six approaches used in practice [BM98; BHJ09; IBM20; Pal20; Dat20;
Nui20] (including commercial) as well as (2) insights on their analytical needs and
perceived challenges. The proposed approaches were included in the Selection
Methodology from Step 2 onward, and the analytical needs were considered for
the classification criteria in Section 2.4. Further, we recruited additional domain
experts for an interview to evaluate the completed conceptual framework, which
we discuss in Section 2.5.1.

Regarding challenges, the experts consider it unlikely that an autonomous sys-
tem can completely replace an experienced-saturated investigator with years of
domain-specific knowledge [FHJ+22] except in the narrowest or specialized of tasks.
As soon as incomplete information is involved and decisions under uncertainty have
to be taken, the analysts often follow their hunches, exploring different options,
but having difficulty in articulating their reasoning [FSS+21]. They explore related
and connected information, which they consider important for contextual informa-
tion [FSS+21]. As such, they are used to - and strongly prefer - visually-interactive
tools for investigations, as it supports their understanding through rapid-feedback
mechanisms [FSS+21], increasing their trust [FHJ+22]. Such systems have been
increasingly deployed in fields such as investigative journalism or criminal investi-
gations [FHJ+22]. Nevertheless, many experts are open to new developments and
consider systems their companions, supporting them without patronizing or limiting
them [FHJ+22], relieving them of labor-some manual work. However, they have to be
developed with analysts in mind [FHJ+22], otherwise potentially overwhelming them
or missing key functionality [FAS+20]. Black box AI models are received critically
except for hints, as the domain experts are often no AI experts, lacking opacity and
making it difficult to prove provenance and a chain-of-reasoning that fulfills moral
or legal obligations [FHJ+22]. Developing systems fulfilling these requirements while
leveraging reliable XAI methods are key challenges.

2.4 Conceptual Framework

In the following section, we aim to construct a framework that encompasses dis-
cerning aspects of communication analysis systems. As with any taxonomy, the
framework is one possible version of a taxonomy, developed in several iterations. We
justify our considerations overall and for each property, either based on the domain
experts’ requirements or referencing relevant work when applicable. The overall
framework was constructed by the authors collaboratively through the collection
of aspects from the three consideration areas (see Section 2.3) and the iterative
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Information about the message and data
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Context particularities
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Features of the interaction
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Scope of the models used
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Evaluation and factors for verification
Intended knowledge gain and power

I

II

III

IV

Visual Interface

Processing and Models

Knowledge GenerationInput: Data and Information

Figure 2.2: Characterization of the four main dimensions of our conceptual framework
for communication analysis systems, in the form of a concrete application of the visual
analytics process model by Keim et al. [KAF+08] to the communication analysis domain.

construction of a mutually exclusive and collectively exhaustive description, aiming
to group related aspects and align with established nomenclatures. We caution that
many presented properties are multifaceted, and our considerations can benefit
from community discussion. For the complete conceptual framework, see Figure 2.3
as well as the main dimensions in Figure 2.2, while for the full classification of the
surveyed approaches, consult Table 2.2.

Main Considerations — One standard structuring methodology is to use a task-
based grouping [CSJ+18; FAS+20]. However, sometimes very different methods are
employed for the same task: for example, to discover key persons in a commu-
nication network, SNA-based [GKL+13] approaches using centrality measures and
node-link visualizations are equally applicable as interactively visualized geomet-
ric deep learning models [FAS+20]. However, both approaches have very different
side effects, visualization, and interaction techniques and make very different as-
sumptions about the data. Instead, we follow the second large methodology, a
thematic-based grouping, and use a property, representation, and methods-based
taxonomy [KK15].

As our primary goal is to design a conceptual framework of communication
analysis through visual analytics, we motivate the main areas by Keim et al.’s
established process model [KAF+08], but develop each of the four areas specifically
for communication analysis using considerations from communication research
and our survey. We chose Keim et al.’s model because it is considered the most
widely used visual analytics model [SSS+14], compared to similar models like Green’s
Human Cognition Model [GRF08] or van Wijk’s Visualization Model [van05]. Further,
having similar dimensions, the differences between these models are slim from
a compartmentalizing perspective. We slightly modify Keim et al.’s terminology,
proposing fourmain dimensions, characterized further in Figure 2.2 and the following
sections: (I) Input: Data and Information (2.4.1) encompasses the (inferred) content
and context with respect to communication research, (II) Processing and Models
(2.4.2) discusses the analytical goals and scopes of the systems, (III) Visual Interface
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(2.4.3) presents visual and interaction techniques employed, and (IV) Knowledge
Generation (2.4.4) discusses the information flow.

2.4.1 Input: Data and Information

This category focuses on information, context, and environment of the communica-
tion, in particular theoretical aspects and data properties, with the structuring partly
based on classical communication research [SW49; McL64; WBJ74; Sch81; Mes09;
Pea11; McL17; CSJ+18]. Therefore, we are discussing the content and meaning, context,
and relationship aspects of communication extensively. Building on established
frameworks [SW49; WBJ74; Sch81], we propose to focus on three interrelated areas:
the information as message, the communication participants, and the environment
(or context).

Message

The message [Sch81] (also central channel [SW49] or content [WBJ74]) refers to the
entailed information. From a system’s perspective the distinction by data type is ob-
vious, while the information can be considered from its actually transported content
(coding [WBJ74]) and its orthogonal interpretation (expression levels [Sch81]):

Data Type — The data type refers to the content type from a technical point of
view. When looking at data classification in information visualization [CMS99], we
can identify several data types which are relevant for communication analysis: text,
audio, image, video, and meta-data, related to network as well as time-series. Based
on the usage in current approaches (see Section 2.3), the two most relevant ones are
text data (e.g., extracting topics from text [CLT+11]) and relation network (structure)
data (e.g., social graphs between communication participants [BHJ09]). However,
communication can also happen via audio (e.g., telephone or VoIP) or via video
chats, comprising audio and moving images, i.e., video data. While our framework
focuses primarily on this written (i.e., text) communication, we include these types
for completeness. Therefore, it would be possible to include the detection of facial
expressions using deep learning [NNVW15] to analyze the analogical code and set it
into context (see below). Meta-data in the form of time-series data (e.g., [KBK11],
extracting event order and relevance) is often relevant for the communication
context, regarding regularity and duration.

Coding — The transported meaning is a core aspect of the communication,
which splits into spelled out (coding) and inferred (expression) meaning. Based
on Watzlawick et al. [WBJ74], the spelled out communication content [McL64] can
be regarded as coding, either in digital or analogical (sic!) form. The digital code
roughly refers to the actual meaning of the transmitted information in a symbolic
system (e.g., the writing “the sky is blue”), while the analogical code refers to
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how something is communicated, including cues (e.g., biosignals, like winking, or
emoticons). Analogical analysis is rare (e.g., message sentiment [HC14b; EGA+16]),
partly due to the information loss in digital transmissions.

Expression — Similar, but orthogonal to it is the expression, which describes
the intended or inferred information extracted from the content. It can be explicit
factual information (the fact that the sky is blue) or information implicitly contained
and which must be inferred, for example, from the semantics (or character [McL64]
of the message). For example, the sky is blue - “let’s go hiking now”. Code and
expression together allow classifying systems by their capability to leverage both
digital (e.g., actual content information) and also analogical codes (e.g., inferred as
sentiment analysis) while judging support for explicit (e.g., keyword-based search
like [IBM20]) and also implicit (e.g., named entity recognition like [ESG+17]) content.
Most approaches consider the explicit level, and several, especially text-based ones,
also the implicit level.

Communication Participants

Of central importance are the participants in a communication. The scale of the
communication is determined by its audience. In correlation with the Context,
this determines different modes like narrow-casting (few, restricted participants),
broad-casting (large audience), or targeting (specific participants), in turn influ-
encing (or being influenced by) the communication medium). In communication
research [McL64; WBJ74] these aspects are usually considered part of the context
(see below).

Parties — According to the domain experts, the involved types of the parties
can be another participant (with oneself as a special case) or different forms of
groups (homogeneous groups or heterogeneous groups with subgroups) and differ
between the sender and receiver sides. Therefore, we propose to structure the
approaches based on their support to analyze the communication between a source
and a target in a 3x3 matrix (individual, group, nested groups), e.g., individual to indi-
vidual is encoded as the symbol (e.g., no group support whatsoever [CSL+16]).
Counterintuitively, the matrix might not always be symmetric.

Properties — The properties of these participant(s) can be manifold. One possi-
ble classification can describe them along their capabilities and their experience
(knowledge of context).

Power Relationship — The (power) relations between the parties have a strong
influence, with differences in push and pull. A possible classification [WBJ74] dis-
tinguishes between symmetrical (equal grounds) or complementary (dependence)
relations, going beyond mere directionality. However, the relationship is rarely con-
sidered explicitly in existing research (e.g., [CLS+12] analyses the changing relations
inside a group during an information diffusion process).
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Context

The context of communication is essential [SW49; McL64; WBJ74], because it strongly
affects the implicit interpretation among participants. We focus on the context of
the external environment (confidentiality, measurement, and medium), and of the
message (timeframe).

Confidentiality — The confidentiality of the communication channel can strongly
influence the communication coding, for example through aversion or code-words
(see also factors in Section 2.4.4 and our work [FHJ+22] on human factors).

Measurement Problem — Closely related is the measurement problem, where
the analysis interferes and influences the communication coding and expression
simply due to its (possible) presence, as indicated by the domain experts. The
communication is affected by the participants’ awareness, so they might adapt
their behavior, use coded language, are less honest, implicit, or communicate not
at all [FHJ+22]. This also concerns trust and reliability, both for parties and ana-
lysts [Cor19; FHJ+22]. We categorize this aspect into a quadrant, between (expected)
knowledge about the analysis, which can be known or unknown to be true.

Timeframe — The timeframe when communication is occurring is highly relevant
(e.g., for event correlation [SRG+19]). It can be described from the perspective of its
duration and the activity during it [SFS+19].

Medium — The communication medium [McL64; Sch81] is partly covered (or
mutually induced) by the participants and also the message type, coding, expression,
and other contextual factors. Nevertheless, it deserves its own spot, in particular,
due to media-typical characteristics and its relevance in research [McL64].

2.4.2 Processing and Models

After defining the data and information available, we study the particularities of
processing and model creation from this information. We consider a technical
perspective in visual data analysis, following the Golden Circle model by Simon
Sinek [Sin09] to answer the why? (Analytical Goal), the what? (Model Scope), and
the how? (Processing).

Analytical Goal

We start with why [Sin09], categorizing them by the aim of the analysis, which
determines the analytical tasks to achieve it. We align our classification by the
standard definition of analytical tasks in visual analytics [SGS18]. This includes the
category representation for a fixed analysis task (present existing data), confirma-
tory analysis for a directed search (to validate a hypothesis about the data), and
exploratory analysis for an undirected search (find interesting anomalies in the
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data). Another goal in communication analysis involves predictive analysis (e.g., to
analyze the future diffusion of information [WLY+14]), to draw conclusions, which can
also be regarded as overarching all methodologies and is related to the knowledge
extracted (see Section 2.4.4).

Scope

The scope answers the what?, determining the generic capabilities on the infor-
mation. Other scopes are defined by their data (see Section 2.4.1) and knowledge
generation (see Section 2.4.4) support.

Modality — The analysis modality is categorized into three [FSS+21] core aspects:
meta-data (e.g., like time-series [KBK11]), network (e.g., social graphs [BHJ09]), and
content (e.g., conversation order [ESKC18]).

Collection Type — The collection type is the logical composite to the Measure-
ment Problem, defining how the data was acquired and its corresponding analysis
implications. We propose to categorize it into a quadrant between targeting method-
ology and anonymity level (see the relevant part in Figure 2.3). The former can be
either targeted (specific communication from a restricted set of users) or untar-
geted (unwarranted bulk collection). The latter can either be high (anonymized
or pseudo-anonymized) or low (identifiable). Different configurations might pose
particular challenges to the analysis model regarding aspects such as scalability and
inference capability through class imbalance or uncertainty [FHJ+22]. For example,
the targeted analysis of identifiable communication participants can focus on the
actual exchange and leverage context and relationship information. The untargeted
analysis of pseudo-anonymized communication instead often results in a search
for the needle in the haystack and can rarely leverage background.

Processing

Due to existing heterogeneity, we focus on generic aspects: the analysis approach
and latency, scalability as key performance indicators (KPI), and data-mapping as
power.

Analysis — The employed techniques and algorithms often differ significantly
between offline analysis and online analysis. Loading a dataset once would be con-
sidered the former type, while batch (e.g., updating data with changes [IBM20] and,
in particular, streaming approaches can be classified as the latter. Most approaches
only cover offline analysis.

Latency — The latency is orthogonal to the analysis. Research [Pea11] indicates
that latency in the communication can significantly affect it, as well as its analysis.
The two primary options are (nearly) instantaneous communication, like in an
active live ( L ) chat (e.g., live monitoring and analysis [Pal20]) or delayed ( D
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) communication, such as e-mail or as a document. Differentiation into these
two groups [Pea11] is often enough for most differences in reaction and behavior,
although the latency can play a role (e.g., answering under time pressure).

Scalability — The scalability of a KPI can be defined on two levels: First, on the
data-ingress level, which defines the amount a system can import, analyze, and
visualize initially. The second aspect is the scalability on the search and analysis
side, for example, during exploratory analysis. For example, how many results can
be shown simultaneously? We roughly categorize both aspects into few (less than
ten, I), medium (order of hundredths to thousands, II), and huge (more than 10k,
IIII).

Data-Mapping — Supporting data mapping increases the analytical power of
the systems. Supporting a flexible import system that allows mapping properties in
contrast to a fixed data format is extremely important to the domain experts and
often aligns with support for merging different data sources. For example, many
systems cannot load multiple datasets and combine fields like usernames but only
consider a single dataset (e.g., e-mails) in a fixed format.

2.4.3 Visual Interface

While there can be many design principles involved [CSJ+18], we describe the visual
interface abstractly [KAF+08], focusing on three interrelated concepts: representation
for the visualization, the techniques employed in interaction, and the synthesis of
both through refinement.

Representation

The central aspect of visualization systems is their representations.
Method—We follow the established nomenclature of visualization techniques [KAF+08].

However, we only chose those common in communication analysis: node-link-based
(e.g., [BM98]), timeline-based (e.g., [GS14]), and matrix-based (e.g., [FAS+20]). Other
(e.g., chord diagrams [EGA+16]) techniques are grouped, while we additionally high-
light multiple-paradigm (e.g., timeline, graph, and text [FZCQ17]) approaches.

Pane — The different visualization methods can be employed in different vi-
sualization panes. We consider the three major ones, namely 2D, 3D, and S3D
(stereoscopic 3D like VR or AR). For example, a communication network can be
visualized as a node-link diagram in either way, and each choice may influence the
interaction concepts.

Interaction

Interaction methods are of central importance in visual analytics.
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Operation Method — We classify the approaches based on their interaction
method according to the classification developed by Yi et al. [YKSJ07], namely Select,
Explore, Reconfigure, Encode, Abstract/Elaborate, Filter, and Connect. Some are
extremely common, while others like encode depend on the capabilities.

Manipulation — The manipulation [KAF+08] of the elements can be either direct,
for example, when interacting with data or visual objects. Alternatively, it can be
indirect, for example, when modifying parameters. Most approaches support both.

Refinement

In addition to the interaction concept, other discerning factors are the particularities
of the refinement, for which we differentiate [SSK+16] between the goal and the
strategy to achieve it.

Goal — Two primary goals can be differentiated [SSSE20]: is the goal to tune an
underlying model (e.g., for predicting communication behavior [FAS+20]) or the data
(e.g., to select a fitting representation [LYW+16])?

Strategy— The refinement strategy [SSK+16] might vary: does it follow an iterative
(e.g., improvements through continuous interactions [EGA+16]) or progressive (e.g.,
incrementally discovering events [KBK11]) strategy?

2.4.4 Knowledge Generation

Knowledge, generated and learned, is the ultimate analysis goal. We propose three
subcategories: output to conceptualize the direct outcome, knowledge gain to cover
the power of the outcome, and verification approach to consider implications and
evaluations.

Output

Based on the classification of Spinner et al. [SSSE20], we propose two distinct cat-
egories for the learned knowledge type: An explanation can consist, for example,
of numerical (e.g., graph algorithms [BHJ09]), textual (e.g., presented text [SRG+19]),
or graphical representations (e.g., visual network representations [BN11]). It rep-
resents knowledge but in a factual representation that is not easily transferable
and can be regarded as a (final) result of the existing data and is intended for
humans. In contrast to this, another type of result can be a transition function,
which is closer to an actual model, one example being the analyst’s mental model.
Another type is a machine model, for example, a trained, applicable classifier (e.g.,
diffusion model [WLY+14] or neural communication prediction model [FAS+20]) that
encapsulates learned knowledge.
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Knowledge Gain

As a final step in the learning process, the question arises which knowledge [GRF08]
is actually gained and how powerful the process is.

Time Dimensionality — The time dimensionality describes the relationship
between data and knowledge generation. A 2x3 matrix shows the possible combi-
nations of data basis and prediction type, each with the entries past, present, and
future. For example the symbol (like [HSCW13]) represents a system that can use
past data and predict past data, for example for a search. Then, the encoding
(like [LWY+20]) would reflect an article analysis and prediction system which has
been trained on past data to analyze a text, either an existing one or one on the fly
in the present and future. Another example for a future prediction is a model that
forecasts communication activity based on past events, encoded as . Note that
by causality, the future is excluded.

Predictive Power — A second consideration describes the predictive power of
the knowledge generated, which is represented as a 2x3 matrix, where the result
(explanation or transition function) and the time are combined. For example the
encoding reflects a system that can explain (i.e., show) past events (virtually all
systems). The encoding represents one that can provide factual information for
future events (e.g., information cascade prediction [LWY+20], inaccessible internal
model). More powerful is a controllable model which can explain and predict (e.g.,
opinion diffusion [WLY+14]), encoded as .

Domain-specific Aspects — Here, specific options depend on the analysis tasks.
As discussed above, these are out of scope here; however, we could imagine this as
future work (see Section 2.5).

Verification Approach

The presentation, as well as automated analysis of knowledge, raises a plethora of
ethical as well as technical questions.

Factors — Visual analytics is well suited to address factors like confidence, trust
and privacy, and consider aspects like fairness and accountability [FHJ+22; Cor19].
For example, probability scores could be used to estimate the results’ confidence
stemming from automatic processes (e.g., visual confidence scores [FAS+20]) and
visualize it to the expert. Other examples include analysis log files, integrity protec-
tion, traceability, and verify-ability, as well as a provenance history. The lack of such
certainty measures might exclude systems from sensitive areas. While essential,
as shown by Correll [Cor19], many approaches are oblivious. For a more detailed
discussion of the human factors in communication analysis, the ethical dilemmas,
and design considerations for communication analysis systems, we refer to our
companion work [FHJ+22].
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Evaluation — To evaluate approaches, several options are possible: Either exam-
ples or a case study (e.g., describing an application [HFM07]). A second option
is a comparison with existing approaches through feature comparison (e.g.,
comparing the most relevant tasks [FAS+20]). A third option would be a qualitative
interview (e.g., interviewing eight domain experts [FSS+21]) or a quantitative user
study .

2.5 Discussion and Future Work

We have defined four main dimensions containing over fifty different properties,
providing a conceptual framework for interactive communication analysis systems
employing visual analytics principles. This section discusses the main findings
and lessons learned before reflecting on the difficulties in creating a conceptual
framework for communication analysis. In particular, we evaluate the framework
through two additional domain experts and discuss the potential implications and
opportunities for future research while highlighting the shortcomings.

We imagine several applications for this framework: To provide a state-of-the-
art overview of the current techniques, laying the foundations for a more detailed
survey. Further, structuring the research field and providing a common language for
the community while supporting comparison between approaches for practitioners
and developers alike.

2.5.1 Expert Validation

To evaluate the relevance and validity of our conceptual framework, we recruited
two additional domain experts for assessment. Both are analytical system devel-
opers and act as consultants to domain experts in intelligence, working in law
enforcement. As such, they are highly familiar with the requirements and needs
of the analysts as well as the technical implementation of the systems. According
to them, the “framework covers many use cases in intelligence”, “misses no critical
dimensionality”, and is well received as helpful to structure their collection of sys-
tems. As often “several systems are used in different stages of the investigation”,
the framework is especially well suited to “assess the capabilities of presented
approaches” for different tasks, to perform “market observation”, and the “basis for
a detailed assessment scheme”. The framework “can support analysts in choosing”
the correct system or sequence of systems. Currently, many investigation tasks “still
require manual reading of all content” and analysis of relations, which is why more
powerful and holistic approaches are needed. Systems that “hide the complexities”,
work well, and are easily understandable can “increase the analysts’ performance
significantly”. Due to the ethical and legal requirements in communication analy-
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sis [FHJ+22], it becomes “increasingly relevant how explainability and information
provenance” is handled and where a systematic assessment can be helpful.

2.5.2 Survey Findings and Research Opportunities

Our framework identifies gaps and research opportunities. Visual analytics is
especially suited to support semi-automatic communication analysis [Her15; JFDK00].
The complexity, multi-modality, and ambiguity of communication are well-suited to
interactively combine domain knowledge and computing. Concepts like interactive
learning (e.g., [FAS+20]) allow refining models, while uncertainty awareness enables
automatic judgments (e.g., [SFS+19]), fostering user trust and identifying bias [FHJ+22].

Findings — To apply the framework, we have taken the 41 selected approaches
(see Section 2.3) and coded them according to our conceptual framework. Based
on the results in Table 2.2, we can discover several interesting aspects: For one,
studying the data type, while the analysis of text data seems mostly universal across
representation methods, this is not the case for the other data types. Somewhat
unsurprisingly, when network data is included, the visualization is often node-
link-based or multi-paradigm, while for time-series, it is either timeline or multi-
paradigm. Given the scope of the survey, the lack of audio and image is not surprising.
Given that all the approaches belong to the category of visual analytics, it is also
unsurprising that virtually all support representative, confirmatory and exploratory
analysis as their analysis methodology, their operation methods covered most
options, and their explanation is at least always graphical.

More interesting, however, are the differences and the research opportunities
we can conclude from their discrepancies, which we highlight in the following for
each category (see Figure 2.2), linking back to visualization systems as well as com-
munication research; aspects we consider of particular relevance are highlighted
with a star: .

I.1 Analysis of the Meaning and Analogical Code
Only a subset of visualization approaches analyzes the implicit meaning of the
communication (e.g., [HC14b; ESG+17; FZCQ17]). However, almost none analyze
the analogical code of the communication.
Implication: The analogical code can contain important cues which might
support the analysis of the content and provide supportive information about
the relationships inside the network, which makes it especially relevant to
consider [WBJ74]. Leveraging it can lead to a richer and more-complete analysis,
while it can support resolving contradictions and ambiguities [ESKC18].
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I.2 Include Power Relations
Again, only a few (e.g., [CLS+12; HC14b; EGA+16]) approach considers the power
relations between the participants, which can similarly influence the communi-
cation semantics, meaning, and modalities.
Implication: Power relations between participants [Sch81; WBJ74] might influ-
ence content aspects like the choice of words, formality, use of irony, meaning,
or meta-data aspects like dynamics [SFS+19], timestamps, or message count.
Results can be used and considered in context with the content analysis.

I.3 Dynamic Analysis
While some might consider this a technical problem, the development of
systems that support the dynamic analysis of communication data and
batch/stream approaches (e.g., [IBM20]) sets considerable hurdles to estab-
lished analysis and visualization methods, which makes it an interesting re-
search problem.
Implication: Exploring how new data and updated results can be inte-
grated [CLS+12], how fluctuating analysis can be stabilized, and how changed
predictions [LYW+16] are communicated offers more effective ways for visual
communication.
Thesis Contribution: As part of Chapter 8, we propose a framework that includes
batch and stream analysis of communication data.

I.4 Research the Measurement Problem
The measurement influence [FHJ+22; FSS+21] is rarely explored.
Implication: Being aware of the measurement problem and explore mitiga-
tions [SV19] can strengthen user trust, while avoiding missed or erroneous
results (e.g., due to codewords) [WBJ74].
Thesis Contribution: As part of Chapter 3, we discuss privacy and ethical issues
regarding the measurement problem as well as discuss potential solutions for
the analysis. In Chapter 8, we propose a technique that can mitigate some of
the posed issues, which we also discuss alongside a investigative journalism
case study.

II.1 Multi-Environment Inclusion
Many approaches lack support for data mapping and multiple data sources
(e.g., [IBM20]), requiring preprocessed data.
Implication: Automating the merging of heterogeneous data sources [KAF+08]
with few or no user input reduces the amount of manual preprocessing or
knowledge transfer required, makes leveraging multiple data sources simulta-
neously less complicated [FZCQ17], while exploring optimal interface strategies.
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Thesis Contribution: As part of Chapter 8, we present a system architecture
that allows for an holistic and multimodal integration of communication data.

II.2 Analyze Group Communication
Only a few approaches support the analysis of group communication (e.g., [FM08;
EGA+16]), and almost none support nested groups.
Implication: New and more detailed knowledge can be drawn on how groups
operate [FM08] and information diffuses [Lea51] within, in particular, because
much communication actually happens inside or between groups, which can
involve specific particularities [Bav50].
Thesis Contribution: As part of Chapter 5, we contribute methods for the
identification of communicating groups.

III.1 Visually Interactive Model Analysis
Virtually all approaches use the 2D pane for visualizations, and many automa-
tions focus on filtering instead of model tuning.
Implication: Leveraging visual data analysis techniques [KAF+08; YKSJ07;
Her15] and explore unused approaches like VR for improving the analysis
process [CSJ+18; GKL+13], focusing on the model [SSSE20] instead of only data
selection may allow for the higher level conclusions, supporting the knowledge
generation [SSS+14].
Thesis Contribution: As part of of thesis, we propose several visual analytics
techniques: we investigate its theoretical potential in Chapter 3, and present
Hyper-Matrix (Chapter 5), CommAID (Chapter 7), Conversational Dynamics (Chap-
ter 6), as well as MULTI-CASE (Chapter 8) as prototypical solutions.

IV.1 Model / Transfer Function / Knowledge Gain
Few approaches contain an actual, powerful machine models (e.g, [WLY+14;
ESKC18; Nui20; FAS+20; FSS+21]) to analyze communication.
Implication: Using such models can potentially support the analysis [GRF08;
CSJ+18], through measures as active learning [CSL+16; NNVW15], intelligent filter-
ing [FSS+21], or confidence-based predictions [SSK+16]. Transfer Functions allow
for a more universal machine learning, applying knowledge to new problems,
increasing the predictive power. This reduces manual work while increasing
analytical capabilities.
Thesis Contribution: While all the previously mentioned approaches (Conver-
sational Dynamics in Chapter 6, CommAID in Chapter 7, and MULTI-CASE in
Chapter 8) also support the refinement of internal models, the model retraining
and adaption process is investigated in particular detail as part of Hyper-Matrix
in Chapter 5.
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IV.2 Confidence, Trust, and Privacy
These factors are insufficiently considered in the majority of approaches, lead-
ing to a black-box analysis. Instead, one could include confidence estimates
(e.g., [FAS+20]), logs, provenance (e.g., [FSS+21]), data minimization, or other
concepts.
Implication: Several applications have strong requirements for confidence and
trust [SSK+16], provenance [SSSE20; FSS+21], and privacy [FHJ+22]. Exploring how
these can be fulfilled [FHJ+22] without limiting the analysis can replace manual
analysis by automated systems.
Thesis Contribution: We discuss the confidence, trust, and privacy factors as
well as the ethical implications in detail in Chapter 3. The lessons learned are
also reflected in the design of MULTI-CASE presented in Chapter 8.

IV.3 Guidelines and Quantitative User Studies
While several approaches include case studies and (qualitative) expert in-
terviews, almost none make actual comparisons with related approaches or
conduct quantitative user studies.
Implication: Case studies and qualitative expert interviews are not always com-
parable or conducted to the same standards [BISM14]. While we do not doubt
the systems work well as advertised, for reproducible comparisons between
approaches, quantitative studies are required and evaluations along design
guidelines [CSJ+18], providing a more objective overview.
Thesis Contribution: While quantitative user studies in this domain remain
extremely difficult, we present guidelines and points to consider as part of
the design process in Chapter 3 as well as Chapter 7. Further, we compare our
systems Hyper-Matrix (Chapter 5 and Chapter 4) and MULTI-CASE (Chapter 8)
with related approaches or according to a capability assessment.

O.1 Holistic Approaches
Few approaches perform a holistic analysis (e.g., [FSS+21]) by considering multi-
ple analysis aspects in context, covering all modalities.
Implication: A holistic perspective [vv14] can increase the analytical capa-
bilities [BISM14; FSS+21], supporting cross-matches beyond analysis bound-
aries [FHJ+22], while reducing manual and mental load.
Thesis Contribution: As part of this thesis, we present two holistic approaches:
CommAID (Chapter 7) and MULTI-CASE (Chapter 8).

O.2 Context / Analysis Reference Window
Similar to the holistic analysis, a specific focus on the communication context
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in reference to each other should be explored further for both inter- and intra-
modality analysis.
Implication: Few approaches consider other modalities or external factors to
explain particularities. For example, a break in a communication sequence
might appear as a gap, but when combined with location information (e.g.,
same building) might indicate that the participants might have met for lunch
and continued their conversation offline. In summary, the correct interpreta-
tion of communication is extremely context-dependent [CSL+16; CSJ+18], with
different applicability of analysis methods. Analyzing references and clues can
improve the determination of the highly variable context [Mes09] for choosing
appropriate analysis methodologies.
Thesis Contribution: We address the question of inter- and intra-modal analy-
sis to various degrees in different chapters: We investigate the identification
of missing links through common context and shared similarities as part of
Hyper-Matrix in Chapter 5, the identification alongside common communica-
tion meta-data patterns as part of Conversational Dynamics in Chapter 6, and
a more general context in both CommAID in Chapter 7 as well as MULTI-CASE in
Chapter 8.

Implications — All the previously described opportunities offer potential im-
provements for a more complete analysis of communication. Fusing together
multiple methods can lead to a richer and more complete analysis, potentially
resolving contradictions and ambiguities. Some opportunities primarily support
existing analysis steps (e.g., I.2), while others provide new areas (e.g., II.2, O.1). While
the relevance of aspects might differ in any given analysis, our framework identifies
areas that users - and developers of interactive analysis systems - can consider
and leverage, depending on their analytical needs.

2.5.3 Limitations and Future Work

One problem with the described taxonomy is the basis it is designed upon, which can
affect its completeness). A significant problem in this research area is that relevant
approaches are rarely labeled as belonging to communication analysis. We initially
thought about compiling a list of domain-specific keywords for selection (e.g., social
network analysis, sentiment analysis, e-mail analysis, etc.). However, we found it
highly likely that such a selection would be highly biased by our knowledge, which is
why we decided to take a wider approach. However, even with care, it is inadvertently
likely we missed individual approaches, not least by restricting the target journals
and interviewing domain experts from (criminal) intelligence, although related
domains like investigative journalism have similar requirements [FHJ+22]. Also, it

2.5 Limitations and Future Work 59



could happen that a few approaches fell through our automatic or manual search
pattern (see Section 2.3). However, due to the restrictions discussed in Section 2.3, we
do not claim overall completeness. The survey forms one of three pillars for our goal
of constructing the framework, and together with the other two, we are confident the
majority of cases can be described within our framework. Nevertheless, to address
the issue of missing approaches, we created an accompanying survey website
available at https://communication-analysis.dbvis.de, which lists the approaches
we considered and also allows readers to submit methods missing methods. This
website is also permanently archived with an OSF repo [FDS+22a].

Another possible limitation concerns the orthogonality of the framework itself.
Due to the complexity and heterogeneity of the area, it contains some overlaps.
As there is a need to balance the trade-off’s accuracy, usability, and relevance, we
think it is challenging to create a wholly consistent yet easily usable taxonomy. The
choices we made for selecting the categories are often based on the literature and
justified when required. However, given sparse taxonomy and non-standardized vo-
cabulary, some groupings and namings could arguably have been chosen differently
with the same validity. To advance research in this area, however, we decided to
propose our framework as a first possible draft and one step towards a universally
accepted framework. We, therefore, invite the research community to give feedback
to stimulate the scientific discussion and extend the framework through input from
diverse research communities. As part of this process, the individual, multi-faceted
aspects can be formalized in more detail.

Another aspect is the extension of the framework to non-human communica-
tion. Several aspects could be applied to communication in general, for example,
machine to machine. Indeed, nothing in the framework is specifically tailored to
a human communicator. However, human communication is often more nuanced
than machine communication, making parts of the framework less relevant, while
other features (e.g., structuring, exchange content scope) might be missing so far.

2.6 Conclusion

In the last decades, communication analysis has experienced a shift away from
manual analysis to computer-aided or even highly automated approaches. However,
to the same extent as automation levels increased, the analysis itself has often
become more specialized, moving away from an overarching exploration. This
trend is in contradiction to traditional communication research, which stresses
the importance of a holistic approach to capture the full meaning and context of
communication. As a result, many modern digital communication analysis systems
are highly adapted to a narrow range of tasks, often either in the area of content
or in network analysis. While this might be perfectly sufficient and suitable for
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their intended use, such an isolated analysis can sometimes lead to a less effective
exploration and lead to incomplete or biased results. Using separate approaches
requires more manual work, often complicates analysis tasks, can introduce domain
discontinuities, and increase the struggle domain experts face when trying to
integrate their knowledge. Further, an isolated analysis may not be sufficient to
capture the full available information and can make the automatic as well as
the manual detection of cross-matches more difficult. The development of more
holistic and advanced approaches for automated communication analysis systems
is hindered by the lack of a clear framework and the absence of a common language
that combines technical aspects and traditional communication research.

We address this challenge by developing and formalizing a design space for
digital communication analysis systems based on the existing tool landscape and
communication research while making a case for how visual analytics principles
can be employed for a more holistic approach. By systematically discussing and
structuring the different analysis areas and aspects of the design space, we arrive
at a conceptual framework to provide an overview and assess the maturity of
communication analysis systems. As part of a state-of-the-art survey, we have also
categorized a large set of existing approaches using our framework.

By bridging the gap in the formalization of digital communication analysis sys-
tems by describing a design space for communication analysis, we aim to provide
researchers with a common language, provide guidelines for building and assessing
the maturity of such approaches, as well as point out gaps in the literature which
offer exciting research opportunities. Further, the formalization acts as the concep-
tual basis for the remainder of this thesis. The results are widely applicable in a
variety of domains that are concerned with communication analysis like national
security, the digital humanities, or business intelligence, both from a theoretical
point of view as well as for the development of more powerful communication
analysis systems.
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Ultimately, saying that you don’t care about privacy because you have
nothing to hide is no different from saying you don’t care about freedom
of speech because you have nothing to say.

— Edward J. Snowden, Whistleblower
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With the increasing abundance of data that
can be harnessed by analyzing human communi-
cation, manual management seems increasingly
unrealistic while posing new challenges regard-
ing automated behavior. Particularly interesting
cases are formed by the intelligence analysis of
communications data in areas such as investiga-
tive journalism, criminal intelligence, and law, as they must take into account the
often highly sensitive properties of the underlying operations and data. At the same
time, these are areas where increasingly automated, sophisticated approaches and
tailored systems can be particularly useful and relevant, especially in terms of Big
Data manageability. However, the shifting of responsibilities also poses dangers. In
addition to privacy concerns, these dangers relate to uncertain or poor data quality,
leading to discrimination and potentially misleading insights. Other problems relate
to a lack of transparency and traceability, making it difficult to accurately identify
problems and determine appropriate remedial strategies. Enabling human sense-
and decision-making as a joint agency, for example, through the use of visual analyt-
ics, can be key for designing and operating meaningful interactive communication
analysis systems that consider these ethical challenges.

In the following chapter, we investigate and evaluate opportunities and risks
involved in using Visual analytics approaches for communication analysis in intel-
ligence applications in particular. We consider the apparent challenges from an
interdisciplinary viewpoint, reconciling ethics, science and technology, and com-
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puter science perspectives. At first, we discuss common technological systems used
in communication analysis, with a special focus on intelligence analysis in criminal
investigations, further elaborating on the domain-specific ethical implications, ten-
sions, and risks involved. We then make the case of how tailored Visual Analytics
approaches may reduce and mitigate the described problems, both theoretically and
through practical examples. The latter parts of this dissertation (Chapter 5 onwards)
will then discuss actual techniques and implementations of these approaches. In
the following, we argue how offering interactive analysis capabilities and what-if
explorations while facilitating guidance, provenance generation, and bias aware-
ness (through nudges, for example) can improve analysts’ understanding of their
data, increasing trustworthiness and accountability while generating knowledge.
We show that finding Visual Analytics design solutions for ethical issues is not a
mere optimization task with an ideal final solution. Design solutions for specific
ethical problems (e.g., privacy) often trigger new ethical issues (e.g., accountability)
in other areas. Balancing out and negotiating these trade-offs, as we argue, has
to be an integral aspect of the system design process from the outset. Finally, we
identify existing gaps and highlight research opportunities, further describing how
our results can be transferred to other domains. With this contribution, we aim
to inform and build the ethically-aware basis for communication analysis in this
dissertation and in the intelligence domain more generally.

This chapter is based on the publication [FHJ+22] andmajor parts of the following
sections have appeared in:

• [FHJ+22]: Maximilian T. Fischer, Simon D. Hirsbrunner, Wolfgang Jentner,
Matthias Miller, Daniel A. Keim, and Paula Helm. “Promoting Ethical
Awareness in Communication Analysis: Investigating Potentials and Limits
of Visual Analytics for Intelligence Applications”. In: Proceedings of the
2022 ACM Conference on Fairness, Accountability, and Transparency (FAccT
’22). Association for Computing Machinery, 2022, pp. 877–889. isbn: 978-1-
4503-9352-2. doi: 10.1145/3531146.3533151.

For a statement of the scientific contributions, as well as the division of respon-
sibilities and work in this publication, please refer to Chapters 1.2 (p. 22ff) and
1.3 (p. 26ff), respectively.
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3.1 The Ethical Dimension

The intelligence community is one of the most prevailing domains for sophisticated
big data analyses, namely in criminal investigations, lawsuits, matters of national
and international security and in investigative journalism. Specialized systems
are used, for example, by the National Security Agency (NSA) as part of global
spying operations [MJ17] or law enforcement against organized crime [DFH+21], by
lawyers for analyzing case-relevant documents [ATPL16], but also by journalists
working on [WYB18] large data leaks such as the Panama Papers. During these
operations, large amounts of communication data, like e-mails, chats, posts, or
calls are collected, along with associated documents (e.g., attachments) and meta-
data like timestamps, locations, and contact networks. In our research context,
these domains present a particularly interesting case, as they should consider
the often highly sensitive and private character of the underlying operations and
data with particular caution. There is no doubt that untargeted mass collection
of communication in the name of national security is privacy-invasive and thus
highly controversial [Mac18], at least for western civilizations. The believe in the
separation of the private and public life originates in Ancient Greece during the time
of Pericles. There—as delivered by Aristotle—the concepts of oikos (meaning family
or family property) and agora (meaning central market) were conceived, referring
to the private and public aspects of life [Are60]. However, many ethical challenges
remain even relevant for morally more accepted cases like specifically targeted
analysis of confiscated organized crime equipment or even practices considered
essential to democratic culture and particularly valuable, like data journalism.

For example, privacy issues relating to the separation of irrelevant data, its
secure handling, analysis, and deletion have to be considered [Aus12; Amo14]. Poor
data quality, unreliable methods, or biased algorithms may lead to misleading
insights [Ame16], bearing the risk of overlooking critical information, or worse,
contribute to discriminatory practices against people of colour [Ben19], cement
existing social inequalities [Eub18], and may even result in false accusations [ONe16].
Moreover, a lack of transparency can make it impossible to defend oneself against
such accusations [Sel17] when the systems supporting (or making) such decisions
are considered reliable, but actually do not (consistently) provide complete chains
of evidence [Kit17]. Unfortunately, being focused on efficiency and quick results,
not all actors consider the arising ethical challenges in this field with a long-term
perspective in mind, and even those who try, may be limited by their technical
approach and implementation difficulties, for example, through black-box machine
learning models or an incomplete understanding of the considerations involved in
deriving the result [Zar16].
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The concept of accountability in computer science [Nis94] stresses the need
to handle and answer to the harms and risks that can be caused by technology.
While this concept has been around for decades already, concrete ways of handling
accountability in digital analytical systems have remained vague. Yet, progress has
been made in interpretability of machine learning [Mol19; Rud19]. Whereas the
coming into effect of the EU General Data Protection Regulation (GDPR) led to more
awareness on this topic and its implementation [HvB18], its legal effects on the
fields under consideration are limited due to exception clauses in article 2 (law
enforcement) and article 85 (journalism) [Eur16]. Even in those areas, however, the
need to consider these topics carefully is increasingly prevailing.

Working together closely with criminal investigators from various institutions, we
know of a growing awareness of these difficulties, also on the part of the analysts
themselves. Concerns about the trustworthiness of their analytics systems and
the ethical considerations involved have been expressed. This concern is also
reflected in digital communication analytics in general [vP18], where the need
for more detailed analysis was identified. To date, ethical concerns related to
automated communications analysis have been described mainly from either a
strictly sociological and/or ethical perspective [HH21] or in the context of technical
capabilities [vP18; FL20; FDS+22b]. Much less work, by contrast, addresses the
complex techno-ethical tensions and dilemmas that arise in the messy gray areas
of socio-technical feasibility, given the limits and consequences induced by the
alleged solutions. Given the lack of overarching work, in this chapter we examine
ethical considerations in communications analysis for intelligence applications in
more detail and propose possible mitigation techniques, which we discuss critically
with regard to ethical concerns. Unlike most previous research, we thus bridge
ethical considerations, sociological science & technology studies, and a computer
science perspective.

We study concrete design approaches and solutions and by analyzing the inter-
facing problem from an interdisciplinary perspective, we can critically reflect on the
opportunities and challenges involved [Lip17]. We argue that designing solutions is
not a mere optimization task, but balancing out and negotiating the trade-offs has
to become an integral aspect of the design process at the very outset. We further
claim that — in light of recent requirements for human oversight [Eur21a; Eur21b] —
an application design based on visual analytics principles is uniquely suited for such
a task, by interactively combining human sense- and decision-making, controlled
through a frequent feedback loop.

In this chapter, we aim to promote ethical awareness of digital communication
analysis by turning our focus to the interface, investigating the potentials and
limitations of visual analysis for intelligence applications, contributing:
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� A detailed discussion on the ethical frictions and tensions involved in
intelligence applications, followed by a scenario-based stakeholder
analysis of actors and their roles.

� A critical reflection of visual analytics design solutions fostering ethical
awareness in communication analysis and the involved trade-offs as
an integral part of the interface design process.

With this contribution, we aim to inform more ethically-aware approaches to
communication analysis in intelligence operations using visual analytics principles.

3.2 Ethical Challenges for Communication Analysis

The field of AI ethics is a novel field. It concerns itself with the ethical implications
and consequences of the increasing automation and datafication, both facilitating
the discussion and responding to the various concerns raised. As such, it has
seen substantial growth in the last few years. Given the considerable potential to
misuse novel technologies in police intelligence [Sel17], they have received particular
scrutiny when becoming public.

Both the academic community specializing in ethics as well as civil society actors
heavily criticize the sometimes ill-advised deployment of such technologies. This
is particularly well illustrated by the strong reaction against predictive policing
technologies (PPTs) [Ame16]. In the following section, we will discuss several imper-
tinent challenges (C1–C6) in this growing debate. Thereby, we focus in particular on
those issues with significant implications for communications analysis.

C1. Discriminatory Bias – The replication of pre-existing stereotypes and exac-
erbation of community discrimination (e.g., women, people of color, transgender)
by biased algorithms is a pressing challenge [Ben19; Cos20; Nob18; LI16]. Bias in
machine learning can originate from human actors (e.g., suspicion just based on
ethnicity) or be introduced through processes (e.g., the mirroring of stereotypes
embedded in the training data). The latter can be observed in facial recognition sys-
tems [GF16] and pre-trained language models [KMN20]. To alleviate such statistical
discrimination in AI models, one can develop fairness principles and metrics to as-
sess and try to mitigate such issues [MMS+21; BHN17]. However, these measures may
not suffice in communities already subject to inequitable conditions, necessitating
an emphasis on equity prior to automation [Gre18].

C2. Privacy – Privacy remains a central challenge. Intelligence applications
process copious amounts of data ingested from diverse, often confidential sources,
including recorded phone calls, online messages, and social media. Most of this
data pertains to unrelated third parties due to its sheer volume and heterogeneity,
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thus raising significant ethical and legal concerns when stored and processed [MC16].
Although law enforcement may be exempt from many data protection and privacy
regulations (most notably the GDPR [Eur16]), this does not absolve them of their
social responsibility. It emphasizes the need for robust measures to prevent misuse
of the collected data and clearly define, explain, and implement data access in a
legal and technically secure manner.

C3. Opacity – Many current deep-learning systems remain opaque and can be
considered black-box, raising many important questions [Pas15]. For this, one has
to consider that even if such system would be interpretable and explainable to
machine learning experts, typical analysts usually are no such experts. This makes
it challenging for them to comprehend the system-generated output [AC18]. Further,
other problems are typical for public-private partnerships: for example, trade secret
protection for algorithms used in public domains can lead to severe difficulties in
verifying the inner workings. This offers limited opportunities for analysts, judges,
and the general public to challenge findings based on biased or inaccurate models,
which sometimes can have dramatic consequences [LI16; ONe16; Nob18].

C4. Exaggerated Expectations – Another critique addresses the general mis-
conception that algorithmic recommendations are indisputable because they are
mathematical truths. Contrary to the black-box discourse, this discussion is ide-
ological, emphasizing trustworthiness, not from a technical side. This concept of
mathwashing should not be used to highlight the potential of innovative technolo-
gies, where software is framed as the single solution against any human errors or
ill-intent [Joh17]. The portrayal of charismatic machines [Ame15; Ame19] triggers this
fantasy. A prominent example of this disparity between promise and actual perfor-
mance is served by predictive policing technologies [HH21] STS scholars underscore
the importance of recognizing the subjectivity and intent embedded in systems,
destroying the flawless machine’s connotation due to collective decisions by diverse
actors with potentially conflicting interests involved in its design and usage [Mac15;
Kit17]. Communications analysis of intelligence data is far from neutral, considering
the collective efforts and design decisions behind it [Git13]. The ability of people to
question the validity of results is compromised when they believe in the neutrality
of such tools when, in fact, they serve specific needs and interests. This concept is
called erasure of doubt and can impede the application of previously learned and
experienced trust [Amo19].

C5. Human-Machine-Configurations – The complexity of human-machine config-
urations has grown alongside advancements in automation [Suc07]. A key challenge
lies in achieving both effective integration and establishing an appropriate level
of automation. The automated analysis aims to aid investigators by filtering out
seemingly irrelevant patterns and relieve them of repetitive or laborious tasks,
allowing them to concentrate on more useful activities [Cor19]. However, when
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analysts feel marginalized and displaced in their human experience through their
machine counterparts, considering their combined work as a competition rather
than assistance, this becomes problematic [KEL18]. The crux of the matter revolves
around determining a sweet spot regarding the extent of automation, how it should
be applied, and how it should complement the activities of the human investiga-
tor [SJB+17]. When and which alternative search terms or associated individuals
should be suggested, what agency should the analyst retain, and how much and
what type of contextual information should be displayed or concealed for privacy
considerations? These are vital questions with no easy answer. Likewise, how
much should interfaces be designed to prompt users to contemplate ethical issues,
such as through nudging? Smooth and well-structured collaboration is a highly
debated topic as it is seen as an essential safeguard against AI systems potentially
undermining human autonomy [Eur21c] with many potentially harmful effects.

C6. Accountability – The ethical challenges discussed thus far also pose ques-
tions regarding accountability, which describes the readiness to assume responsi-
bility for actions and decisions taken and extends not only to the users but also
the software and the designers of its AI [AI 20; LOL+18]. A consensus needs to
be found regarding the extent system users can and should be held accountable
for consequential errors in the context of AI if the software fails to meet basic
explainability and interpretability standards. Additionally, the obligations of the
software provider to protect and safeguard against ethically questionable decisions
(such as racially-biased categorization of suspects) and uses (like spying on third
parties) need to be outlined and (legally) discussed.

3.3 Scenario Analysis

As a prerequisite for the following discussion, we first provide a overview of com-
munication analysis and the common technological systems, before presenting
the PEGASUS research project as a case study. We then construct a hypothetical
scenario, from which we derive a map of the stakeholders in conflict, forming the
basis for our proposition for mitigation.

3.3.1 Digital Analysis and Employed Technology

Digital communication analysis as a research field has no universally accepted
definition, with different understandings in different domains. In this work, we
follow our definition [FDS+22b], defined in Section 2.1, considering it to encompass
the computer-mediated [FSS+21] analysis of meaningful digital [Sco09] information
exchanges between humans [Pea11]. The analysis relates not only to the actual
content (text, audio, or video), but also encompasses accompanying meta-data
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as well as communication network structures. Existing communication analysis
approaches rarely consider these aspects holistically [FSS+21], but primarily focus
on individual aspects: Most commonly, these are textual analysis through fuzzy
search (and increasingly natural language processing (NLP) [MS99] methods) as
well as social network analysis [Sco17]. For example, in intelligence, one of the
most commonly used systems [FAS+20] is IBM’s i2 Analysts Notebook [IBM20], which
has a strong focus on network analysis and information management but has, so
far, lacked advanced textual analysis capabilities. However, competing solutions
such as Nuix [Nui20], DataWalk [Dat20] and Palantir Gotham [Pal20] have been
gaining ground [FSS+21]. Many are primarily large information management systems,
using established algorithms (e.g., for centrality calculations in a network) and
deterministic filters (e.g., keywords). Novel machine learning-based capabilities
used for relevance scoring, person attribution, or facial matching are increasingly
used in this context. The reliability of these models, however, the question of hidden
bias, and the overall reproducibility (e.g., after updates), remain unclear.

In investigative journalism, tools like New/s/leak 2.0 [WYB18], as, for example,
used by Der SPIEGEL, use models trained on public data like Wikipedia for discovering
named entities in textual data (e.g., persons or company names). Similarity, the
industry-standard spacy [Hon19] uses public corpora and increasingly open web
information for model training. While this often results in increased accuracy,
concerns about the reliability for less common languages or risks of manipulation
(e.g., for datasets extracted from Wikipedia) remain valid.

3.3.2 The PEGASUS Research Project

For a case study on the requirements in intelligence, we specifically focus on the
insights gathered through the work in the academic research project PEGASUS,
funded by the Federal Ministry of Education and Research of Germany (BMBF). The
project aims at improving big data analysis in the context of civil security, also
considering the ethical challenges involved. The PEGASUS acronym — not to be
confused with the unfortunately equally named PEGASUS spyware — stands for
Collection and analysis of heterogeneous Big Data by the police to fight organized
crime structures. Organized crime is a transnational and global form of crime,
encompassing a broad spectrum of different areas, including human, drug, and arms
trafficking, money laundering, smuggling operations, environmental, medical, cyber,
and other white-collar crimes. According to Europol, in Europe alone, the number
of criminal organizations under investigation is over 5000 (2017) [Eur21d], coming
with high economic cost and a destabilizing effect on public security (through,
for example, extortion, fraud, trafficking, or bodily harm). Organized crime can
be characterized by its organized hierarchies (e.g., clans, mafia structures, shell
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companies) and sophisticated criminal acts using modern technology, and their
ability to adapt quickly to changing circumstances [Pao02] . For example, the COVID-
19 pandemic has significantly affected organized crime, which was quick to adapt to
new illegal avenues and modi operandi [Eur21d]. In conjunction, the seized data
is increasing massively, overwhelming traditional (primarily manual) investigation
methods. A significant share accumulates as intra- and inter-group communication
and can be acquired, for example, when electronic devices are seized. However, the
challenges faced are not unique to law enforcement; the goals are strikingly similar
to tasks in fields such as investigative journalism and business intelligence, where
information and the knowledge derived from it have become more important than
natural resources [KN98]. Tackling the arising ethical issues is challenging because
mitigation techniques incorporate numerous tensions and dilemmas that must be
carefully weighed between the complex interplay of actively and passively involved
stakeholders.

3.3.3 A Scenario in Police Intelligence Work

We construct a hypothetical scenario [Car99] of communication analysis within
police intelligence work using current but non-visual analytics software that acts as
a reference for our study of ethical challenges and emerging mitigation strategies.
The scenario focuses on the challenges and practices of police officers and investi-
gators as the main user community and points out other actors and stakeholders
(highlighted as SName ) in an exemplary way.

SMartin is a police officer at the organized crime unit of the federal police.
He currently investigates the selling of fake COVID-19 vaccination passports by an
alleged criminal organization named The Medics. The Medics offer the counterfeit
certificates to their S customers via the Telegrammessenger. Unknown to Martin yet,
SChris , SCarlos , and S Eggert are Medics members, also communicating with
their colleagues and suppliers via group Telegram channels while using pseudonyms,
sometimes coded language, and images. In their free time, they also communicate
with several friends, including their girlfriends, S Sarah and SMarta , who are
unaware of their business. Martin’s police unit gathers much information about
The Medics using traditional investigative methods. This information leads to the
identification of the suspect, Chris, who seems to be a low-level member of The
Medics. On one evening, Chris is found with blank vaccination certificates during
a traffic stop. He is arrested, and his phone is seized by investigator Martin, who
aims at using the information on the phone to track down the individuals pulling
the strings. After calling judge SRobert to get a search warrant, which is granted,
he then searches Chris’s unprotected phone, finds the Telegram communication,
and extracts it. He recalls that his superior, SDr. D , asked him to try out the new
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AutoCommAnalyzer software, which was recently purchased from the multinational
company AI-Tech Corp. The software purchase was part of a strong push by the
government to digitally optimize work processes at the police forces. Martin looks
at the training notes by the head developer SMolly , trying to remember how the
machine learning-driven software — trained with texts by SAlf and SBert —
is supposed to direct him to the relevant communication. The software presents
him with the most frequent contacts, with Sarah on top. He reads through this
communication, as the software has flagged several words like package and hospital,
discovering some explicit images but finding that the flags refer to a delivery package
and a hospital stay for a broken ankle. In a second chat, the AI highlighted several
currency amounts, and manually reading through it, it becomes clear that expensive
”stamps” have been sold. Luckily for him, many addresses and names are also
included in the chat messages. Searching for all chats that talk about stamp selling,
he also finds one with Carlos, including his last name, and one from a person called
Big E, which includes an address. Using the nationwide register, he finds a person
named Carlos, who used to be a roommate with Chris, and only one person named
Eggert is living at the found address. After completing his analysis, he finishes
his report and submits it for the trial. During the court proceedings weeks later,
Martin is questioned by judge SMuller on his findings. Ultimately Chris, Carlos,
and Eggert admit to their guilt and are sentenced for document falsification. The
intelligence gathered points to other alleged criminal networks and informs other
running investigations.

3.3.4 Conflicts of Interest between Different Stakeholders

A stakeholder analysis based on the previous scenario helps to identify, map and
describe the different actors and their roles involved in the scenario (see Figure 3.1),
with the interdependent individuals having potentially conflicting interests. We
propose four main groups of stakeholders: civil society, governmental authorities,
software provider, and data subjects. This categorization has to be understood as a
heuristic with possible overlaps and without claims of being exhaustive.

Data Subjects—Following the concept of data subjects defined by the GDPR [Eur16],
we consider the role of natural persons and their data ownership. Immediately
apparent becomes the role of the targets ( SChris ). In many cases, a target is
unknown, but one has a list of suspected targets ( SCarlos ), indicating a differ-
ent degree of certainty. One issue of communication analysis, however, is that
communication is not strictly separated and touches on many other data subjects.
These can be as of yet unidentified persons (e.g., the customers), but also third
parties (e.g., S Sarah ). With the use of machine learning, a fifth subgroup emerges,
the training data subjects ( SAlf and SBert ), whose data is leveraged as part of
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Figure 3.1: The stakeholders involved in communication analysis from the perspective
of intelligence analysis, with conflicting interests giving rise to ethical dilemmas. We
propose four main pillars of stakeholders: the civil society, the governmental authorities,
the software provider, and the data subjects, each with its own subgroups of stakeholders,
such as targets, developers, analysts, or NGOs.

training the weights in neural networks. Further conflicts of interest arise between
uninvolved third parties who usually (and rightly) do not want to be involved in a
privacy-invasive investigation, which can also apply to (unwitting) training data sub-
jects. A delicate issue are privacy considerations in the face of imminent suspicion:
while target subjects clearly do not want to be investigated either, the reasons and
justifications here differ substantially to those of uninvolved third-parties.

Governmental Authorities — In this specific type of intelligence analysis, the
opposite of the data subjects are governmental authorities, with their investigating
bodies. Here, because this applies to our setting, we assume a democratic political
system that follows a separation of executive, legislative and judicial powers. The
investigating bodies are primarily part of the executive, with police analysts (users)
( SMartin ) conducting the investigation, overseen by police leadership ( SDr. D )
and also controlled by regulators like data protection or compliance offices. The
judiciary, however, also plays a controlling role during preliminary investigations
( SRobert ), allowing for specific measures, for example, by issuing a warrant. Later,
it manages court proceedings ( SMuller ) and questions of legality can ultimately
be decided on a constitutional level. The third power, legislative, is not directly
involved in investigations but sets the boundary conditions for law enforcement
through regulations, usually through parliaments. The area of politics employs a
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ambiguous role in this case, influencing decisions but also constituting a part of the
executive. Conflicting fields can arise between all government levels. For example,
the top levels might put pressure on the bottom to produce results, promoting
automated analysis for its efficiency. Analysts, in turn, may use legally questionable
methods, the judiciary may be concerned about the failure of legal proceedings
in such cases, and regulators may be concerned about established practices that
run counter to the intentions of Parliament. A recently observed problem occurs
when the relationship between the system implemented as an assistant and the
sovereign analyst is reversed. This can lead to effects resembling defensive decision
making, where police officers intentionally make suboptimal decisions by following
the results of the machine ”assistants” even when they disagree. This is mostly
explained by pressure from ”above” and the need to protect themselves from redress
if something goes wrong [AAG19].

Software Provider — The software provider develops the tools officers use in
their investigations. Here, developers (e.g., SMolly ) implement the systems and
algorithms. In doing so, it is expected that they know not only the technical details
but also being aware of ethical implications. In contrast, the management has to
mediate between the investors/shareholders, usually following a profit interest, the
cost of implementing ethically flawless systems, and the pressure by the customers
(police) to develop usable, efficient and productive systems. It is important to note
that the software provider has typically no complete control over all aspects of a
software system, as typically external dependencies, models, or training data are
being used.

Civil Society — Civil society can materialize not only in the form of mass media
through its members, but also in the form of NGOs and human rights groups, arts
and culture, street protests, whistleblowers, ethics councils, and so on. As such, it
deliberates on what can be considered as acceptable ethical behavior in a given
society, which parliament follows (through elections), and which can change over
time. On the one hand, civil society can act as a corrective, for example, through
critical reporting by the press, or legal advocacy through NGOs or human rights
groups. Cases of unfair treatment, when entering the public agenda, can trigger
the revisiting of fundamental ethical questions (as in the case of the criticism of
the Northpointe recidivism algorithm and the debates it triggered about different
notions of fairness and justice [LA16; Spi17; Gre18]). However, mass media and public
deliberation can also proliferate misleading ideas about what algorithms can and
cannot do. These ”socio-technical imaginaries” [Jas15] have concrete implications
for how systems are being used, for the transfer and negotiation of responsibility,
as well as public acceptance [BK21].
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3.4 Mitigation Techniques through Visual Analytics

Addressing the ethical issues raised at the outset of this chapter and negotiating
the conflicting interest of different stakeholders is not a trivial task. Given all the
different stakes involved, ethically-aware design of intelligence applications can
not reasonably aim at implementing technical solutions to safeguard against all
possible pitfalls. Rather it seeks to accomplish a serious consideration and balanc-
ing of the inherent trade-offs and inter-dependencies between different concerns,
interests, and principles. For example, privacy-by-design may limit possibilities
for advanced accountability. It thus needs to be negotiated which good is more
important in each specific context and how to best achieve this. In doing so, we
propose a socio-technical approach, not looking at possible technical solutions in
isolation but as embedded phenomena, interacting with their environment [Suc07].
Human interaction with technology is shaped by increasingly sophisticated and
environmentally interwoven interfaces, connecting technical components, humans,
and their surroundings [PVV20]. Despite a rising appreciation of milieu-oriented
approaches to understanding and designing interfaces [AGV19], the development of
interfaces has traditionally been dominated by technical disciplines and, from an
ethico-political point of view, not sufficiently considered the complex socio-technical
dynamics at play [Hoo14; Gal12]. To fill this gap, it seems most productive to work
with an extended definition of the interface going beyond isolated, technocentric
meanings [LHKP22; Lip17]. We thus adopt the proposal to focus on ”interfacing” as a
joint practice of ”becoming-with” of humans, machines, and environments [Har17].
One could also call this process an intra-action [Bar14], in which something new
emerges, irreducible to its parts. Such an understanding leads to a more compehen-
sive understanding and appreciation of what needs to be considered when designing
user interfaces, especially in sensitive high-stakes areas such as communication
analysis of intelligence information.

3.4.1 Technical Measures

In the following, we investigate common interface design methods employed in
VA-based systems—the technical side—from an interfacing perspective—including
the political, responsibility, intra-active, and ethical—as part of an intertwined
becoming-with one another. When describing relevant aspects, we refer back to
the actors from the scenario in Section 3.3.3. As such, we identify areas where VA,
through its human agency approach, is superior to fully-automated systems while
also considering the additional burdens through the distribution of responsibility.
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Interactive Exploration — One key concept of VA is that instead of merely
generating results, such a system supports the knowledge generation process
of analysts by enabling them to learn from the data space through supported
interactions [KAF+08]. As part of this process, ethical mitigation techniques can be
integrated. In the context of communication analysis, we introduce some of the
critical aspects of VA by the example of Hyper-Matrix [FAS+20], a conversation topic
analysis and probability framework that uses a geometric deep learning approach.
In our hypothetical scenario, police analyst SMartin uses the software. Instead
of presenting lists of users and topics, it features an interactive design, shown in
Figure 3.2.

The developers, in our scenario SMolly , deployed amatrix-based visualization
B for the hypergraph network structure due to increased scalability, which repre-
sents model predictions through clustering and color-encoded by confidence. The
design can be considered as a form of dimensionality reduction [KP11], presenting
the complex tensor model in a more comprehensible format. This supports the
detection of patterns, while color-encoding facilitates pre-attentive understand-
ing, helping SMartin to distinguish between users communicating about similar
topics, like SChris and SCarlos . Further, a multi-level visual semantic zoom
through multiple, more detailed in-line visualizations, shown as insets D , allows
for a more-detailed exploration, preventing an initial mental overload of SMartin .
Steering is offered by interactive control elements A , allowing SMartin to set
methods, cutoffs, and thresholds, thereby granting him agency and creativity in his
usage of the system. Similarly, the system features elements from active learning
enabling SMartin to interactively modify the model C to create something new
and unique for the purpose at hand in the spirit of his analysis ”becoming-with“
the system. When using the system, the analyst explores the probabilities, refines
model parameters, investigates hypotheses, validates change effects as part of an
(indeed intra-active and) iterative analysis feedback loop.

The Machine Side - Analysis and Active Learning— An example of an intra-active
becoming of investigator and machine is active learning. Figure 3.3 shows how an
analyst provides labeled examples to the system improving its probabilistic accuracy.
Labeling everything is tedious and time-consuming when done manually by the
user. Here, intelligent labeling techniques can help by only requesting human
input when required, relieving analysts from exploring basic or irrelevant patterns
[Cor19]. This concept can be applied universally to any number of feedback mecha-
nisms between system and user, affecting data selection, machine learning models,
heuristic algorithms, or their parameters. Through active learning, SMartin can
integrate its experience-saturated as well as its domain-specific expert knowledge
into the analysis process, thereby sharpening the analysis result with regard to
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the field’s unique requirements. Methods such as color coding imply a form of
nudging through preattentive processing. Transparency, in turn, can be conveyed
by visualizing consequences and effects of the active learning approach (e.g., which
entries are subsequently classified differently and by how much). This corresponds
to a ”what-if” preview , which supports the selection process, but can also act as a
”control”, e.g., against unintended side effects.

The Human Side - Guidance and Explainability — Guidance describes the inter-
play between system and user actions and their understanding in the context of
machine learning, explainable artificial intelligence (XAI), and knowledge generation.
One form of guidance can manifest through the system: it can, depending on the
context, nudge the user in the right direction, for example, by showing similar
matches or conflicting options. In the context of learning and teaching, it exhibits
a wider dynamic, encompassing system teaching, user teaching, system learning,
and user learning. As a process, it can be described by the knowledge generation
model [KAF+08; SSS+14] and by the co-adaptive guidance process [SJB+20; SJB+21].
Different forms of guidance can be achieved by a visually abstract visualization as
well as conceptual user interaction design. For visualization, abstract representa-
tions like glyph [FIBK17] can be used for improved recognizability and comparability.
In communication analysis, commonly used representations are text, highlighting,
concept extraction, and network display. However, depending on the individual
needs, they may not suffice. During the design, the aim of the representation, the
selection of the appropriate visualization technique, the visual variables employed,
and the color-schemes used has to be considered. Inherent biases can play an
essential role, affecting values as social biases (e.g., homogeneity bias), actions
(e.g., blind spot or Ostrich effect), and perceptions (e.g., illusions or Weber-Fechner-
Law) [Ell18], both during development as well as usage. For interaction, instead of
filtering communication texts by keywords (the selection of which might be biased
or incomplete), a visual query language [FSS+21] can be used where conditions are
based on concepts. Here, the system may similarly suggest additional concepts for
differentiation or indicate a too restricted search. In implementing such interfaces,
care has to be taken regarding a neutral representation while considering the levels
of detail and abstraction [JSS+18]. Too much abstraction can lead to a loss of context.

Provenance — As systems become more complex and the number of available
interactions increases, the number and sequence of necessary steps during the
investigation expands rapidly, making it increasingly difficult to fathom and explain
them after the fact. In this context, while many systems focus on supporting the
process of knowledge generation, few also emphasize how this process is carried
out. [KM13; LAH20]. For reproducibility, which is crucial for accountability (see Section
3.4.2), knowing how analysts like SMartin used the system to draw conclusions
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(a) Manually supplying positive (green) and neg-
ative (red) examples to the system during active
learning.

(b) Classification model applied to communication
episodes after active learning improved filtering.

(c) Manually changing the connectivity strength for a hypergraph model entry through selection,
requesting a retraining of the contained machine learning model.

(d) Visualized changes in the model prediction (from negative to no to positive change). Before the
changes are either rejected or accepted, the system nudges the analyst to examine the results for
unintended side effects.

Figure 3.3: Examples of active learning in Conversational Dynamics [SFS+19] (a, b, see
Chapter 6) and Hyper-Matrix [FAS+20] (c, d, see Chapter 5).
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Figure 3.4: Example sketch of a provenance history component using a directed acyclic
graph (DAG) approach. Shown are individual branching steps with inline details instead
of a linear history, allowing for a more complete picture of the explored steps (1-9) and
reverting from dead-ends (3,4,7).

is essential, but this becomes increasingly complicated when iterative and intra-
active processes are involved. Instead of a linear timeline of steps or a list of
explored hypotheses, VA applications can store interaction chronicles in context
with the data, remembering settings, views, and actions. Through techniques like
time-stamping, hashing, and digitally signing information, the chain of evidence
becomes proof-able. As such, they can provide tamper-proof tracking as well as
replay functionality to revisit intermediate steps, while also enabling approaches
like provenance graphs as shown in Figure 3.4, strengthening the chain of evidence
for both analysts and subjects.

3.4.2 Balancing Advantages and Risks Through the Interface

In the following paragraph, we identify advantages (A1–A6) but also the limitations
and risks involved in using visual analytics for the analysis of intelligence data. To
do so, we refer back to the various challenges and conflicts identified in Sections 3.2
and 3.3.

A1. User Agency — One key benefit of Visual Analytics (VA) methodologies is
enhancing user agency, raising awareness against unverified, machine-generated
results. Preventing this blind obedience is particularly important due to the often
unrealistic expectations towards automatic solutions that many users exhibit. VA
rectifies the imbalance and levels the playing field between user and system by
forming a con-genial joint agency that promotes collaborative growth instead of
displacement or rivalry. This can be attributed to the approaches inherent design
favoring cooperation over a built-in hierarchy. Moreover, in scenarios where human
analysts might deviate from system-suggested outcomes, instead of fostering a
binary decision-making process, the concept of explainability can enable analysts,
like SMartin , to reconsider their own actions and inputs that impact the outcomes
of the system through active learning. This can eventually contribute to pinpointing
dead ends in the analytical process.
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A2. Privacy — Guidance mechanisms enable the partial avoidance of privacy
concerns as selective presentations permit system-based management, for example,
in relation to uninvolved third parties, ensuring the personal life of individuals, like
S Sarah , remains protected from actual humans if not unmarked through active
confirmation.

A3. Fairness— Compared to systems trained exclusively on past criminal records,
employing visual analytics for dealing with heterogeneous data has advantages:
The former often contain harmful racial, gender, and other biases, thus reinforcing
historically developed power structures [LI16]. VA empowers analysts to scrutinize
the reasoning process and apply corrective actions using their domain knowledge
or common sense.

A4. Efficiency — Big data-oriented VA can illuminate operational dynamics,
unveiling previously undetected correlations [MC13]. Beneficial abstractions and
robust analytical capabilities can be suggested by visual analytics systems, effi-
ciently assisting investigators in identifying subtle patterns, the literal needle in the
haystack. Nevertheless, each design developed for enhanced efficiency needs to be
evaluated for possible risks regarding misinterpretation and oversimplification.

A5. Literacy — VA motivates users to actively and innovatively interact with and
utilize the systems, enabling advanced literacy through consistent practice. This
acquired literacy can then be disseminated among colleagues and other users, for
instance, via the integrated sharing of recipes through VA systems (e.g., Common
actions here are…).

A6. Customization — The development of bespoke solutions over one-size-fits-
all approaches is supported by active learning. Generic one-fit solutions often
disappoint and under-perform in combating organized crime, necessitating highly
localized and specialized strategies, alongside in-depth domain knowledge of
seasoned, highly skilled experts [Pao02]. As intentionally employing a nonlinear,
swarm-like approach is the exact strategic tactic of organized crime, this requirement
is no coincidence but rather a typical artifact. They aim to confound investigators
and thwart pattern-based strategies, which equally apply to systems. In such
scenarios, the input of seasoned experts familiar with these tactics is paramount.
Hence, technical solutions that combine efficiency-boosting automationwith human
criminological expertise to create custom solutions hold the potential for significant
advancements. Moreover, it is vital for systems to possess the capability to adapt
dynamically to evolving conditions and environments.

3.4.3 Risks, Limitations and Additional Measures Required

Similarly, we identified risks (R1–R5) and limitations and imperative measures:
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R1. Lack of Accountability — Accountability (C6), which virtually always requires
reproducibility, presents a substantial challenge. This is because visual analytics
uses interfacing, where attributing responsibility for possibly flawed outputs be-
comes exceedingly complex: Due to the intertwined nature and the joint becoming-
with one another of an analyst’s knowledge and the system’s analysis, delineating
and attributing cause and effect is nearly impossible. The elements to consider
are not merely the precise software versions, the initial seeds of pseudo-random
generators for non-deterministic algorithms, or the exact data utilized during train-
ing. Detailed information regarding how analysts, such as SMartin , interacted
with the system is equally significant. Merely presenting the final analysis is insuffi-
cient, given that SMartin ’s decision-making process was not strictly sequential
but influenced. Learning and refinement occurred throughout the process, and
someone in a reviewing role, like judge SMuller , would want assurances that all
plausible hypotheses were considered rather than neglected or even purposefully
ignored. Hence, advanced provenance methodologies in VA designs are essential
for providing accountability.

R2. Training and Community-Building Among Users — The assumption that
users like police officers inherently possess the requisite knowledge to comprehend
the particularities of ML and VA systems, their potential limitations, and ongoing
development are certainly misplaced. Developers, for example, SMolly , face the
challenge of expending considerable efforts to provide understandable explanations
about the workings of the system while also training users for its effective and
critical usage. Ideally, such training should evolve from a unilateral how-to-use a
feature to an interactive process involving both software providers and analysts,
such as SMartin , and also happen among the analysts themselves (perhaps
through design studies). Potential strategies and directions that can be taken
include privacy-preserving gamification [SHMK14] elements, for example, practical
challenges and tasks, within the visual analytics system as well as online discussion
forums that promote constructive critique and socially negotiate risk and limitations.
However, the introduction of new software also alters power structures [Hen91],
possibly favoring digitally more literate younger officers and marginalizing veteran
investigators [KEL18]. To preserve the invaluable experiential knowledge of these
seasoned investigators, it is worth considering technical solutions that incorporate,
rather than exclude, these qualitative dimensions.

R3. Prevent Automated Inequality — Active learning may inadvertently enable
the integration of individual or institutional racism due to unconscious biases of
those influencing and steering the learning process [Ell18]. This risk is particularly
critical in collaborative solutions, which transfer substantial training and design
responsibility to investigators and officers. Given alarming research on unconscious
racial and sexist biases prevalent among police forces [KES20; FBBP16; Fra05; PP05],
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this risk requires further counter- and control measures and awareness regarding
these potential issues must be raised. Human in command solutions involving active
learning or automation based on user input, exemplified by SMartin , should only
be implemented and deployed following extensive anti-discrimination training and
education. Similarly, system developers, such as SMolly , may also inadvertently
introduce biases into the system through a flawed design or through incorrect
assumptions. Therefore, incorporating mitigation measures at the VA system level
itself is especially beneficial, as it pays off through the disseminator effect.

R4. Facilitating Critical Reflection — The user interface, controlled through the
system, should actively encourage moments of reflection [Bau15]. Such reflective
moments (e.g., through nudges) can aid users in identifying their unconscious bi-
ases during their interaction with the system. For example, warning signs can be
displayed after a user repeatedly performs allegedly racist or sexist search queries
before such queries are blocked behind confirmation prompts [WSE19] or requiring
secondary sign-offs. These prompts, of course, have to be accompanied by trans-
parent explanations. On the opposite, reflective moments may also enable users to
challenge the system’s outputs and decisions [WSE19]. Here, investigators support
a critical analysis of the software itself. By incorporating reflective design [SBDK05],
users are better equipped to both interpret the active learning process and evaluate
system results, thus fostering a critical use of the software as well as improving
technical literacy.

R5. Human Oversight — In light of the risks discussed above, support for shared
responsibility and joint agency between analysts and systems is crucial but ulti-
mately must be supplemented with additional layers of human oversight. Regular
reviews of system training are essential for ensuring fairness, especially towards
protected (minority) groups. An effective VA provenance system can track individual
users who interact and incorporate changes through active learning while simultane-
ously safeguarding their identities. This facilitates a critical discussion of problem-
atic decisions among colleagues and authorities in a safe environment without the
fear of repercussions. Leadership roles, such as SDr. D , could then validate the
extent of bias within their organizations in a privacy-respecting manner. However,
care must be taken not to create a culture of control where experienced officers
feel under constant surveillance on their own and stripped of their agency [KEL18]

3.4.4 Negotiating Risks and Advantages Through the Interface

Visual Analytic systems can be considered a distinctive type of interface-oriented
solutions, representative of a data infrastructure platform that facilitates the acqui-
sition, manipulation, utilization, and storing of information, along with associated
metadata, sourced from heterogeneous origins. Such interactive, user-centered real-
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time approaches have the potential to counterbalance inherent biases concealed
within fully automated systems due to being trained on imbalanced, problematic,
or ”dirty” data or datasets that are otherwise insufficient. Yet, inadvertently, these
systems can also accentuate discriminatory biases, thereby increasing the responsi-
bility of the users. As a consequence, the implementation of in-process fairness
measures has become increasingly necessary to counteract these issues. Simi-
larly, ensuring traceability and untampered provenance of the genesis process is
extremely relevant. This enables accountability in instances of misuse and, when
fairness violations are detected, to trigger appropriate retraining procedures. Fur-
ther, the demand for transparency must be balanced with privacy considerations,
assuming a certain degree of abstraction. Nevertheless, operational success still re-
lies on adequately trained personnel, at least to some degree. Compared to manual
analysis through separate modalities or a fully-automated process, interactive visual
analytics can be designed with built-in ethical considerations, encompassing the
entire knowledge generation process. This approach considers and manages user
expectations in line with technical capabilities (C4), counters system opacity (C3),
and adheres to privacy requirements (C2). Multiple stakeholders exercising human
oversight (C5) can help identify instances of discrimination (C1). Concurrently, the
automatic collection of tamper-proof provenance about both the system and the
human operators enables visual analytics systems to bolster trustworthiness and
accountability (C6).

3.5 Conclusion

We have shown in detail how various VA methods can address ethical challenges
in advanced analytical systems. While we have highlighted concrete points to
consider, we do not intend to present a fixed set of rules for the ethically conscious
design of VA systems. Indeed, in our view, this is always a matter of negotiating
trade-offs between conflicting interests, which can vary widely depending on the
unfolding interaction dynamics. Therefore, we aim to stimulate a discussion about
the consideration of ethical implications as an integral part of the design process
from the outset.

Although we focus on the case of intelligence applications, many of the results
of our work and the ethical discussion are more generally applicable to the design
of VA applications. This is because, on a more abstract level, our approach leads us
to the insight that one of the main advantages of VA methods is that they take the
interface as a starting point for technological innovation. This means that innovation
is approached not only in a technical, but rather in a socio-technical way. Useful
innovations cannot exist in isolation and should pay attention to their impact on
communities and society as a whole. This shifts the focus to embedding technologies
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into existing social institutions such as police departments and criminal justice
agencies. Here, new technologies are most useful when combining the benefits
of efficiency-enhancing automation with the experience-saturated knowledge of
investigators. Concentrating on the interface has obvious advantages, as it implies
a focus on the situated nature of human-computer-configurations.

By capitalizing on instead of trying to stabilize the potential openness, and thus
eventfulness of technological interconnectedness, undesirable dynamics can be
dealt with much more proactively, while flexibly addressing the situational and
individual needs of different cases. The issue is not only what interacts with whom,
but also how new phenomena emerge as part of complex intra-active configura-
tions of people and automation systems. Discriminating behavior of individual
investigators, for example, might not affect the functioning of the police force as a
whole. When multiplied and cemented in automation processes, however, it can
contribute to structural discrimination and patterns of unfair treatment on a larger
scale. By responding transparently to investigator input, VA can help well-meaning
analysts recognize their often unconscious biases by showing them how harmful
social stereotypes sometimes cause them to overlook features and stumble down
blind alleys.

To avoid risks and increase benefits, it is important to keep in mind that in-
terfacing is not simply the matching of two separate entities, but the creation of
something fundamentally new, a hybrid of human and machine. This hybrid re-
quires tailored quality insurance measures such as adapted training, new forms of
oversight involving technical, legal, and ethical experts, and also adapted policy
and ethical frameworks that focus not solely on the technologies or on the user,
but on what emerges as something new in the interaction between these entities.
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If it disagrees with experiment, it’s wrong. In that simple statement is the key to
science. It doesn’t make any difference how beautiful your guess is, it doesn’t
matter how smart you are, who made the guess, or what his name is. If it
disagrees with experiment, it’s wrong. That’s all there is to it.

— Richard P. Feynman, Physicist
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When investigating the communication be-
havior of more than two parties, the participants
can be modeled as a (social) network. Such a
network is usually represented through the use
of graphs. However, regular graphs encounter
difficulties accurately reflecting multi-party com-
munications about multiple topics in a complex
context, which is the default case in any reason-
able real-world scenario. These shortcomings
of graph modeling are common for polyadic interaction processes in a wide range
of domains, ranging from gene interactions in biology to traffic networks. As such,
these processes can be modeled more precisely as (temporal) hypergraphs than as
regular graphs. This is because hypergraphs generalize graphs by extending edges
to connect any number of vertices, allowing complex relationships to be described
more accurately and allow for a more detailed prediction of their behavior over
time.
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However, interactive visualization methods for hypergraphs and hypergraph-
based models have rarely been explored or systematically analyzed. This chapter
reviews the existing research landscape for hypergraph and hypergraph model
visualizations and categorically analyzes the existing approaches. With respect to
comparison criteria, we focus on application scenario—both conceptually and from
a technical side—scalability, interaction support, and evaluation methods.

This chapter is based on the publication [FFKS21] andmajor parts of the following
sections have appeared in:

• [FFKS21]: Maximilian T. Fischer, Alexander Frings, Daniel A. Keim, and
Daniel Seebacher. “Towards a Survey on Static and Dynamic Hypergraph
Visualizations”. In: 2021 IEEE Visualization Conference (VIS). IEEE, 2021,
pp. 81–85. doi: 10.1109/VIS49827.2021.9623305.

For a statement of the scientific contributions, as well as the division of respon-
sibilities and work in this publication, please refer to Chapters 1.2 (p. 22ff) and
1.3 (p. 26ff), respectively.

4.1 Hypergraph Visualizations

Hypergraphs are an extension of graphs, allowing edges to connect more than two
nodes. Mathematically, a graph 𝐺 = (𝑉 ,𝐸) is defined as a pair with 𝑛 vertices
𝑉 = 𝑣1, .., 𝑣𝑛 and a set of paired vertices 𝐸 ⊆ {(𝑎, 𝑏) ∣ (𝑎, 𝑏) ∈ 𝑉 2, 𝑎 ≠ 𝑏} forming
the graph edges. In contrast, an undirected hypergraph 𝐻 = (𝑉 ,𝐸) is a pair where
the vertices (defined equally) are connected through a multi-set 𝐸 = 𝑒1, .., 𝑒𝑚
that form 𝑚 distinct hyperedges [Ber84], which may connect arbitrary vertices
(usually ≥ 2 vertices). This is a desired behavior for modeling complex, multi-entity
processes as it allows to capture mutual dependencies more accurately and logically
separated [KHT09], efficiently encapsulating group dynamics [VBP+19]. Especially for
group structure capturing and sub-group combinations, as they can occur in the
context of human communication and social media data, hypergraphs can provide
advantages [OSH+07]. As such, the modeling through hypergraphs has received
increasing research interest in the last few year [WXLW07; VBW17], as continuing with
the general concept of (hyper-) graph modeling allows to continue using concepts
like edge attributes or weights and many graph algorithms.

However, the more complex representational difficulty of hypergraphs brings
along several visualization challenges [HC14a]. Traditionally, Venn or Euler diagrams
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have often been employed to visualize hypergraphs [JP87; Mäk90; BE01]. However,
these conventional visualization methods often use color to differentiate between
hyperedges, which limits their scalability significantly. Consequently complex or
large-sized hypergraphs are virtually impossible to meaningfully visualize using
Venn or Euler diagrams.

Even with these challenges existing, recent developments have shown an in-
creased interest regarding network relations and their temporal development, giving
rise to the concept of temporal (or dynamic) hypergraphs. This extension further
adds a temporal dimension to (hyper-) graphs, allowing for the comparison of net-
work states at different time intervals. As such, they pose an additional challenge
for the employed visualization techniques to capture both the structural intrinsics
as well as the temporal dynamics.

Despite the overall advancement in this research area, elaborated hypergraph
visualizations are still relatively novel and not thoroughly explored yet. There
is a lack of detailed comparisons between different approaches, and this gap
underscores the need for a systematic exploration of hypergraph visualization
methodologies to be aware of their respective strengths and weaknesses. To address
these issues, we present a survey of hypergraph visualizations, making the following
contributions:

Co
nt
rib
ut
io
ns � A systematic literature review of existing approaches for static and

dynamic hypergraph (model) visualization.
� A methodology for comparison criteria between hypergraphs, critically
assessing the different approaches.

With this survey, we aim to provide insights into the existing research landscape
of generic hypergraph visualizations.

4.2 Related Work

Hypergraph visualizations, despite being known for some time in the form of Venn or
Euler diagrams, have so far not been systematically explored and lack a comprehen-
sive review of the methodologies employed, alongside their respective advantages
and limitations. Due to its partial relatedness to set- and association graph visual-
izations, we also consider such surveys as a starting point. Relevant works have
been produced by Alsallakh et al. [AMA+16] and Chen et al. [CGZ+19] for sets, while
several overview reports exist for graph visualizations [VBW17; BBDW17].

Alsallakh et al. [AMA+16] provided a seminal paper on visualization options
for sets. Their work covers a variety of approaches, but many are adaptations
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or enhancements of Euler and Venn diagrams, such as BubbleSets [CPC09]. It is
important to note, however, that not all of these methods are applicable to generic
hypergraphs due to their domain-specific nature. Chen et al.’s survey [CGZ+19]
instead explores association relationships in graphs. Nevertheless, it still retains a
focus on set-relations. They provide a balanced analysis of different visualization
technique and focus on relational data. As part of their survey, they investigate two
visualization methods for hypergraphs: first an radial layout designed by Kerren et
al. [KJ13], and second a fixed-node visualization presented by Xia et al. [XLH+11].

In relation to graph visualizations, the survey by Vehlow et al. [VBW17] presents a
visualization technique taxonomy. They differentiate between visual node attributes,
superimposed, juxtaposed, as well as embedded visual styles. The shift towards
dynamic graphs highlighted before becomes more noticeable in recent surveys,
such as the one conducted by Beck et al. [BBDW17]. They categorize dynamic graph
visualizations into animated node-link diagrams and timeline structures, noting a
trend towards the use of timelines in the literature.

While some concepts and taxonomies can be applied to hypergraphs, short-
comings of these existing surveys relate to their relative old age, their incomplete-
ness and their lack of addressing more recent hybrid approaches [SAKW19; VBP+19;
FAS+20], which do not always fit well within the established criteria. These more
recent approaches, like PAOHvis by Valdivia et al. [VBP+19], the first representation
of dynamic hypergraphs, a hybrid visualization for dynamic hypergraphs by Streeb
et al. [SAKW19], as well as Hyper-Matrix by Fischer et al. [FAS+20] underline the
importance and potential of further research in this area.

4.3 Methodology

To analyze state-of-the-art approaches on hypergraph visualizations, we conducted
a search of relevant literature before collecting further approaches via cross-
references. We aim to analyze visualization literature that applies to hypergraphs as
well as hypergraph-based models, and those techniques that focus on representing
the inner connectivity of hypergraphs, which can be leveraged in the visualization.

4.3.1 Source and Selection Methodology

Orienting ourselves on semi-automated literature surveys, such as the one of Sacha
et al. [SZS+17], we started the paper collection process using a keyword-based search
for “hypergraph”, as well as common variations like “hyper-graph, hyper graph, ...”.
To further streamline the focus of our survey, we consider only approaches from
the following high-quality journals and conferences within the last 23 years (since
2000):
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Manual
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Cross-
References

26 9 13
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Figure 4.1: The paper collection process consists of three main steps: (1) Automated filtering,
(2) manual filtering, and (3) cross-referencing.

• IEEE Transactions of Visualization and Computer Graphics (TVCG, including
the IEEE VIS proceedings)

• Computer Graphics Forum (CGF, including the EuroVis proceedings and EuroVA)

For the actual paper selection methodology, we follow a three-step approach (see
also Figure 4.1). Automated filtering resulted in five (TVCG) and 21 (CGF) approaches;
manual filtering reduced this first to three and ten, while in a second iteration after
careful considerations, to three and six, i.e., nine approaches. Using cross-references
and survey data, we identified an additional four relevant approaches, leading to 14
approaches in total, which we compare using the following comparison framework.

4.3.2 Comparison Framework

We describe seven comparison criteria covering some aspects common to graphs
and some favoring aspects specifically designed for hypergraphs. We curated
this selection based on an adapted combination of criteria based on existing
surveys [VBW17; BBDW17] as well as aspects discussed in the literature [VBP+19;
FAS+20], and complemented them by additional distinguishing criteria.

Representation Method The representation method determines the basic visual-
ization type, where existing approaches can be classed as either node-link diagrams,
timeline-based techniques, or matrix-based approaches.

Scalability Scalability varies significantly between the different visualization
approaches. For easier comparison, we chose five distinguishable scalability levels:
very low scalability (�����, less than ten nodes or hyperedges), low scalability
(�����, between 10 and 50), medium scalability (�����, between 50 to 200), high
scalability (�����, between 200 and 1000), and very high scalability (�����, more
than 1000). Many basic representations are only applicable when there are only a
limited number of vertices and hyperedges. Further, they are prone to clutter for a
higher count of edges, whereas different techniques perform better.

Static vs. Dynamic Any meaningful analysis of dynamic processes usually re-
quires support for displaying dynamic (i.e., temporal) data (�) in contrast to static
(�) information. The methods employed in the presented approaches differ widely,
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but many are still limited to some degree. Options used are highlighting employed
at different stages, direct comparison, but also just a simple timeline.

Interactivity Some visualizations only represent a static rendering and do not
offer any kind of interactivity (�), while others allow the visual representation or the
underlying model to be tuned (�) and adapted interactively, for example through
filtering, rearranging, or highlighting. This can be leveraged for a coherent represen-
tation, guide the analysis workflow, or represent information in a comprehensive
framework.

Tasks The strength of an approach can often be better judged by a description
of the tasks that it aims to support or the presentation of possible use cases in
a specific domain. If the corresponding paper contains such tasks definitions or
describes possible usage scenarios, we note this as part of this category.

Evaluation Evaluating the design concepts together with experts has become
increasingly important in recent years. This avoids the creation of problematic
approaches that encounter usability and applicability issues in practice. Such
evaluations can either come in the form of comparative evaluation ( ) between
related approaches, a convincing case study describing a possible domain-specific
application scenario in detail, as well as an user-based qualitative or quantitative
evaluation study. Conducting no evaluation at all (-), which was common a few years
ago, is relatively rare by now. Some papers describe case studies ( ), while others
conduct user studies ( ) with participants. In many cases the users interviewed
are domain experts and the studies are often qualitative evaluations. There, they
conduct analytical tasks, while quantitative evaluations are rare.

4.4 Literature Survey

In the following comparison, we group the approaches by their representation
method, while the order within each category is chronological.

4.4.1 Node-Link-based Approaches

In the following, we describe node-link-based approaches, which are visually de-
picted in Figure 4.2.

Bubble Sets Collins et al. [CPC09] use isocontours which are overlayed over
connected existing elements (see Figure 4.2a). Conceptually, this is very similar to
the colored hulls used in an Euler diagram. However, to generate the isocontours,
they employ a marching square algorithm. The visualization itself is static, but
nodes can be moved and added or deleted.

Software Artifact Hypergraph Visualization Kapec et al. [Kap10] describe a
software development and programming environment that represents individual
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(a) Bubble Sets by Collins et
al. [CPC09]

(b) Software Artifact Hypergraph
Visualization by Kapec et
al. [Kap10]

(c) EGAN Hypergraph Visualiza-
tion by Paquette et al. [PT11]

(d) Kelp Diagrams by Dinkla et
al. [DvSW12]

(e) Radial Representation by Ker-
ren et al. [KJ13]

(f) Visual Analysis of Set Re-
lations in a Graph by Xu et
al. [XDC+13]

(g) Extra-Node Representation
by Ouvrard et al. [OLM17]

(h) SimpleHypergraphs.jl by An-
telmi et al. [ACK+20]

(i) MetroSets by Jacobsen et
al. [JWKN21]

Figure 4.2: Node-link-based approaches for (temporal) hypergraph visualizations.

functions, their source code. To enable efficient navigation and understanding of
the relationsships, the software artifacts mutual dependencies are modeled through
hypergraphs (see Figure 4.2b). These are represented using a force-directed 3D
layout with colored spheres to differentiate between callees and callers.

EGAN Hypergraph Visualization Paquette et al. [PT11] present an extensible
visualization for sorting and classifying gene lists (see Figure 4.2c). The method
which they named Exploratory Gene Association Networks (EGAN) is based on a node-
link-based approach but introduces a distinct association meta-node that connects
with each relevant entity, similar to the concept of hyperedges. Consequently, this
method can enhance the scalability in comparison with color-based methods, while
still maintaining similarities to node-link representations.

Kelp Diagram Dinkla et al. [DvSW12] augment the idea of colored-hulls and
bubble-maps through the utilization of overlapping lines, node coloration, and vari-
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able link thicknesses (see Figure 4.2d). Their approach is primarily non-interactive
and is intended for stationary geospatial applications due to its constrained scalabil-
ity. An evolutionary successor, KelpFusion [MRS+13], aims to mitigate clutter through
a combined hull and linear set representations as well as enhanced computational
efficiency.

Radial Representation Kerren et al. [KJ13] introduce a novel layout paradigm
in which hyperedges are depicted as circular dotted lines encircling centrally po-
sitioned nodes (see Figure 4.2e). This arrangement eliminates overlaps and can
enhance the scalability, but still represented a constrained layout of node-link
connections. The approach offers several interactive features, including filtering,
highlighting groupings, and link modification. Some aspects like labeling or graph
comparison are missing, but discussed as potential extension. The approach itself
was evaluated through a small-scale user study.

Visual Analysis of Set Relations in a Graph Xu et al. [XDC+13] base their visual-
ization on classical node-link diagrams, which they extend through a glyph-based
overlay technique (see Figure 4.2f), while also using colored connectors. While they
aim to visualize the set relations and node (path) distance in graphs, no interaction
concepts are present and scalability of their approach is severely limited.

Extra-Node Representation Ouvrard et al. [OLM17] introduce an enhanced ap-
proach for converting hypergraphs into node-link representations by introducing
artificial so-called extra-nodes (see Figure 4.2g). These extra-nodes consolidate
and merge multiple edge connections, thereby preserving increased context while
simultaneously reducing visual clutter. The applicability of their approach is shown
through an extensive user study.

SimpleHypergraphs.jl Antelmi et al. [ACK+20] developed SimpleHypergraph.jl as
a hypergraph visualization framework (see Figure 4.2h). It uses a combination of
Julia, Python and D3.js, supports only limited interactivity, and the overall idea is
slightly reminiscent of EGAN [PT11]. From a visualization perspective, a convex hull
encompasses nodes, while hyperedges are represented as sub-graphs. The main
contributions here are in providing a library for drawing hypergraphs with some
slightly improved visual properties, but not a completely new visualization design.

MetroSets MetroSets by Jacobsen et al. [JWKN21] focuses on geospatial and train
network data (see Figure 4.2i). It is one of the few approaches capable to support
temporal data, which is mapped to a time axis. However, the design leads to much
visual clutter through the enforced constraint on angular separation. The approach
support different interaction modalities like filtering and highlighting, but is missing
aspects live free movement.
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4.4.2 Timeline-based Approach

In the following, we describe timeline-based approaches, which are visually depicted
in Figure 4.3.

(a) TimeSets by Nguyen et
al. [NXWW16]

(b) PAOHvis by Valdivia et
al. [VBP+19]

(c) Set Streams by Agarwal et
al. [AB20]

Figure 4.3: Timeline-based approaches for (temporal) hypergraph visualizations.

TimeSets Nguyen et al. [NXWW16] introduce an approach which in parts reminds
of KelpFusion, using color for hyperedge representation, but involves a stacked
timeline view (see Figure 4.3a) with various interaction techniques. A shortcoming
is the limited scalability of the approach. The technique itself is evaluated through
a case study and evaluated through several users.

PAOHvis Valdivia et al. [VBP+19] present PAOHvis, which employs an ordered
timeline (see Figure 4.3b). This timeline follows a grided pattern extending along
in vertical direction to represent hyperedges: Hyperedges are therefore visualized
through vertical lines connecting multiple nodes. In case the available space
is limited, they use drip nodes as placeholders. Their approach is built upon
earlier research [VBP+18], uses space rather efficiently, features multiple interaction
modalities, and facilitates the analysis of related hyperedges.

Set Streams Agarwal et al. [AB20] describe an approach that uses branching and
merging information streams in a timeline view (see Figure 4.3c). This process aims
to depict dynamic set membership and is conceptually similar to some braiding
statistic visualizations in theoretical physics. The technique allows for different set
operations and is relatively scalable. The authors validate this approach through a
case study and an expert study.

4.4.3 Matrix-based Approach

In the following, we describe matrix-based approaches, which are visually depicted
in Figure 4.4.

Visual Analytic Framework for Dynamic Hypergraphs developed by Streeb et
al. [SAKW19] present a glyph-based matrix view (see Figure 4.4a) to support temporal
data through the use of inline timelines. The scalability is limited and interaction
support is basic.
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(a) Streeb et al. [SAKW19] (b) Hyper-Matrix by Fischer et al. [FAS+20]

Figure 4.4: Matrix-based approaches for (temporal) hypergraph visualizations.

Hyper-Matrix Fischer et al. [FAS+20] propose Hyper-Matrix (for a detailed discus-
sion, see the next Chapter 5) as the most recent visualization method. It employs a
six-level matrix-based representation to visualize dynamic hypergraph structures
(see Figure 4.4b). The system internally uses a geometric deep learning model and
the visualization supports multiple filtering, grouping, and interaction mechanisms
like matrix-reordering, or hierarchical grouping. The approach is evaluated in a
comparative evaluation as well as an expert evaluation and features the direct
integration of domain knowledge into the underlying machine learning model.

4.5 Comparison and Analysis

In the previous section, we analyzed the current state of hypergraphs and hypergraph
models visualizations, which we briefly summarized in Table 4.1. There, we illuminate
the shared commonalities between the techniques, while we aim to work out the
differences between them in more detail in the following. We observe a clear trend
in hypergraph visualization techniques: more recent approaches highlight advanced
interactivity and dynamic support. Similarly, conducting user studies has become
more prominent over time, reflecting an increasing emphasis on user-centered
design and user requirements.

Most hypergraph visualizations are based upon node-link diagrams and employ
standard graph drawing techniques through the use of (colored) hulls or with
specially crafted nodes. The node-link-based approaches generally can only scale
to hyperedge counts ranging from a few (like in Venn diagrams) to several dozens.
On the contrary, timeline- and matrix-based approaches demonstrate an increased
capacity, managing medium- to large-sized data-sets with several hundred nodes
and hyperedges.

A three-dimensional, scalable model is presented by Kapec et al. [Kap10] stands
out as an early approach in this direction, which can add some valuable information.
However, from the visualization perspective, the different components use colors
and shapes overlayed on their sub-graphs to denote node affiliations, which is still
similar to the original ideas.
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Node-link methods often come with limitations: Some struggle to present a
clear structural overview due to their dependence (overlapping) projections, while
others conduct irreversible transformations that can incur an information-loss.
Interactive ways to alter the visualization primarily involves changing either the
position or the viewpoint of the model. A critical constraint for many methods is
scalability, as they quickly become unreadable with increasing complexity. While
some approaches try to partly mitigate this through use of artificial nodes or
constraint on the arrangement, none can fundamentally escape these constraints,
except when involving very particular domain adaptions like Kelp-diagrams [DvSW12].

All advanced techniques include standard interactions such as highlighting.
MetroSets [JWKN21] stands out by offering labels for both nodes and hyperedges
and providing support for dynamic data.

The most common tasks are the search for nodes in the visualization [Kap10;
PT11; DvSW12; KJ13; XDC+13; NXWW16; SAKW19; VBP+19; FAS+20; JWKN21] and the deter-
mination of communities/memberships as well as connected components [PT11;
DvSW12; XDC+13; NXWW16; SAKW19; VBP+19; ACK+20; AB20; FAS+20; JWKN21], some-
times to determine their size [NXWW16]. Other common techniques are membership
queries [CPC09; PT11; XDC+13; NXWW16; SAKW19; VBP+19; FAS+20] and the tracing of
connections [CPC09; KJ13; NXWW16; VBP+19; AB20; FAS+20; JWKN21]. This path follow-
ing is sometimes extended to determine implicit shares and overlap [XDC+13] as well
as random walks [ACK+20]. Less frequent tasks are filtering based on external fac-
tors [KJ13; AB20; FAS+20], evaluating the readability [NXWW16], classification [AB20],
and change detection in models [FAS+20].

Matrix-based visualizations are regarded more capable with respect to scala-
bility, which is beneficial for highly correlated datasets. Due to their structured
layout, interaction is often more consistent. Among the matrix-based techniques,
the PAOHvis approach [VBP+19] stands out with its vertical timeline representation
of hyperedges, where nodes act as coordinates. The underlying data is visualized
through different time-representing layers or by the use of tags. Meanwhile, the
most recent technique, Hyper-Matrix [FAS+20], maintains ease-of-use while placing
greater emphasis on analyzing connections and correlations. Furthermore, it broad-
ens the concept, providing a generic blueprint for visualizing hypergraph models via
an innovative architecture and multi-level visualization technique. This is described
in detail in the next Chapter 5.

4.6 Discussion and Future Work

Despite the recent advances in the field, there are still several unexplored oppor-
tunities for future research. First, current node-link-based approaches, and even
advanced timeline [AB20] and matrix [FAS+20] representations, face limitations in
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scalability, only supporting up to approximately a thousand nodes or edges. Inno-
vative solutions to enhance scalability, such as the use of extra-nodes [OLM17], the
application of aggregation and subsetting techniques, or the development of dense,
domain-specific representations, require further exploration.

Second, only a fewmethods provide support for temporal (dynamic) hypergraphs,
and this support is often tailored to specific use cases. In particular, support for
many time steps is particularly scarce. Researchers could be inspired by concepts
developed for dynamic network visualizations [CSJ+20] and explore how they can
be adapted and applied in the context of hypergraph visualizations.

Finally, a significant gap is the absence of a standard benchmark dataset and
established performance metrics for hypergraph visualizations. This hinders com-
parison and evaluation of different approaches. Similarity, there is limited discus-
sion [VBP+19; FAS+20] regarding specific tasks in hypergraph visualizations. Future
research should aim to develop standardized metrics, benchmark datasets, and
expand the formalization of hypergraph-specific tasks.

4.7 Conclusion

In the last decade, problem modeling through hypergraphs has gained much atten-
tion. While some visualization methods have been proposed, there is a noticeable
and increasing gap between applied hypergraph research and their visualization.
By surveying the existing approaches for hypergraph (model) visualizations, we aim
to structure the research space. We first argue for the relevance of such a survey by
analyzing existing literature before defining a reproducible paper selection process.
Then, we systematically structure comparison criteria before presenting the tech-
niques individually. We discuss the particularities of each technique individually,
before coding it, and finally discuss in detail the observations in relation to the other
approaches. We find that many visualizations do not leverage the full potential of
hypergraphs and are limited in scalability, interactivity, or the support of dynamic
hypergraphs. Of the three most promising and generic techniques, PAOHvis [VBP+19]
and Set Streams [AB20] are both timeline based. However, matrix-based approaches
offer unparalleled opportunities regarding scalability, which we address as part of
Hyper-Matrix [FAS+20], discussed in detail in the next Chapter 5.

By filling this gap with an overview of hypergraph visualization methods, we aim
to provide researchers with a standard reference, promote areas for future work,
and set the baseline for a more in-depth survey on hypergraph visualizations.
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The great enemy of communication, then, is the illusion of it. We have talked
enough: but we have not listened. And by not listening we have failed to con-
cede the immense complexity of our society—and thus the great gaps between
ourselves and those with whom we seek understanding.

— William H. Whyte, Sociologist
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Leveraging hypergraph structures to model
advanced processes has become increasingly
popular in many domains over the last few
years. Regular graphs can encounter difficul-
ties in modeling multi-party communications
about different, partly overlapping topics in a
complex context. Hypergraphs, however, can
provide more precise modeling and represen-
tation of the underlying processes while simul-
taneously reducing the total number of edges needed for describing polyadic
processes. As we described in the previous chapter, there is a lack of visualization
approaches for hypergraphs that scale beyond a few dozen entries, and matrix-
based visualizations have been ill-explored in this regard while offering promising
opportunities. Further, the interactive exploration and seamless refinement of such
hypergraph-based prediction models still pose a major challenge. In this chapter,
we describe Hyper-Matrix, a novel visual analytics technique that addresses this
challenge through a tight coupling between machine learning and interactive vi-
sualizations. In particular, the technique incorporates a geometric deep learning
model as a blueprint for problem-specific models while integrating visualizations for
graph-based and category-based data with a novel combination of interactions for
an effective user-driven exploration of hypergraph models. To eliminate demanding
context switches and ensure scalability, our matrix-based visualization provides
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drill-down capabilities across multiple levels of semantic zoom, from an overview of
model predictions down to the content. We facilitate a focused analysis of relevant
connections and groups based on interactive user-steering for filtering and search
tasks, a dynamically modifiable partition hierarchy, various matrix reordering tech-
niques, and interactive model feedback. We evaluate our technique in a case study
and through formative evaluation with law enforcement experts using real-world
internet forum communication data. The results show that our approach surpasses
existing solutions in terms of scalability and applicability, enables the incorporation
of domain knowledge, and allows for fast search-space traversal. With the proposed
technique, we pave the way for the visual analytics of temporal hypergraph models
in a wide variety of domains. In the context of this dissertation, Hyper-Matrix is
primarily aimed at identifying patterns and communication participants as well as
topics.

This chapter is based on the publication [FAS+20] and major parts of the follow-
ing sections have appeared in:

• [FAS+20]: Maximilian T. Fischer, Devanshu Arya, Dirk Streeb, Daniel See-
bacher, Daniel A. Keim, and Marcel Worring. “Visual Analytics for Temporal
Hypergraph Model Exploration”. In: IEEE Transactions on Visualization
and Computer Graphics 27.2 (2020), pp. 550–560. doi: 10.1109/TVCG.20
20.3030408.

For a statement of the scientific contributions, as well as the division of respon-
sibilities and work in this publication, please refer to Chapters 1.2 (p. 22ff) and
1.3 (p. 26ff), respectively.

5.1 Introduction to Temporal Hypergraphs

A significant volume of real-world data consists of entities and their relationships
and can accordingly be modeled mathematically using graph-based approaches.
Such approaches are widely applied in many domains, ranging from natural and so-
cial sciences to engineering and business. Examples includemodeling biological and
chemical processes like protein-protein interactions [Prž11], path-signaling [RTK+14]
or medical feature selection [SRKS16], relationships in computer [WXLW07] as well
as human communication networks [OSH+07], or knowledge network exploration in
business processes [HB05]. Whereas static graphs can represent the fixed relation-
ships between entities, using an undirected or directed graph as a model, many of
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the examples presented above are more accurately described as processes with
complex interrelations that may change or evolve. Hypergraph modeling shows
superior performance in several neural network classification tasks [FYZ+19; JWF+19]
by capturing interrelated concepts through more specialized edges connecting
related concepts semantically. Further, geometric deep learning methods together
with interactive visualization can help to more accurately model, predict, and ex-
plore the model evolution. Considering, for example, conversations, a topic is a
time-dependent grouping encompassing users, which cannot be described using a
static graph. This evolution of relations should be modeled by dynamic networks.
Compared to regular graphs, using edges or separate node types, such modeling
often reflects the actual process more accurately.

Dynamic networks are, however, more challenging to model and have tradi-
tionally been modeled as regular, undirected graphs, mainly due to computational
and visualization limitations. In recent years, modeling has extended to dynamic
networks [KO11], but some limitations remain. Consequently, one can take a step
further and use temporal hypergraphs. Hypergraphs generalize graphs by extending
edges to connect any number of vertices, allowing complex relationships to be
described more accurately [SFE15] while reducing ambiguity and network inflation.
Utilizing temporal hypergraph prediction models, however, introduces its own set
of challenges.

First, as the model structure is more complex, it is relevant how the informa-
tion is communicated to the analyst through visualization (cf. [HC14a]) and how
domain knowledge feedback is incorporated. Static hypergraphs can be considered
as standard sets, with different visualizations available [AMA+14]. Temporal hyper-
graphs, meanwhile, add a time-dependent evolution, making it harder to convey
the relevant information meaningfully.

Secondly, many traditional graph-based concepts cannot directly be applied to
hypergraphs. Hyperedges, as arbitrary sized sets of connected nodes, add another
order of complexity. In previous works [AW18; ARW19b] it is shown how geometric
deep learning can be applied to hypergraphs and showed how this method could
be leveraged to predict behavioral patterns in social media hypergraph models.

Consequently, the incorporation of machine learning techniques into an interac-
tive model to more accurately predict changes in the hypergraph due to changes in
the data introduces new problems. While deep learning avoids assiduous manual
feature engineering and algorithm design, it reduces explainability and accountabil-
ity of the results. Domain experts usually have some domain-specific intuition—a
mental model and structure—about inherent and implicit relations and groupings
not available in the data, enabling them to judge the plausibility of hypotheses
and to steer the exploration. Yet, they face difficulties articulating their domain
knowledge through machine learning into the predictions and tracing its influence.
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This holds especially for very complex models, like temporal hypergraphs. The
knowledge formalization requires a very detailed a priori understanding of the
problem by domain experts, which is not always available. For the same reason, it
is challenging to capture the knowledge independently of the model without rapid,
iterative feedback. Hence, the machine learning outcome often correlates strongly
with the adequacy of the initial problem modeling and the quality of the training
data, while domain expertise and domain knowledge are frequently not leveraged
to their full potential.

To address these issues, we present Hyper-Matrix, making the following contri-
butions:

Co
nt
rib
ut
io
ns

� A novel, interactive framework for temporal hypergraph exploration
through the use of semantic zooming relying on a multi-level matrix-
based approach and various exploration concepts.

� The extension of a geometric machine learning architecture [AW18;
ARW19b] with a relevance feedback model.

� A tight coupling between the visualization and the machine learning
relevance feedback model for evaluation and seamless refinement,
offering the integration of domain knowledge and making the corre-
sponding model changes visually transparent.

� One case study describing an application of the technique to law
enforcement.

� A formative evaluation with law enforcement experts using real-world
communication data, demonstrating that our technique surpasses
existing solutions and enables the effective and targeted analysis of
large amounts of information.

Our approach bridges the gap between visual exploration and separate model
training, allowing domain experts to enhance the machine learning predictions
with implicit domain knowledge in the same step as evaluating and exploring the
temporal hypergraph model predictions.

5.2 Related Work

This research is an entry into the interactive temporal hypergraph model explo-
ration in the context of explainable support by machine learning. In the literature
hypergraphs are studied from both a visualization as well as a machine learning per-
spective. In the following discussion, we adhere to the same distinction and relate
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our work to the visualization of temporal hypergraphs as well as their application
in machine learning.

5.2.1 Visualization of Hypergraphs

We first shortly discuss the situation for (static) hypergraphs as well as dynamic
graphs, before looking at temporal hypergraphs. Hypergraphs can be considered
as a set of sets. The survey on set visualizations by Alsallakh et al. [AMA+14]
shows that several visualizations are applicable to hypergraphs. Hypergraphs are
often drawn as regular graph networks or bipartite networks. When making their
dimensionality explicit, they can be drawn as subsets—like Venn diagrams or radial
sets—or in node-link form [VBW17], using colored hulls or other, specifically adapted
approaches [MRS+13]. A third possibility is to use a matrix-based approach, which
improves scalability [KLS07]. Subsets and node-link diagrams suffer from limited
scalability, quickly leading to occlusion and clutter. Bound in the number of visual
attributes they can employ, these techniques typically reach their constraints in the
order of one or two dozens of hyperedges [VBP+19]. Further, they are difficult to
extend with a temporal component, having already used up most visual attributes.

In comparison to set-based approaches, dynamic graphs change over time,
leaving the choice [BBDW17] between employing animation or an additional timeline
component. The former puts significant strain on the mental map when many
connections change, while the latter is limited by the available screen space in the
number of discrete timesteps it can show. The survey [BBDW17] also points out that
node-link diagrams remain the most commonly used type of visualization. However,
these approaches mostly lack the extendability to hypergraphs.

When studying temporal hypergraphs, the issues arising from the dimensionality
and the temporal nature all build up. Indeed, there is almost no prior work on
the visualization of temporal hypergraphs specifically. Two notable exceptions
exist, which allow visualizing—but not modifying or refining—temporal hypergraphs:
First, the recent works by Valdivia et al. [VBF17; VBP+18; VBP+19]. Their visualization
approach is also shown later in Figure 5.6c as part of the case study. Second, the
previous work by Streeb et al. [SAKW19] introduces an in-line visualization of the
temporal evolution. Valdivia et al. begin to tackle the research gap by proposing
PAOHvis, thereby claiming to provide the “first […] highly readable representation of
dynamic hypergraphs”. While this is a strong claim to make, the literature review
showed a broad diversity between the approaches, but none—except the two men-
tioned above—is directly suitable for temporal hypergraph visualization, supporting
this conclusion. Utilizing the previously discussed approaches as substitutes for a
tailored visualization often does not adequately leverage the additional information
available with temporal hypergraphs and does not address the tasks that come
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with hypergraph topology and evolution. For those, we refer to Section 5.2.3. Short-
comings in existing approaches include, for example, Streeb et al. providing only
the prediction abstraction level in their visual interface (cf. Level 3 in Section 5.4.1).
Similarly, this is true for Valdivia, although they support coloring by a group. This
can lead to information overload, as filtering using thresholds is the only way to
reduce the information. In contrast, usage of semantic zoom enables an explo-
ration of the complete hypergraph (cf. Section 5.4.1) without the need to preliminary
apply filters while enabling tailored visualizations showing detailed information
when focusing on different abstraction levels. Prominent examples of matrix-based
visualizations are the Zoomable Adjacency Matrix Explorer [EDG+08] that enables
users to zoom and pan with interactive performance from an overview to the most
detailed views and the visual analysis system of Behrisch et al. [BDF+14]. It features
a flexible semantic zoom to navigate through sets of matrices at different levels
of detail. Further, both Streeb and Valdivia, only support sorting by weights and
average (cf. size ordering in Section 5.4.2), compared to our default matrix-based
sorting, improving cluster identification. Significantly, all existing approaches aim
at analyzing a fixed hypergraph model. None focus on interactively working with
the model and iteratively improving it (cf. Sections 5.3.2 and 5.4.3).

At last, while not strictly related to the research on temporal hypergraphs per
se, we want to mention approaches that are, at least partly, similar to ours, and
also conventional tools so far applied in practice. Here we concentrate on how
hypergraph-like data is handled in the law enforcement field, relevant for the case
study and the evaluation through domain experts (see also Sections 5.5 and 5.6). The
visual analysis of communication data—but without any hypergraph visualization or
a tunable model—is not novel and has been researched both from the analytical
side [LZ15] as well as the visualization side [WLY+14]. Also, the idea of semantic
zooming for matrix-like visualizations has been described previously [Ham03], how-
ever, in a different way and in the area of software management. Further, it was
also described how an overlay magic lens [GSBO14] can be used instead of zooming,
to keep the context and allow for faster search space traversal from locations far
apart, which we partly employ for the partition hierarchy (Section 5.4.2). In practice,
for the law enforcement field, we found that data which benefits from a hypergraph
modeling, like communication patterns or process analysis, is prevalent, but not
supported by any system. Gephi [BHJ09] is sometimes used, but analysts often
prefer Pajek [BM98; BM02], as it supports larger networks. The most popular tool is
IBM i2 Analyst’s Notebook’s [IBM20] graph component due to the prevalence and
familiarity in this domain.
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5.2.2 Machine Learning for Hypergraph Models

The concept of learning with hypergraphs for semi-supervised classification and
clustering, with the aim of modeling high-order correlations was introduced by
Zhou et al. [ZHS07]. The approach expands spectral clustering to hypergraphs
by presenting a label propagation technique that reduces differences in labels
among vertices that share a common hyperedge. Hwang et al. [HTKK08] further
explored correlations among hyperedges, assuming that hyperedges with high
correlation possess similar weights. Recent studies [BBL+17] have focused on the
parametric learning of weights, employing the propagation of node features across
hyperedges [FYZ+19; YNY+19].

Understanding communication patterns of users on social networking sites has
created opportunities for richer studies of social interactions and better prediction
of behavioral patterns. The prediction of links in hypergraphs has been a popular
topic in social network analysis, in particular in the multimedia domain. This in-
volves the prediction of metadata information, such as tags and groups, for social
network entities like Flickr images [AW18], music recommendations for Last.fm users
through leveraging network proximity information [BTC+10], and the prediction of
higher-order links, such as tweets with specific hashtags, on Twitter [LXLS13]. Further-
more, hypergraph learning models have been employed to integrate complemen-
tary information from multiple modalities in multimodal data analysis effectively.
Multi-hypergraph learning approaches have been suggested to handle incomplete
multimodal data for disease diagnosis in neuroimaging [LGYS17], while frameworks
have also been developed to learn a compact representation for each modality in a
multimodal hypergraph using a tensor-based representation [ARW19a]. Although
these studies have demonstrated the relevance of hypergraph-based learning in
predicting implicit links within a social network, none of the existing approaches
have established an interactive learning formulation that can incorporate user
feedback as an external source of information to enhance the predictive capability
of a model or even change the intrinsic properties, such as learnable parameters,
of a model. Here, we extend previous work [ARW19b] on link prediction in communi-
cation networks capable of fine-tuning the trained model by incorporating external
relevance feedbacks.

5.2.3 Tasks for Evaluation of Temporal Hypergraph Models

Tasks in temporal hypergraph analysis relate to dynamic networks and set com-
parisons. A task taxonomy of the former is provided in the survey by Beck et
al. [BBDW17], and for the latter in the survey by Alsallakh et al. [AMA+16]. For tempo-
ral hypergraphs, in particular, the tasks sometimes substantially differ; for example,
one being the analysis of changes of both connections and attributes over time.
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The proposed technique does not directly fit with any existing task taxonomy, posi-
tioning itself between disciplines [AA06]. For a discussion on existing taxonomies
and their applicability to temporal hypergraphs, we refer to the existing work by
Valdivia et al. [VBP+19] and summarize only the main aspects here. Our technique
supports not all traditional tasks in set analysis [AMA+16], and in dynamic network
analysis [LPP+06; APS14; BPF14; KKC15], summarized in [BBDW17]. However, it pro-
vides support for several additional tasks relevant to our driving application. These
include the clustering of related groups independently of their temporal connection,
the inspection of shared attributes of connections, the following of temporal evolu-
tions, while both retaining an overview and simultaneously being able to explore
details. In short, the experts are interested in connectivity information involving
both graph topology as well as attribute values, which can be separated between
time ranges. One main requirement is the need to include external (domain) knowl-
edge that is not directly available as raw data and includes conceptualized topics
in line with their mental categorization. These tasks are not sufficiently described
or supported by existing taxonomies, as they neglect the additional complexity
incorporated by hypergraphs and the domain knowledge integration.

Given the sparse research in hypergraph visualization, it is unsurprising that
there is no prior work on bridging both fields; this is the gap we aim to fill: offering
a technique that addresses the shortcomings discussed above, enabling the explo-
ration and refinement of hypergraph models using interactive visualization, closing
the visual analytics loop.

5.3 Extension of Machine Learning to Hypergraphs

In the following two sections, we describe the overall workflow of our approach,
shown in Figure 5.2. We begin with an exemplary description of one geometric deep
learning model, adapted to a task relevant for our law enforcement domain experts:
the temporal prediction and analysis of patterns in communication data. It acts as
a blueprint for problem-specific temporal hypergraph models. In Section 5.4, we
then discuss the interactive exploration using visual analytic principles.

5.3.1 Notation and Formulation of a Temporal Hypergraph

In set theory, an undirected hypergraph 𝐻 = (𝑉 ,𝐸) is defined as an ordered pair,
where 𝑉 = {𝑣1, .., 𝑣𝑛} represents the 𝑛 vertices (hypernodes) and subsets of these
vertices 𝐸 = {𝑒1, .., 𝑒𝑚} constitute the 𝑚 distinct hyperedges. 𝐻 is represented
by the incidence matrix 𝕀 = |𝑉 | × |𝐸|, with entries i(𝑣𝑗, 𝑒𝑘) = 1 if 𝑣𝑗 ∈ 𝑒𝑘 and 0
otherwise. We define the neighborhood of 𝑣𝑗 as the set ℕ(𝑣𝑗) of nodes within the
same hyperedge as 𝑣𝑗.
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Figure 5.2: High-level workflow of our technique, showcasing the main components and
the interaction flow for the exploration and refinement of temporal hypergraph models,
adapted to use case A in Section 5.5. The workflow begins with raw data extraction and
the generation of a temporal hypergraph model. The model state is visualized using a
matrix-based multilevel hypergraph visualization , allowing for various exploration
and filter schemes, including search and filters , a dynamically modifiable partition
hierarchy , and matrix-reordering techniques . The domain expert can interact with
the model by either refining the filter schemes or by contributing domain knowledge, which
both update the model. The model feedback can then be explored and accepted, closing
the visual analytics loop →. The chronology of interactions and contributions are available
for recovery or verification as a provenance history , facilitating accountability.

In adapting a generic temporal hypergraph model to our use case, we follow
previous work [ARW19b], representing the relationship between internet forum users
and their behavioral characteristics (both “explicit” and “implicit”). The available
metadata (in particular forum category) forms the explicit characteristic of a user,
while their topics of discussion outline the implicit communication characteristic.
Thereby, we construct two separate hypergraphs depicting the connection of users
with these explicit and implicit behavioral characteristics. To model the temporal
component, let us define a temporal hypergraph by 𝐻[𝑡], at a given time 𝑡, where
each user is represented as a node, and each type of explicit/implicit character-
istic is represented as a separate hyperedge. We denote the explicit and implicit
hypergraphs, at any given time 𝑡, by 𝐻0

[𝑡] and 𝐻′
[𝑡], respectively. Consequently, in 𝐻′

[𝑡],
each topic is depicted as a separate hyperedge and users (nodes) who adhere to a
common topic of interest are connected by it. Thus, forecasting the evolution of
users’ topics of interest for time 𝑡+1 becomes equivalent to the task of finding new
relations over the existing relations in hypergraph 𝐻′

[𝑡].
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5.3.2 Relevance Feedback to the Deep Learning Model

Predicting links in temporal hypergraphs forms the basic idea for the model we
use to forecast the interests of internet forum users. Performing link prediction
on a hypergraph, denoted as 𝐻[𝑡], with a fixed set of edges 𝐸 targets to refine the
set 𝑒𝑘. This link prediction task can be considered as a missing value imputation
or a matrix completion task on 𝕀, and can consequently be reformulated. In the
following section, we extend previous work [AW18; ARW19b], thereby allowing to
introduce feedback in Hyper-Matrix. In the following we look at the mathematical
formulation for training and then updating a geometric deep-learning model with
user feedback.

Training Module Let 𝕀[𝑡] denote the incidence matrix of 𝐻′
[𝑡] at time 𝑡. This can be

factorized as 𝕀[𝑡] = 𝑋𝑡𝑌 𝑇
𝑡 with 𝑋𝑡 and 𝑌𝑡 the row and column matrices, respectively.

An hypergraph 𝐻0
[𝑡] will serve as an auxiliary set of explicit information between

users for predicting links in the implicit hypergraph 𝐻′
[𝑡]. The Laplacian Δ0 gives

a measure for the relatedness between any two users [BTC+10]. The information
in 𝐻0

[𝑡] can subsequently be encoded by extracting its Laplacian. We can strongly
enhance the user-topic link prediction outcomes by leveraging such a similarity
measure, as it reduces noise and thus smooths the model output.

For model training, we employ a semi-supervised learning setup, hence the
predictive loss is backpropagated by using a small set (around 5–8%) of known links
in 𝐻′

[𝑡+1]. These known links create an upper bound for the number of timesteps
the model can predict in ̂𝕀[t+1]. Details can be found in [AW18; ARW19b]. Then, we
take the incidence matrix 𝕀[𝑡] at time 𝑡 and use the hypergraph link prediction model
ℍ𝐺𝐷𝐿 to learn the best parameter set Φ[𝑡] for predicting the incidence matrix 𝕀[𝑡+1]
at time 𝑡+1:

̂𝕀[t+1], [t] = ℍGDL(𝕀[t], 0) (5.1)

Feedback Module We propose a novel interactive learning formulation to incor-
porate domain expert feedback into the underlying model in order to integrate
their domain knowledge. This feedback is assumed to contain definitive implicit
information about the topic of interest for certain users in the dataset. Rather
than merely updating the information by changing the topic (hyperedge) of the
respective users (nodes), the feedback should create a ripple effect on the overall
connections in the hypergraph 𝐻′

[𝑡].
In more detail, if the feedback 𝑓[𝑡] at time 𝑡 involves the single user (𝑢𝑗) denoted

by node 𝑣𝑗 in the hypergraph 𝐻′
[𝑡], then incorporating 𝑓[𝑡] will consist of a twofold

operation: 1. Update: The topics for user 𝑢𝑗 are refined, i.e., add/remove 𝑣𝑗 to/from
the respective hyperedges 𝐸 = {𝑒1, .., 𝑒𝑚} corresponding to 𝑓[𝑡]. 2. Predict: Adapt
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topics for users in close communication with 𝑢𝑗 based on their relatedness to
𝑢𝑗. This involves re-calculating the connection strength for vertices in ℕ(𝑣𝑗) with
the hyperedges 𝐸 = {𝑒1, .., 𝑒𝑚}. The first step is a straightforward updating of
the matrix 𝕀[𝑡+1], which can be achieved by updating the values corresponding to
nodes and edges suggested in the feedback 𝑓[𝑡]. the updated matrix 𝕀[𝑡+1] + 𝑓[𝑡] is
then used as input to our link prediction model ℍGDL to consider the changes in
the neighborhood connections. The feedback model does not follow an iterative
process, but the learned parameters Φ[𝑡] are used as initialization for the model
ℍGDL trained previously significantly faster after incorporating the feedback 𝑓[𝑡]
compared to starting anew. The representation of the feedback module in symbolic
form can be formulated as:

̂𝕀[t+1] = ℍGDL(𝕀[t+1] + f[t], 0, [t]) (5.2)

5.4 Interactive Hypergraph Model Exploration

In this section, we focus on the visualization and interaction with the temporal hyper-
graph model, providing a tight coupling between the data manipulation and display
(see Figure 5.2). We begin by describing how the model state can be depicted using
a matrix-based visualization that provides drill-down capabilities across multiple
levels via semantic zoom. Drill-down is thereby defined as the seamless zooming
through the different levels during exploratory analysis, starting from a general
overview to increasingly more focused and detailed information, as highlighted in
Figure 5.3. To facilitate the interactive exploration, we present user-steering based
on classical filters for standard search tasks, a dynamically modifiable partition
hierarchy to include user-based structuring, and various matrix reordering tech-
niques for the focused analysis of connections and groups. We then specify the
interactions that allow domain knowledge to be incorporated into the machine
learning model via relevance feedback and highlight how the updated predictions
can be reflected in the existing visualization. This workflow facilitates the explain-
ability of the underlying model, thus enabling the domain experts to provide more
meaningful feedback. Finally, we describe how all interactions, domain knowledge
input, and model output are stored in a provenance history, providing accountability
and making the decision-making processes more transparent.

5.4.1 Model Visualization

As discussed above, the complexity of temporal hypergraphs makes them difficult
to visualize. Hence, we propose a multi-level matrix-based approach, specifically
tailored to the hyper-dimensionality as well as the temporal component. The visu-
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Figure 5.3: Semantic zoom levels and the different filtering levels as described in detail in
Section 5.4.1. At each zoom step, the analyst gains another type of information about the
model, filtering a different layer of complexity. As the focus becomes more detailed, the
visualization takes up more space (zoom level and viewport as shown not to scale), while
the number of visible entities decreases accordingly. The temporal predictions are shown
in different forms throughout all levels (see fine grey line), with the detailed temporal
evolution first shown in Level 3 and continuing down to Level 6.

alization (see Figure 5.1) consists of a menu bar on top, controlling the interaction
concepts discussed later, and, for the main part, a matrix-like viewport, showing
nodes as rows and hyperedges as columns, with corresponding row and column
headers. This viewport provides freely pan-able and zoom-able drill-down capabili-
ties across six levels of semantic zoom, shown in Figure 5.3, increasing or decreasing
the information detail: from an overview of model predictions down to contents.
For this purpose, we use three different level types: cells, arrows, and content boxes.
Colored cell visualizations are used in Levels 1 and 2. An arrow-like representation
reflecting a timeline is used in Levels 3 and 4. The base of the arrow represents the
past, while the head reflects predictions. As the predictions become more uncertain
with time, the arrowhead becomes smaller, reflecting the increased uncertainty
and thus the decreased relevancy of the prediction. Levels 5 and 6 add text-based
elements like keywords or raw content. Level 3 and beyond all contain the temporal
aspect.

The visualization depends on the zoom state of the viewport. During drill-down,
the focus shifts from a general structure overview over the temporal evolution to the
raw content, providing the expert with more and more detailed information. Before
we start with the description of this process, we define some necessary terms. As the
feedback model outputs probabilities for the connections (see Section 5.3.2), gradual
differences can be analyzed. When setting a minimum threshold for a connection
to be meaningful, this allows for a binary choice. Showing a color encoding of the
connection strength allows for a more expressive representation of the gradual
differences. Setting a cutoff threshold can still be used to avoid cluttering with
low-probability entries. The drill-down shifts the focus of the analysis. It starts
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at the (binary) connectivity information, extends to gradual connection strength
(Level 2), to the temporal change represented as an arrow (Level 3), to the temporal
change encoded using position instead of only color (Level 4), then to information
summarizing the underlying content for the predictions, in this case, keywords
(Level 5), and, at last, to the raw data (Level 6). The design choice for an arrow glyph
representation in Levels 3 and 4 is based on five reasons: (1) The principal idea of an
arrow glyph was previously published [SAKW19] and found to be beneficial. Then, (2)
given the target audience, a representation as an arrow of time is closely related to
everyday experience. Further, (3) the separation into arrow base and head allows a
clear distinction between past data and model predictions, which is very important
for the target audience. The arrowhead also allows to visually reflect the decreasing
prediction accuracy by becoming smaller. In terms of (4) visual advantages, an
arrow provides a distinct shape, while, e.g., a cell is easily perceived to merge with
neighboring cells, which is undesired. The choice also comes with disadvantages,
introducing white space and can sometimes lead to distracting patterns. Finally, (5) a
design study on combining timeline and graph visualization by Saraiya et al. [SLN05]
shows that our approach—simultaneously overlaying the timeline—is best suited
for detecting outliers. This is one of the main tasks for these levels, given the focus
on change. The study also supports the design choice of showing only a single
timestep in Levels 1 and 2, as the focus is on the topological structure. However,
different visual representations like horizon graphs might be better suited when
focusing on a continuous analysis. The seamless changes between levels speed
up navigating through large models while eliminating demanding context switches.
Moreover, at each step, the information becomes more complex, requiring more
screen space to visualize. For a regular HD screen, we give rough guidance on the
number of elements that can be usefully shown on-screen, amounting to around
256k grid cells of connectivity information and around four for the raw content.

5.4.2 Interactive Exploration and Drill-Down

To facilitate the interactive exploration, we contribute a user-steering based on
classical concepts and filters for standard search tasks, a dynamically modifiable
partition hierarchy to include user-controlled structuring and various matrix re-
ordering techniques for the focused analysis of connections and groups. All these
interactions concepts are reactive, and the visualization can smoothly and instantly
update (< 100 ms), except for the domain knowledge integration in Section 5.4.3.

Interaction and Filter Concepts Standard methods available in an interactive
visualization are included, like (1) highlighting selected rows or columns, (2) high-
lighting hovered cells, (3) tooltip-based menus, (4) marking (i.e., starring) individual
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entries to highlight them for tracking and follow-up, (5) adding textual notes, and (6)
showing additional meta-information. Modal views allow to (7) control the partition
hierarchy (see details below), while setting an (8) overall cutoff threshold allows
controlling the confidence threshold of the underlying model. A (9) global search
function provides the ability to search for node- and edge information as well as
content and highlights the matching components. At last, the menu bar allows (10)
controlling the matrix reordering (see detail below).

Dynamically Modifiable Partition Hierarchy To allow domain experts to articu-
late their mental categorization to the model, the experts can create (nested) groups
of different nodes or hyperedges, creating hierarchies. The nodes or hyperedges
hereby relate to the leaves of the dendrogram. The groups can be expanded or
contracted either directly from the node or hyperedge headers, visually indicated by
color, or by editing them inside the partition hierarchy viewer in a modal overlay. The
viewer shows a dendrogram-based representation with freely reorderable entries.
Each branch of this dendrogram can be independently collapsed or expanded, i.e.,
the abstraction level is local to each branch and not globally set. For example, it is
possible to collapse a large, uninteresting sub-branch, including the nested nodes it
contains, while simultaneously having one branch fully expanded and another only
up to the penultimate level. This is also independent of the overall visualization
level, similar in concept to multiple fixed magic lenses, visually supporting different
analysis paths. The hierarchy allows, for example, to group complementing entities
together, to build meta-entities, and even hierarchies of entities.

Matrix Reordering and Sorting To support the tasks relevant for our driving
application (see Section 5.2.3), a matrix reordering is desirable such that related users
and topics appear close to each other. Due to the independent and often conflicting
interpretations of both axes and the sparseness of the underlying matrix, the direct
application of standard 2D numeric sorting algorithms (e.g., Multi-scale-, Chen-,
or Travelling salesman problem ordering) [BBH+16] often leads to unsatisfactory
results, as they are mainly applicable to pairwise comparison matrices.

As part of the visualization, we offer three main different reordering strategies, as
shown in Figure 5.4: (a) matrix-reordering (default), (b) sorted by size (connectivity),
(c) first occurrence (original). The reordering is applied individually for each axis,
as the requirement may differentiate between search tasks, not always favoring
a block-like clustering. It also provides more flexibility for adopting other sorting
methods in domain adaptions of our technique. The underlying sorting principles
build upon a dendrogram-based serial matrix reordering discussed by Behrisch et
al. [BBH+16]. It forms a multi-step process, combining the sorting of node and edge
similarity vectors. Supported dendrogram methods are ward-, single-, average-,
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(a) Multi-step hierarchy

(b) Size

(c) First occurrence

Figure 5.4: Comparison of different matrix reordering techniques to facilitate the detection
of similar groups and connections. Compared to the unordered state and the slightly im-
proved ordering by size, the adoption of a default multi-step, dendrogram-based reordering,
modified and adapted from [BBH+16], enhances the clustering by similarity.
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and complete linkage, combined with any pairwise distance function like Euclidean,
cosine, or Jaccard. We refrain from discussing individual choices, which can vary
strongly on domain adaption. For our case study, the Jaccard and cosine distance
provide consistent results.

5.4.3 Visual Analytics for Model Updates

To increase the traceability of domain knowledge integration and explainability of
the resulting model changes, we propose an interactive change feedback visual-
ization, that seamlessly integrates with our visualization. The two-step process is
shown in Figure 5.5. An expert can integrate domain knowledge by selecting a cell
and setting a new connection strength (Figure 5.5a) and thereby complement miss-
ing or override model input data. This input is used to partly retrain the model and
refine its predictions as described in Section 5.3.2, leading to a ripple effect. Thereby,
the model has prediction authority, i.e., the user cannot manually fix the ultimate
output to guarantee model authenticity. A spinner indicates the few seconds long
operation. The resulting changes are displayed inside the same view (Figure 5.5b).
A diverging color scale is used, showing changes instead of predictions. Through
two visually distinct scales, it is immediately apparent if predictions or changes in
the predictions are shown. The view integration allows for consistency, reducing
the mental workload, and improving mental mapping.

Changes can be inspected on all levels of the visualization. The exploration is
not restricted to just the current viewport, finding even weak connections. Change
detection is facilitated, allowing rejection if deemed implausible or acceptance if
convincing, enabling the followup of multiple analysis paths. By iteratively and
interactively queering the model and see how it responds to domain knowledge
integration, experts can discern better how connections and processes in the model
are related, improving understanding and increasing explainability.

Experts in many applications are interested in their analytical progress and must
reproducibly document the steps. We address this by a re-loadable provenance,
storing the interaction sequence, domain knowledge input, model output, and fixed
RNG seeds. This allows for inspection, verification, and traceability while providing
accountability and making decision processes transparent. The provenance history
allows undoing analysis steps, preventing dead-ends, revisiting and explaining past
steps, but also bridging off to diverging analysis trails.
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(a) Manually input a connection strength.

(b) Resulting changes in the model predictions.

Figure 5.5: Resulting changes in the model prediction (ripple effect) from an input are
visualized by a diverging color scale (from negative to no to positive change). They can be
explored and rejected or accepted. This allows for model verification and multiple, different
analysis paths.

5.5 Case Study: Forum Communication Data

To demonstrate the visual exploration of temporal hypergraph models in Hyper-
Matrix, we conduct a case study, showing the applicability of our technique and
improvements compared to existing approaches.

The communication data was collected from an internet forum well-known to law
enforcement. It contains 335 188 text posts from 4904 users. We pre-processed the
data using standard NLP methods to extract 158 topics, based on a domain-specific
ontology. As described in Section 5.3, users are associated with nodes and topics
become dynamic hyperedges. To allow for a reasonable side-by-side comparison
with the existing approaches, shown in Figure 5.6, we had to restrict to a subset,
consisting of 35 users, 65 topics, and six timesteps. This is around four times more
than conventional approaches are designed for. We confirmed that our prototype
works for significantly larger networks (cf. Section 5.7). Our prediction model is fed
with four years (timesteps) of historical data and then predicts the evolution of the
next two years as two timesteps. Almost any real-world data is noisy and may miss
some relationships. Consequently, some of the conclusions drawn here may be
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inaccurate. However, we focus on demonstrating the concepts and benefits of the
visual analysis process Hyper-Matrix provides.

The task we want to focus on in this case study is the identification of related
groups and missing links, common in criminal investigations. To identify users
discussing the same topics and topics discussed by the same group, the matrix
reordering and connectivity information in Level 2 can be used to see structures, as
shown in Figure 5.6b. Their spatial closeness acts as primary identification criterion,
as similar row/column vectors are grouped closely. From this, their spatial closeness,
describing the multi-step alignment, supports discovering related users or topics
discussed simultaneously, but also latent connections. Distinct orderings can be
applied separately to nodes and hyperedges, for example, to either favor overall
similarity (cosine) or matching parts (Jaccard). For other requirements, it is also
possible to include different metrics. To reduce noise and exclude weak connections,
the top menu allows to set a threshold for the connection strength for historical
and predicted data. A flag controls the ordering mode to either respect the filtered
or the full dataset (including filtered elements). To further structure the view, the
experts can manually click and select to group users and topics to reflect their
mental categorization of users and topics. This allows to reflect domain-specific
ontologies (e.g., similar concepts) or represent known formations of users.

Zooming to the lower visualization levels shows the temporal development.
Compared to existing approaches (see Figure 5.6c) our technique (Figure 5.6d) in-
creases the scalability and comparability for dense temporal evolution. Compared
to the industry standard Figure 5.6a, presenting the temporal evolution as a timeline-
like arrow within each cell reduces comparison distances. Levels 5 and 6 allow an
expert to understand the actual data on which a predicted connection is based: The
main keywords of the relevant text fragments and, respectively, the actual raw text
fragments (cf. Figure 5.3). This ability allows the expert to verify predictions and
detect shortcomings as, for example, irony and coded synonyms are still difficult to
be detected automatically. If the expert has identified shortcomings on any level,
e.g., missing connections or wrong attribution of an ambiguous term, the technique
allows for the inclusion of this additional domain knowledge. To externalize knowl-
edge, the expert selects the corresponding connection and specifies the proposed
strength on a scale between 0 and 1. This translates to definite knowledge about
no and guaranteed connection, respectively. More nuanced values like .7 allow
the experts to reflect their own uncertainty. This allows them to try out hunches
while simultaneously preserving some model flexibility. For this reason, the change
preview (cf. Figure 5.5b) is extremely relevant for the domain experts, as it allows
them to see directly how their knowledge transforms the model prior to accepting
the changes. They can explore the consequences by zooming and panning through
all levels and correlate their findings with their intuition or other facts.
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(a) IBM i2 Analyst’s Notebook. Automatically gen-
erated graph representation from the hypergraph
model displaying the connections (labels removed)
for the furthest predicted year using a modified
bipartite representation. Data-wise, this can be
compared to the connectivity information in our
Levels 1 and 2. Clutter and occlusion prevent a
meaningful global analysis, and while individual
users and topics can be explored, this is slow, not
without difficulty, and likely requires moving enti-
ties around to identify connections safely.

(b) Our technique at Level 2, showing the same
predicted connectivity information as Analyst’s
Notebook in Figure 5.6a. Clusters and related
users/topics can be pinpointed more easily. The
color scheme and filtering settings in the top
menu bar also facilitate to identify the prediction
strength, which can be estimated by using the
overlayed legend in the bottom right corner. The
blue buttons allow to access the partition hier-
archy modifier to view a dendrogram view of the
grouped entities.

(c) PAOHvis [VBP+18] shows the individual hyper-
edges, allowing to find connected users and topics.
However, the hypergraph size is at the upper limit
for a feasible visualization, already leading to some
cluttering. Also, due to the temporal splitting, com-
parability between years is hindered for complex,
non-sparse hyperedges compared to our technique,
but better suited for comparing topics in the same
year.

(d) Our technique at Level 3, showing the same
temporal evolution information as PAOHvis in Fig-
ure 5.6c. The scalability is increased, showing no
occlusion and the comparability of trends (impor-
tant for the case study) is improved. This is due
to retained cell ordering and short comparison
distance. The downside is a reduced comparabil-
ity between topics in the same year. The nature
of the predictions is model-dependent.

Figure 5.6: Case study comparison of different approaches using the same internet forum
hypergraph model dataset and exactly the same data view (connection strength> 0.1, min. 2
hyperedges). Compared are the state-of-the-art industry solution IBM i2 Analyst’s Notebook
(Figure 5.6a), PAOHvis (Figure 5.6c) against our technique, showing the information at two
different levels of abstraction (Figures 5.6b and 5.6d). Further, both external approaches
only support a fixed network while our technique allows for an interactive refinement and
domain knowledge integration.

If unsatisfied, they can go back. Otherwise, they can continue and repeat this
visual analytics loop multiple times. This rapid feedback supports the expert in
refining the model without being blind to the resulting consequences, but being
able to control and explore the latest model state at all times. As the domain
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experts focus is on exploratory analysis the iterative refinement supports finding
connections and missing links faster. With domain knowledge that is difficult to be
integrated a priori, step-by-step changes are more understandable.

5.6 Formative Evaluation

We performed formative evaluation sessions involving three domain experts (P1-P3).
P1 is a criminal investigator working for a European law enforcement agency, having
more than 30 years of experience, 20 years spent in digital and criminal investiga-
tions. His expertise includes communication and network analysis, familiarity with
commercial systems like IBM i2 Analyst’s Notebook [IBM20], the graph visualization
tool Gephi [BHJ09], as well as the large network analyzer Pajek [BM98; BM02]. P2
works at the same agency in a different division, and has more than 20 years of
experience in criminal investigations, specialized in group structure and content
analysis. P3 is a senior project lead at a governmental research institute, studying
analytical raw data analysis for more than ten years.

5.6.1 Study Procedure

The formative evaluation was conducted individually via remote screen sharing,
taking about 60 minutes. For later review of these remote screen sharing sessions,
they were recorded after receiving the formal consent of the experts. In the first
10 minutes a demo presented how to perform the visual analysis, explore and
refine data and processes, and integrate domain knowledge in the search process
and in the machine learning model. The next 30 minutes were spent between
the experts using the system and providing feedback, as well as additional on-
demand demonstrations. The tasks the experts performed include overview, the
identification of the most promising leads, and the drill-down through the different
zoom-levels down to the actual raw content, in this case, communication data.
Further, we demonstrated and debated the different interaction techniques, like
cutoff values and thresholds, matrix sorting and reordering strategies, and the
dynamically modifiable partition hierarchy, as well as the machine learning feedback
process.

In the last 20 minutes, the authors interviewed the experts asking 32 prepared
questions. During each of the formative evaluation sessions, the experts engaged
actively, trying out concepts, asking questions, commenting on the features, and
pointing out issues. If an expert already partially gave comments during the 30
minutes session, they were offered to extend their answer. For example, when
an aversion or surprising idea was mentioned, we additionally focused on these
aspects. The interview was designed to elicit aspects of our technique that the
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experts find relevant for their work or confusing or misinterpretable, as well as
opinions on the individual approaches.

5.6.2 Findings and Lessons Learned

The main observations during the study are that our approach can effectively
support most analytical requirements of the experts and that the experts favor both
the rapid exploration of large datasets at different levels as well as the ability to
integrate and contribute with their domain knowledge. This matches with their
need to identify general trends in single combinations of users and topics and
simultaneously identify co-occurrences. For this, the general prediction is more
important than being able to identify differences between entities in the same year
(cf. Figure 5.6). The underlying model we built upon [ARW19b] has proven to perform
sufficiently well in this prediction task with an AUC (area under curve) of the ROC
(receiver operating characteristic) of .88 and a recall value of .81. Excluded from
the requirements are concepts outside the design scope, like purely mathematical
capabilities as, for example, general centrality calculations, for which algorithms
exist and could be included. In the following, we structure and summarize the main
findings based on the expert’s interactions and comments.

The domain experts agree that our approach of structuring information in
multiple levels of details, using a matrix-based approach, is novel and therefore
is not used in practice in their domain. For example, so far P1 has worked with
either text-based or graph-based tools, and thinks our approach can “perfectly
complement” existing workflows. The experts highlight the ability to effortlessly
explore so much information (cf. P3), thereby “saving time” (P1), enabling a “quick
analysis” (P3), while providing a “great overview … with much details, … but without
overloading” (P2) the analyst, with an ease that is unexpected, given previous
experience with this amount of data (cf. P2). We observed, that the experts often
switch between the levels for targeting (upper levels) and then exploration and
confirmation (lower levels). As P2 notes, this increases the size limit of the visually
analyzable graph models, enhancing upon existing systems. “Together with the
search capability” (P1), this allows for a very flexible workflow, enabling a good
overview even for larger datasets.

The initial overview visualizations (Levels 1 and 2) are welcomed for providing a
fast overview (cf. P1). The color scheme in Level 2 is regarded as comprehensible
without explanation and aligning with expectations (cf. P1). It helps to provide
guidance “where to start” (P1), and supports analysts in “planing their actions” (P3).
To make the color scheme absolutely comparable, P3 requested the addition of
a color legend. The glyphs are appreciated for providing details on the temporal
distribution and future predictions (P2, P3). The glyph-based arrow representation in
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Levels 3 and 4 is appreciated for providing details on the temporal distribution (cf. P2,
P3) interesting to the experts, and, most importantly, “the future predictions” (P2) in
context of the historical data. Depicting future predictions in the arrowhead and
the past data in the shaft, and seeing both together was described as “helpful” (P3).
The alignment by fixed timesteps, like years, is regarded as precise and practicable
(cf. P1) by the experts. In comparison, the distribution as line chart in Level 4 received
mixed responses, with P1 and P3 finding it beneficial for their understanding to
get a better, absolute reading, while P2 feels “it does not add much”. The keyword
visualization (Level 5) is regarded as fine for an abstract summary of the content
visualization but could be extended (cf. P3). This layer, representing the “main
connection” (P1) to the actual raw data, is important (cf. P1), and only shown when
relevant in high zoom levels, “where the text content is relevant” (P1).

The ability to search through all underlying textual data and highlight matches
in the views was received enthusiastically by all experts, as they can also transfer
and fulfill some of their existing workflow, e.g., content- and text-based workflows,
with our technique. It allows to explore global tendencies while enabling to query
locally (cf. P2), not being distracted by other matches “not relevant at the moment”
(P2).

While the visualization alone helps them already in some ways, providing them
“with improved degree of detail … unknown so far” (P1), all the experts also agree that
the interaction concepts constitute an essential and relevant part of the approach,
“helping them with strategical and operational decision” (P1). The matrix reordering
strategies significantly improving the visual clarity of the overview, are regarded
as “very interesting” (P2), and enable the experts to detect “groups” (P1) as well as
connections easily, allowing them to “quickly identify hotspots” (P2), while putting
less emphasis on weak connections. This is regarded as very supportive, being rarely
supported in analysis systems (cf. P1), “saving costs and time” (P1). We observed
that the experts use this as system guidance. The partition hierarchy is regarded
by all experts as “essential” (P2), with P3 describing it as a “core functionality”. It
allows grouping different model parts into physical concepts, applying structure
comparable to existing mental models (cf. P2), improving the mental mapping. It
“makes decision easier” (P3) and allows to “connect things” (P3).

The experts further describe that with existing tools, one major problem is
that their mental concepts and models can “not [be integrated] enough” (P2) in
the exploration, making it harder and less comprehensible. They notice that our
approach supports them in three ways not present in existing tools: (1) the inter-
active exploration allowing to follow their instinct, (2) the modifiable partition
hierarchy to express and capture their mental concepts, and, “most importantly”
(P1), (3) the ability to integrate their domain and external knowledge directly in
the model. While the experts wished that they could already “generate a report […
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and] export single entries” (P2) as commercial systems do, they note the enormous
conceptional benefits of our technique. They regard them as “optimal” (P1), as
there “are concepts and knowledge that cannot be modeled with machine learning
[alone]” (P1) and are not “available” (P1) in the data. This knowledge then “cannot
be integrated so far” (P1), is often documented in the head of the domain expert
or “on a post-it note on the desk” (P1), leading to a high risk of the knowledge
being “lost” (P1) or not leveraged. According to P1, the knowledge integration is per-
formed iteratively during exploration, which we also observed as the experts adding
knowledge intermittently, beginning with their main suspects and then expanding,
adding knowledge when necessary either from post-its or when reading a name
triggers a memory. The experts think that our feedback loop contributes to their
analysis (cf. P1), replacing and “perfectly complementing” (P1) existing workflows.
They regard the ability to interactively insert their knowledge as versatile. P1 noted
that inserting all knowledge beforehand would be error-prone and “practically
impossible” for larger datasets. To see “validation [possibilities] on changes” (P3)
is especially important for vetting, and the change view is regarded as “very clear”
(P1), allowing them a first glance, beneficial for prefiltering, steering and follow-up
search guidance (cf. P1) to better divide their time for exploration. For improved
usability P1 suggested to enable clicking to jump directly to the raw data in the
change preview mode for validation. P1 regards the ability for a global accept/re-
ject as sufficient for now, conceding that a partial accept could be explored in the
future, although he does not see an immediate benefit. They state that the 0–1
scale is “understandable and usable” (P1), but note that using the “5x5x5 system”
(P1)—a commonly used police system based on letters A–E and 1–5 for source and
intelligence evaluation [Nat10]—would be immediately understood and universally
accepted in the target domain. The approach allows them to integrate their domain
knowledge on multiple levels, together with the ability to perform a “quick analysis”
(P3) of “large amounts of information” (P2) “in a targeted” (P1), non-overloading
manner. From the observations of the experts, we derived a set of tentative tasks,
relevant in law enforcement: (1) finding linked users/topics, (2) connecting users
which share related topics to identify co-conspirators, (3) using classical text-based
search in the raw data to identify users, (4) finding and judging an in/decrease of
user activity for a topic, (5) finding a temporal co-occurrence between topics and
users, (6) adding domain knowledge to a specific user and specific topic and judging
the implications, (7) transfer raw data patterns and identify related users, and (8)
confirming the model predictions by cross-validation plausibility with the raw data
texts.
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5.7 Discussion and Future Work

During the evaluation, we receivedmultiple proposals on how our approach could be
extended further, including by mathematical analysis methods and industry-grade
interfaces. In the following, we discuss the limitations and broader applicability
of our approach, also in the context of future work. For our prototype approach,
we adapted the generic blueprint of a machine learning model to the case study.
This use case has its own limitation, requiring structured data with time and author
information, and dependent on advanced topic extraction models. We tested our
prototype successfully with 1 000 users, 800 topics, and 15 timesteps on an HD
screen, typically the upper size for large investigations. In terms of data type, the
technique can cope both with sparse and none-sparse matrix structures. For the
former, the matrix reordering allows to prioritize more relevant connections and
order them further on the top left, reducing the required screen usage for the main
parts. Of course, a homogeneous sparse matrix does not benefit from that. In
this case, and for none-sparse matrices, the different zoom levels shift the size
limitations. Nevertheless, they do not scale infinitely. Scrolling would be needed
when scaling further, even for the overview level. According to domain expert P1,
there the primary concern would be the number of users (y-axis), but using the
partition hierarchy and matrix reordering could partially mitigate the issue. When
increasing the number of time steps, the arrow becomes more detailed, shifting
from blocks to a more continuous stream, becoming less distinguishable. For our
use case, this fine-grained time is not primarily relevant because the experts aim
at seeing who has recently been interested in a topic. However, it might become
an issue when the task requires to extract detailed timestamps. Therefore one
could use hovering, magnification on demand, or a more specialized visualization.
Also, the visualization presented is better at analyzing trends and connectivity
tasks on an overview level. Comparing the same time step in Levels 3 and beyond
between two non-aligned nodes, however, becomes harder. For further work, we
envision an adaptable overview layer showing a specific time point, allowing cross-
cell comparability. When adapting to different use cases, some of the filtering
methodology likely has to be changed. For example, when supporting biochemical
process analysis, the raw attributes are not texts anymore, which (1) would need
a different visualization for the content in the two lowest display level, but would
also impact (2) the search functionality, which would need to be adapted to search
and filter for biological and chemical properties instead of only text. The discussed
visualization components serve only as examples for the visual analytics workflow
presented. When adapting to a different field, there exist manifold possibilities for
extensions, by integrating domain-specific visualization components. We provision
this by a modular view architecture, supporting independent layer modules. Further
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enhancements are multiple magic lenses to allow for simultaneous drill-down to
different levels.

In the future, we envision improvements to the feedback system, for example,
showing how domain knowledge propagates not only between two model states,
i.e., before and after adding knowledge but also explaining the effects of previously
introduced knowledge, for example, by interactively highlighting the individual
influences on hover. This is supported by our architecture, but the computation
time scales linearly with the number of domain knowledge inputs, which leads
to computation times of several minutes and more, making it infeasible in an
interactive environment for fast iterations. We hope to improve this by enhanced
engineering, reducing the model setup and reloading times by advanced ways of
updating the hypergraph model.

5.8 Conclusion

Many processes are difficult to describe using traditional graph-based concepts and
benefit from more precise yet more complex modeling as temporal hypergraphs.
We address this challenge by using a geometric deep learning approach and extend
it to hypergraphs. However, such deep learning models typically do not incorporate
domain knowledge, usually unavailable in the data. This is not least because domain
experts struggle to articulate their knowledge without rapid, iterative feedback and
intuitive representations matching their mental models, alternatively requiring a
detailed a priori understanding of the problem. Hence, domain expertise is often
not leveraged to its full potential.

We contribute a technique, named Hyper-Matrix, to make temporal hypergraph
model exploration more accessible for domain experts by enabling the integration
of domain knowledge into the process and support their mental models through
a multi-level matrix-based visualization architecture. The technique enables the
interactive evaluation and seamless refinement of such models while providing
a tight coupling and rapid, iterative feedback cycles to the underlying machine
learning model. Model changes in response to the integration of domain knowledge
are visualized transparently by a change preview, allowing experts to foster a more
detailed understanding of how the underlying model works while externalizing their
knowledge to teach the machine.

The approach allows to swiftly explore vast search spaces whilemaintaining focus
and eliminating demanding context switches. Drill-down capabilities across multiple
levels allow studying details and model contents on demand while retaining the
overview. This architecture facilitates a focused analysis of relevant model aspects,
allowing experts to detect patterns more rapidly and accurately. It is complemented
by interactive filtering and search, various matrix reordering techniques, and a
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dynamically modifiable partition hierarchy, allowing the integration of domain
knowledge in the visualization layers.

We evaluate our approach in one case study and through formative evaluation
with law enforcement experts using real-world communication data. The results
show that our approach surpasses existing solutions in terms of scalability and
applicability, enabling the incorporation of domain knowledge and allowing fast
and targeted search-space traversal. While we focused on topic prediction for law
enforcement as driving application, the interactions and concepts work with any
temporal hypergraph, being model agnostic and applicable more generically to a
wider variety of domains. With our technique, we pave the way for domain experts
to a more interactive exploration and refinement of temporal hypergraph models,
enabling them to use their knowledge not only for steering but also to articulate it
into the machine learning model.
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One cannot not communicate.

— Paul Watzlawick, Philosopher
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Large-scale interaction networks of human
communication are often modeled as complex
graph structures, obscuring temporal patterns
within individual conversations. To facilitate the
understanding of such conversational dynam-
ics, episodes with low or high communication
activity and breaks in communication need to
be detected to interpret temporal interaction patterns. Traditional episode detec-
tion approaches strongly depend on the choice of parameters, such as window
size or binning resolution. In this chapter, we present a novel technique for the
identification of relevant episodes in bi-directional interaction sequences. We
model communication as a continuous density function, allowing for a more robust
segmentation into individual episodes and estimation of communication volume.
Additionally, we define a tailored feature set to characterize conversational dynam-
ics and enable a user-steered classification of communication behavior. We apply
our technique to a real-world corpus of email data from a large European research
institution. The results show that our technique allows users to effectively define,
identify, and analyze relevant communication episodes.

This chapter is based on the publication [SFS+19] andmajor parts of the following
sections have appeared in:
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• [SFS+19]: Daniel Seebacher, Maximilian T. Fischer, Rita Sevastjanova,
Daniel A. Keim, and Mennatallah El-Assady. “Visual Analytics of Conver-
sational Dynamics”. In: EuroVis Workshop on Visual Analytics (EuroVA).
ed. by Tatiana von Landesberger and Cagatay Turkay. EuroVA. Porto,
Portugal: The Eurographics Association, 2019. isbn: 978-3-03868-087-1. doi:
10.2312/eurova.20191130.

For a statement of the scientific contributions, as well as the division of respon-
sibilities and work in this publication, please refer to Chapters 1.2 (p. 22ff) and
1.3 (p. 26ff), respectively.

6.1 Communication as Meta-Data Events

With the digitization of society, especially in our daily communication, global in-
formation exchange has never been easier, resulting in mounting collections of
communication data. The sheer amount, as well as the intertwined structures it is
comprised of, pose challenging problems when trying to analyze communication
dynamics. Questions such as—what are the patterns underlying the communication
network or who are key players?

To address these questions, a variety of approaches were proposed, mainly,
with a focus on social network analysis. Examples include the identification of
key people in networks or the automatic detection of community structures [XSL11;
XKS13; PBN17]. In the field of automatic text analysis, text content is examined more
closely, for example using sentiment analysis [PL08], topic modeling [ESS+18], or
lexical chaining [GRE15]. However, a problem that has not yet received enough
attention is how people communicate with each other, i.e., a detailed exploration
of the bi-directional interactions within a network. Such analysis allows to draw
further conclusions about users’ behaviors and relations [EGA+16], thus allowing for
more precise identification of roles in social networks.

In this chapter, we present a novel technique to support experts in their under-
standing of arbitrary, timestamped interactions, enabling a feature-driven inves-
tigation of relevant communication episodes. We use kernel density estimation
to model the bi-directional communication events, based on their temporal dis-
tribution, as a continuous communication density function. In a second step, we
present how to model features based on the communication density and other
communication parameters which characterize the bi-directional communication
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Figure 6.1: Visual analytics workflow of our approach for the user-driven investigation of
conversational dynamics in large-scale communication networks.

behavior in individual episodes. By integrating this technique into a Visual Analytics
workflow, as illustrated in Figure 6.1, we enable an investigation of communication
episodes in large-scale communication networks that fulfills our identified tasks.

Overall, we make the following contributions in this chapter:

Co
nt
rib
ut
io
ns

� (C1) A technique for modeling communication based on the temporal
distribution of communication events using kernel density estimation.

� (C2) Density-based detection of communication episodes in bi-
directional communication sequences.

� (C3) Demonstration of how features can be defined and implemented
to characterize the communication behavior in single communication
episodes to allow for the visual analysis of those episodes.

� (C4) A prototype demonstrating the feasibility of this approach as a
visual analytics approach for the investigation and analysis of conver-
sational dynamics.

6.2 Related Work

Communication can be seen as social interactions involving numerous entities over
time, which leads to large and complex networks. The task of analyzing such large
networks is generally referred to as social network analysis, which is described in
the standard literature [Sco17] and often focuses on using measures like centrality
to analyze social ties and communication behavior [LZ15]. A general survey of
visualization systems for networks is given by Shiravi et al. [SSG12]. Additionally,
since such networks often contain the interactions of millions or billions of entities
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over time, simplification is necessary, often using community detection algorithms
such as SLPAw [XSL11] and CCME [PBN17]. An overview of other techniques is shown
in the survey of Aggarwal and Wang [AW10].

Approaches that are related to our work and focus on analyzing relations and
communications in graph networks include, for example, GestaltMatrix, a matrix-
like representation [BN11]; TimeMatrix, which provides insight about the overall
temporal evolution and the activity of nodes over time [YEL10]; Timeline Edges,
which is an integrated approach and tries to leverage unused space in drawing
zero-dimensional connectivity information as one-dimensional edges [Rei10]; T-
Cal, a timeline-based approach that uses distortion to highlight areas with high
communication volumes [FZC+18], or the methods proposed by Fu et al. recognizing
communication patterns [FHN+07]. But all of these approaches have drawbacks
regarding scaling, comparability, or information overload.

We also employ sequence analysis and, while the task itself is common, most
approaches focus exclusively on statistical results or purely on visual compar-
ison [MDM+15]. According to Zhao et al. [ZLD+15], only a few have investigated
visualization approaches for comparing multiple event sequences. One idea that is
proposed is CloudLines [KBK11]. Also, a metric has been presented for comparing
temporal event sequences, but only for chains of sequences, instead of comparing
sequences themselves [MDM+15].

6.3 Communication Behavior Modeling

For the analysis of the communication behavior, we concentrate primarily on the
communications between an entity 𝑎 and another entity 𝑏, for example, persons
or communities. The communications between 𝑎 and 𝑏 can be considered as
the multisets of the edges (𝑎, 𝑏) and (𝑏, 𝑎) in a communication graph. Different
questions are of interest when analyzing the communication behavior between
these two entities. For example, is the volume of communication high or low, is the
communication discontinued, and is the communication one-sided (i.e., are there
more communications from one entity to the other)? To answer such questions for
𝑎, 𝑏, we can compare the number of incoming messages from 𝑏 with the number of
outgoing messages from 𝑎, or vice versa. However, if we look at communications
only as individual messages, it may be difficult to answer such questions. For
example, for finding out if one entity is communicating more than another, we can
compare the number of communications at a given time, but this is only possible if
communications are compared for the same time ranges. If, for example, there is
an hour difference between a communication from 𝑎 to 𝑏 and the response from
𝑏 to 𝑎 (which corresponds to normal response times for e-mails), this would only
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(a) Distribution of communications, on the example of outgoing messages

(b) A Gaussian kernel is placed on each communication event

(c) Estimation of the Communication Density using KDE.

Figure 6.2: Individual communication events are represented as a communication density
using kernel density estimation. The resulting continuous representation enables a robust
detection of communication episodes, as well as, the derivation of features for a classifica-
tion of such episodes.

be measured as a symmetric communication behavior if the communications were
compared on the same time range.

In order to avoid these problems in the analysis of communication behavior, we
do not model the communications as individual events, as shown in Figure 6.2a,
but as a continuous communication density function, as shown in Figure 6.2c. This
avoids the issues with binning or sliding window approaches as described above by
using a smooth kernel. In turn, this prevents problems such as the failed comparison
of communication behavior described above, since a communication no longer
corresponds to a temporally atomic event, but can be measured with decreasing
importance in the past and future and therefore no exact correspondence of the
time units must exist anymore. In order to maintain this continuous communication
density function, we use the well-known concept of KDE.

We replace every communication event between 𝑎 and 𝑏 by a Gaussian normal
distribution:

𝐺(𝑥) = 1
𝜎
√
2𝜋

𝑒− 1
2 (

𝑥−𝜇
𝜎 )2 , (6.1)

as shown in Figure 6.2b, with 𝜇 being the center of the Gaussian kernel, i.e. the
position of the communication event and 𝜎 the variance. We can then estimate the
communication density ̂𝑓 for each time point 𝑥 between the two entities, using the
KDE:

̂𝑓(𝑥) = 1
𝑛ℎ

𝑛
∑
𝑖=1

𝐺(𝑥 − 𝑥𝑖
ℎ

), (6.2)

with ℎ > 0 as a smoothing parameter (bandwidth). The parameters 𝜇, 𝜎, and ℎ can
be adjusted as required to make this approach suitable for different domains and

6.3 Communication Behavior Modeling 135



tasks. The center 𝜇 is often set to zero (influence exactly around the event time), but
could be used to encode a prior or subsequent response. The parameter 𝜎 describes
the temporal influence an individual event has, where a very low value encodes a
local event like the existence, whereas higher values could be used to encode more
far-reaching concepts like a conversation about a specific topic, which continues for
some time. The bandwidth parameter ℎ describes how much individual responses
likes spikes should be retained, e.g. for occurrence of key words, or smoothed,
e.g. for general tendencies. If we now consider the communications between two
entities 𝑎 and 𝑏, we can determine the communication density of the incoming
messages ̂𝑓𝑖𝑛(𝑎, 𝑏) (messages from 𝑏 to 𝑎) and vice-versa the outgoing messages
̂𝑓𝑜𝑢𝑡(𝑎, 𝑏).
By modeling communications as a continuous density function rather than as

single atomic communication events , we can easily discover periods with a low or
high communication density. For this, we can directly use the density functions 𝑓𝑖𝑛
and 𝑓𝑜𝑢𝑡 to judge whether one or both entities have made several communications
in a given period of time. A further advantage of this approach is that it enables
automatic detection of breaks in the communication (i.e., we can conversely identify
individual communication episodes). For instance, very few people will continually
send each other messages over long periods of time. Much more common is the
pattern where one person sends a message that, in turn, leads to a discussion
that ultimately ends after a few messages. We can determine these individual
communication episodes by determining the periods 𝑠 in which the communication
density is greater than a threshold value.

Finally, to enable manual filtering of individual communication episodes as
well as visual analysis, we demonstrate how a number of descriptive features
for the analysis of communication episodes can be defined. With the help of
additional variables such as the length 𝐿𝑠𝑖 of one communication episode 𝑠𝑖 and the
density function for the incoming and the outgoing messages in this communication
episode ̂𝑓𝑠𝑖

𝑜𝑢𝑡 and ̂𝑓𝑠𝑖
𝑖𝑛, we can then define features which are suitable for manual

filtering and also enable a visual analysis of communication behavior of individual
communication episodes. An example of such a feature would be synchronicity, i.e.,
if both entities are involved in a communication to the same extent at the same
time. This would be illustrated by an equal communication density of incoming
and outgoing messages in a communication episode. We can calculate this, for
example, by determining the integral of the absolute difference between the two
communication densities.
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Figure 6.3: Communication Sequence visualization showing filtered communication
episodes on a vertical timeline. Incoming and outgoing communication intensity is shown
as a density distribution. In this case, episodes showing a strong challenge-response pattern
are highlighted.

6.4 Visual Analytics of Conversational Dynamics

In the following section, we demonstrate how our technique, in combination with
an experimental set of 14 descriptive features, facilitates visual analytics of con-
versational dynamics. To showcase a real-world dataset, we use email data from a
large European research institution [PBL17]. The dataset is provided by the Stanford
Network Analysis Project and contains the communication of 986 entities over a
timespan of 803 days. In total there are 332,334 messages between 24,929 members
of the institution.

Using communication density, we present a communication sequence visualiza-
tion that enables identification of regions with low or high communication behavior.
This communication sequence visualization also highlights the individual communi-
cation episodes. Finally, we introduce an interactive component that allows the user
to manually filter the episodes as well as label existing episodes in order to perform
a semi-automatic classification of the communication episodes into user-defined
classes.

In order to look at the conversational dynamics in detail, we need to inspect the
temporal patterns of incoming and outgoing messages more closely. To help with
this, we have developed a visualization of the communication sequences between
entities. To represent this conversational dynamic, we can use the communication
density ̂𝑓, defined above. We plot the density of incoming and outgoing commu-
nications ̂𝑓𝑖𝑛 and ̂𝑓𝑜𝑢𝑡 as area charts on different sides of a time axis, as shown in
Figure 6.3.

For the visualization of the density of incoming and outgoing communications,
we have selected the subdued colors lime-green and orange and optimized their
contrast ratio. In addition, we can also use the communication densities to segment
the communication into individual communication episodes by checking whether
the density is above a certain threshold ̂𝑓𝑖𝑛 + ̂𝑓𝑜𝑢𝑡 > 𝜀. These individual commu-
nication episodes are highlighted to make them more distinct, for example with a
light blue background. In order to visualize the conversational dynamics amongst
multiple users, the individual communication sequences can be arranged side by
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(a) Using positive and negative samples, a ML
model is trained to identify episodes in which the
selected groups start the conversation, leading to
a discussion of both entities.

(b) Application of the trained model to the data.
In this example only relevant episodes with high
certainty are displayed, while irrelevant episodes
are faded out.

Figure 6.4: By providing feedback for some data samples, users train ML models to identify
relevant conversational dynamics in episodes.

side. In general, two arrangements are possible: (1) Vertical layout of the commu-
nication sequences, as shown in Figure 6.3, in order to leverage the width of the
display to maximize the number of communication sequences shown. (2) Horizontal
layout to leverage the width of the display to maximize the length of the shown
communication sequences.

The concept of communication episodes also differs in their semantic relations,
depending on the period under consideration. Communication encompassing
several years has to be evaluated differently than one over several days. In the
first example, messages may belong to the same episode, even though they might
be several days apart. In the second example, however, this would be the entire
monitoring period. It is therefore necessary to describe the high-level abstraction
of communication differently, depending on the time range under consideration.
These different concepts of episodes are supported in our interactive visualization
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by semantic zooming. The available levels of granularity can be described by relative
parameters, best adapted depending on the application domain and the specific
analysis task, as described before.

To further enhance the comparability of the episodes, the concepts of timelines
is extended; they can represent threads of time that do not need to be consecutive
and can represent any number of time-ranges of an arbitrary length. Different
pre-defined ranges like days, months, or, for instance, every Monday are available,
while user-defined time periods are also configurable. If more than one linear
timeline (the default) is selected, all timelines per group are juxtaposed. This makes
it possible to compare the conversation dynamics at the same time in several years,
which gives a better insight into recurring or changing communication dynamics.
To provide further support, the whole view is interactive and each timeline is
reorderable and realignable.

To allow for visual analytics of conversational dynamics, we need to be able
to classify communication episodes into different classes. However, a priori, there
is no predefined set of classes in which to classify the episodes. The desirable
classes strongly depend on the domain and the analysis task under consideration.
Therefore, we present a semi-interactive visual analytics approach where a user can
define their own classes by example. A user can define a class and then provide
some positive and negative examples as training data by clicking on relevant or
irrelevant episodes. Classification is done using machine learning based on the
defined features, which ideally show identifiable differences that reflect the user
selection.

In our case, as shown in Figure 6.4, we use a Random Forest Classifier to make
this binary match/no match classification with a confidence estimation since it can
be trained with very few training samples. This trained classifier can be used to
perform the binary classification for all other episodes, representing one model.
It is possible to train several models and to combine them to allow for more
advanced patterns. Theoretically, a completely manual approach can also work
here, using rule-based classification. However, this becomes too tedious for more
complex conversation classes and combinations of features and is therefore not
practical. Using the semi-automatic approach, a user can define a class and train an
appropriate classifier with only a few interactions. Since we use a Random Forest
Classifier, we can model the uncertainty for the prediction of each episode. After
a user has trained a classifier for a class, we can use this uncertainty measure to
additionally filter the episodes. For example, the user can view relevant episodes
for a class by choosing only those for which the classifier is very confident. In turn,
this also means that we can inspect all episodes for which the classifier is very
uncertain about the prediction. These borderline cases are the most promising
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for re-labeling by the user in order to iteratively optimize the performance of the
classifier.

Expert Feedback To evaluate the usefulness of our approach, we conducted an
interview with one domain expert. For this interview, a different, proprietary com-
munication dataset was used, whose characteristics are similar to the dataset
presented here. The interview was designed as a combined system evaluation and
feedback round. The following paragraph describes not only the key findings and
comments by the experts, but also possible areas for improvement: The selection of
non-consecutive, parallel timelines for comparability is regarded as useful, as well
as the dynamic semantic zooming. Some fear was voiced that the default overflow
of communication sequences to the right, to reduce the information density, might
be misleading and lead to overlooked results. Therefore, it was recommended to
compress the whole visualization on the screen initially—even when the density
would be too high to be practical—and therefore require zooming all the time,
but not leaving anything offscreen. The automatic detection of sequences with
semantic zoom (levels of communication) in combination with filtering sequences
and applying machine learning models to it is regarded as a very interesting, novel
and realistic approach, which is useful to detect and replicate in other timelines or
comparing between users. Both the manual filtering as well as the example-based
machine learning are judged to be relevant, the former for first exploration and
the later for comparison and detection. With these tools, the expert were able to
semi-automatically find related patterns, which would be impractical manually.

In general, the expert interview showed the system works and that the ap-
proaches were received with interest and judged to be useful. According to the
experts, the system offers many possibilities for different analysis tasks and is well
suited for network exploration in the temporal analysis domain. Examples include
the examination of bank transactions, phone records, or e-mails, where it proves
very useful in specific situations, like finding relevant nodes. The main criticism
voiced by the expert is the tendency for information overload when scaling the
approach to show the conversational dynamics between numerous entities as they
might occur in large communication networks, which might result in overlooked
communication.

6.5 Conclusion

To demonstrate its feasibility, we applied our framework to parameters relating
around communication density and response and have shown how we can visualize
and analyze communication behavior with our modeling. This method, however,
can be extended to encompass more complex domain-dependent concepts, for
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instance, message content or sentiment. Apart from manually designed features,
one can explore the emerging field of automated feature engineering as pioneered
by Kanter and Veeramachaneki [KV15] and Katz et al. [KSS16]. Including own features
enables a far more in-depth investigation of conversational dynamics. Nevertheless,
the interview with the expert showed that our approach provides benefits when
investigating conversational dynamics.

A challenging step for future work is to investigate how this approach can be
used for the analysis of conversations of more than two parties, or how it can be
integrated into a social network analysis workflow. A potential idea would be to use
the communication episodes between entities, found with the help of our approach
and classified as relevant by the user, for the weighting of the connection between
the entities in a social network graph. Following our VA approach the user can
also influence this weight by filtering non-relevant communication episodes. This
weighting can than be used to steer community detection algorithms such as SLPAw
or as an input for graph layout algorithms to visualize the social network structure.
Thus, with the previously presented idea to include further domain-specific concepts,
such as message content, community detection or layout algorithms could be further
steered for answering questions such as whether discussions about relevant topics
have taken place between users.
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Two souls, alas! reside within my breast, and each withdraws from, and
repels, its brother.

— Faust, Character in Faust by J. W. von Goethe
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CommAID: A Text-based Visual

Analytics Technique

Contents

7.1 The Need for Holistic Communication Analysis 146
7.2 Related Work . . . . . . . . . . . . . . . . . . . 148
7.3 Challenges and Design Decisions . . . . . . . . 151
7.4 Methodology: Modeling Communication . . . 152
7.5 System Design . . . . . . . . . . . . . . . . . . . 154
7.6 Evaluation . . . . . . . . . . . . . . . . . . . . . 162
7.7 Discussion and Future Work . . . . . . . . . . . 166
7.8 Conclusion . . . . . . . . . . . . . . . . . . . . . 167

In the previous chapter, we studied the in-
terpretation of patterns in communication pri-
marily based on its meta-data. However, as we
described at the beginning of this dissertation,
communication can be more complex, consist-
ing of both meta-information as well as content
presented in a specific context. Currently, the
automated analysis of communication data of-
ten focuses either on the network aspects via
social network analysis or the content, utilizing methods from text mining. However,
the first category of approaches does not leverage the rich content information,
while the latter ignores the conversation environment and the temporal evolution,
as evident in the meta-information. In contradiction to communication research,
which stresses the importance of a holistic approach and which we discussed in
Chapter 2, both aspects are rarely applied simultaneously. Consequently, their
combination has not yet received enough attention in automated analysis systems.
In this chapter, we aim to address this challenge by discussing the difficulties and
design decisions of such a path as well as contribute CommAID, a blueprint for
a holistic strategy for communication analysis. It features an integrated visual
analytics design to analyze communication networks through dynamics modeling,
semantic pattern retrieval, and a user-adaptable and problem-specific machine
learning-based retrieval system. An interactive multi-level matrix-based visualiza-
tion facilitates a focused analysis of both network and content using inline visuals
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supporting cross-checks and reducing context switches. We evaluate our approach
in both a case study and through formative evaluation with eight law enforcement
experts using a real-world communication corpus. Results show that our solu-
tion surpasses existing techniques in terms of integration level and applicability.
With this contribution, we aim to pave the path for a more holistic approach to
communication analysis.

This chapter is based on the publication [FSS+21] andmajor parts of the following
sections have appeared in:

• [FSS+21]: Maximilian T. Fischer, Daniel Seebacher, Rita Sevastjanova,
Daniel A. Keim, and Mennatallah El-Assady. “CommAID: Visual Analytics
for Communication Analysis through Interactive Dynamics Modeling”. In:
Computer Graphics Forum 40.3 (2021), pp. 25–36. issn: 01677055. doi:
10.1111/cgf.14286.

For a statement of the scientific contributions, as well as the division of respon-
sibilities and work in this publication, please refer to Chapters 1.2 (p. 22ff) and
1.3 (p. 26ff), respectively.

7.1 The Need for Holistic Communication Analysis

The enormous growth in the use of electronic devices and systems in the past
decades has led to an exponential increase in digital forms of communication. Si-
multaneously, the abundance of this digital communication [Sco09] and correspond-
ing datasets has increased interest in how such communication can be analyzed
in a wide variety of different domains, ranging from social sciences and digital hu-
manities to engineering and business. For example, it has been studied how social
and psychological features change with computer-mediated communication [GA08],
how team performance can be assessed based on communication [FM08], how
networks can be analyzed using text-mining [YP04], or how the evolution of dynamic
communication networks can be visualized [Tri08]. This short list already shows a
peculiar oddity when studying automated, digital communication analysis systems:
most existing approaches focus on either the content of communication or on
the network aspect—but not both. The first group of approaches usually leverages
methods from natural language processing [MS99], while the latter uses techniques
from the field of Social Network Analysis [Sco17].
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Interestingly, this distinction between content and network is neither present
in the seminal works on human communication research [Mor34; WBJ74], nor in
modern works [Pea11] or current studies [FM08; Mes09], even if digital methods aid
the manual analysis. Indeed, the analysis of network structure, communication
patterns as well as content plays an integral part [SD60; WBJ74] of this research
field. Abstractly, communication can be described as the exchange of meaning
between entities, transporting information encoded into symbols [Pea11], reflecting
the content’s meaning and the network and metadata aspects through transport
modalities. As such, analysis of the network/metadata or the content alone can
sometimes provide a limited, incomplete, or even biased view on the communica-
tion, which is not ideal. Alternatively, employing independent approaches would
introduce domain discontinues and complicates search tasks, placing an additional
burden on the users.

The problem of how both the network and the content perspective can be
combined has not yet received enough attention when considering communica-
tion analysis systems. This is especially relevant when such systems are used by
non-communication experts, like in business intelligence applications or targeted
criminal investigations, on which we based a case study (see Section 7.6.1). Typical
tasks in these domains include searching for specific semantic content (e.g., nega-
tive product reviews, location names together with keywords), identifying groups
(e.g., clusters or cliques), or a particular communication pattern (e.g., sequence,
volume, timeline). These tasks can be addressed with separate solutions. But if,
rather commonly, the search for specific semantic content needs to be restricted
to a particular set of users (e.g., specific communication patterns, high centrality,
or part of a specific clique), separate solutions struggle or even fail. Several other
common tasks would benefit from such a combined search for cross matches and a
fine-grained analysis of the communication network structure and context to detect
such communication behavior and are therefore also not adequately supported so
far. For example, detecting a terrorist attack on a soccer match by identifying the
perpetrators increased chatter (hiding between the fans’ increased chatter about
the kick-off) about a parcel, which combines network, communication pattern, and
content analysis.

In this work, we aim to address these shortcomings by discussing a possible
technique as well as provide a framework for a holistic approach to interactive
communication analysis. We do not aim to describe a turnkey system or replace
existing solutions, but rather discuss the challenges and design decision in such a
system, present an exemplary blueprint prototype on how such an integrated system
could look like, and gather expert feedback on such a broader approach, to support
further research and positively influence system development in this domain. For
this, we extend upon two previous approaches presented previously, which we use
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as building blocks. In Chapter 6, we have used conversational dynamics to analyze
communication patterns, covering the network analysis side. In Chapter 5, we have
described a technique for hypergraph analysis, combining machine learning and a
multi-level matrix-based visual interface. From this, we borrow and adapt parts of
the visual interface technique: The conversational dynamics aspects are integrated
in this framework as one analysis model, while themulti-level matrix-based interface
design is repurposed for the main interface.

In this work, we present CommAID (Communication Analyis through Interactive
Dynamics), making the following contributions:

Co
nt
rib
ut
io
ns

� A blueprint for a novel, interactive framework for a more holistic
communication network analysis building upon individual models, pro-
viding a tight coupling between the network and the content analysis
aspects.

� A description of two extendable models as example levels for network
and content analysis, offering conversational dynamics [SFS+19] and
semantic concept detection, also including several standard levels.

� A discussion on the challenges, design choices, and future work for a
holistic communication approach.

� One case study and an assessment with eight law enforcement experts
using real-world communication data describing an application in the
law enforcement field.

Our approach bridges the gap between network and content analysis in auto-
mated communication analysis systems, supporting domain experts in exploring
and analyzing arbitrary bi-directional communication. At the same time, we aim to
pave the path for a more holistic approach to communication analysis.

7.2 Related Work

Social network analysis, which describes a collection of research methods for identi-
fying structures in systems, is widely described in the standard literature [Sco17] and
applied in many fields. For communication analysis, the early works were later ex-
tended and taxonomized by Bavelas [Bav50] and Leavitt [Lea51], before Roger [RK80]
proposed to extend the field to communication networks. While detailed, domain
specific content analysis, for example, in psychology [Ber52], was already known
almost seven decades ago; only the recent advancement of computational capa-
bilities allowed the focus to shift to a bulk analysis of communication data on a
larger scale. Using methods from social network analysis, it became possible to
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investigate network aspects like social ties and communication behavior [LZ15]
by using centrality measures, detect communities [XKS13] and clusters [AW10] or
model whole artificial networks [BMBL09]. However, using social network analysis
on communication data primarily covers these network aspects. When focusing
on metadata and communication content, a virtually unlimited amount of anal-
ysis methods can be applied. For example, metadata analysis [MHVB13] can be
used to identify individuals, keyword-based searches [YP04] can filter for specific
content, while methods from natural language processing [MS99] like sentiment
analysis [GH11; PL08], topic modeling [ŘS10], or lexical chaining [GRE15] can support
an advanced understanding of the meaning.

While this should give us ample scientific and technical methods at hand to
analyze communication thoroughly, when we study automated, digital human com-
munication analysis systems, we notice the peculiar oddity that most existing
approaches focus either on the network or the content aspect, but not both, as
we discussed above. A majority of the systems with communication analysis in
mind follows the former approach. The de-facto standard in civil security and
business intelligence applications are IBM’s i2 Analyst’s Notebook [IBM20] and
Palantir’s Intelligence Platform [Pal20], and, to a lesser degree, the large network
analyzer Pajek [BM98], both commercial solutions. The open-source equivalent
Gephi [BHJ09] is also used sometimes. While i2 Analyst’s Notebook can be extended
with content analysis capabilities, such a search is only offered as a separate in-
terface. From a visualization perspective, all follow a node-link-diagram based
approach. These suffer from inherent limitations like clutter or occlusion when
the graph size becomes too large, and connections cannot be filtered enough for
the search tasks, while techniques like edge bundling can only help so much. In
fact, a study by Ghoniem et al. [GFC05] shows that matrix-based visualizations are
better suited for large or dense networks and perform better from a scalability
viewpoint. Various other methods are described in a general survey [SSG12] of
visualization systems for large networks. For example, when considering communi-
cation networks as multivariate graphs, one could employ techniques like Multilevel
Matrices [Ham03], LiveRAC [MMKN08], Hyper-Matrix [FAS+20] or Responsive Matrix
Cells [HBS+20] for improved scalability and detail, often combined with matrix re-
ordering techniques [BBH+16]. Alternatively, it is possible to leverage semantic or
magic lenses [GSBO14] to highlight and enlarge relevant parts. When focusing on
social network exploration, the survey by Riche et al. [HF10] focuses on specific
extension for node-link and matrix-based approaches.

Looking at the academic contributions, we discover mostly alternative visual-
ization and analysis methods. Matrix-like approaches are used, for example, by
GestaltMatrix [BN11] to visually analyze asymmetric relations, or MatrixWave [ZLD+15]
for comparing multiple event sequences. A notable set of approach that leverages
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matrix designs were proposed by Nathalie Henry: MatrixExplorer [HF06] presents
the idea of combining node-link and matrix approaches, which NodeTrix [HFM07]
extends to address the occlusion problem for large node-link diagrams by switching
to a matrix view locally. To address issues in path tracing in matrix views, they further
present MatLink [HF07]. Timeline-based designs were proposed as part of Time-
line Edges [Rei10] to efficiently use edge space, in T-Cal [FZC+18] to highlight areas
with high communication volumes using distorted plot lines or as part of Cloud-
Lines [KBK11] to display event episodes in multiple time-series. Hybrid approaches
also exists, like Fu et al. [FHN+07] that propose to modify graph representations
using multiple planes to recognizing communication patterns in e-mail networks.
When considering the metadata and content analysis side, countless methods exist
in various fields. However, many do not explicitly focus on communication analysis,
and we will not discuss them here, although some can in principle be applied to a
selection of the content-related tasks defined above (e.g., the interactive discourse
analysis by Zhao et al. [ZCCB12]).

Leveraging analytical capabilities from both network and content information
simultaneously has rarely been done. Interestingly, commercial systems seem to
be ahead of their academic counterparts. Apart from Analyst’s Notebook, which
we discussed above, systems like Nuix Discover and Nuix Investigate [Nui20] for
e-mail analysis and whole investigation frameworks like Palantir Gotham [Pal20] and
more recently, DataWalk [Dat20] have become available. Some have received mixed
responses by the public given their primary application in the intelligence and
law enforcement community. As they are commercially developed, closed source
solutions with few details about their detailed capabilities and internal workings,
as well as their applications, they are often shrouded in secrecy (given their target
domain). This proves problematic because it hinders oversight from an independent
community like academia to track capabilities or point out issues like bias, which
becomes increasingly relevant with the usage of machine learning techniques within
these solutions. Looking at the academic contributions, we have three relevant
approaches which combine network and content perspectives: TimeMatrix [YEL10]
by Yi et al. combines meta-information and network structure. It uses a matrix-
based visualization to analyze temporal social networks using TimeCells, showing
a visual aggregate of a node’s temporal information. For example, it can show
edge count for a pair of nodes over a period of time. OpinionFlow [WLY+14] by
Wu et al. combines content with network structure analysis to visually analyze
opinion diffusion. They base their modeling on the network structure and sentiment-
specific word embeddings, with the results shown using timeline-like visualizations.
IEFAF [HDL+09] by Hadjidj et al. also combines content with network structure
analysis. It uses a multiple-coordinated view system with a node-link diagram as the
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primary visualization to support the forensic analysis of email, supporting various
filter techniques, like metadata or keyword analysis and authorship attribution.

Given the little overlap between these solutions, their restricted applicability to
communication in a generic case, and the growing support in commercial applica-
tions - in contrast to academic literature - reveals a missed opportunity. This is the
gapwe aim to fill: Provide a blueprint for a more holistic approach to communication
analysis that supports network, metadata as well as content aspects simultaneously
by the use of extendable plug-in models in a single interactive visualization system,
enabling the effective exploration of communication for interrelated tasks.

7.3 Challenges and Design Decisions

Such an approach encounters several challenges. One obstacle comes in the form
of the different requirements to internal data representation and the analysis
methods, like graph-based approaches or content-based methods as well as the
communication type involved, and how they can be combined in a single system
while acting on the same data set. For this, we formalize communication modeling
in Section 7.4 and describe the analysis as abstract operators working on a shared
data space used internally.

The second challenge concerns the visual representation and interaction when
combining these different methods in a single framework. The proposed system
has to visually support different analysis modalities as part of a holistic framework
through understandable and effective visualization methods, provide easy access to
the visual results, and to allow useful interactions between them. The visual design
choice also depends on the size and sparseness of the communication network.
For example, a design based primarily on node-link diagrams like IEFAF might work
well for very small networks, but requires larger ones to be sparse or decomposable
into interrelated communities. However, choosing node-link diagrams makes it very
hard to integrate additional information in an accessible way [Rei10], with coloring,
overlays, and details on demand as options. An alternative [GFC05] is to use matrix-
based approaches to support larger and denser networks, which also support in-cell
content. We will follow this path for our approach. Compared to TimeMatrix, we
extend the matrix-based approach considerably by using multiple views involving
semantic zooming within the matrix visualization and thereby displaying specialized
visualizations in-line and on-demand. Our approach scales well with the number of
messages, which, as edges, are the primary source of clutter in a node-link-diagram.
However, when the number of users exceeds several hundred [FAS+20], options
like scrolling or magic lenses might be required. Our design focuses on a holistic
approach, in contrast to existing approaches with limited exploration concepts or
heavy task adaption. It offers flexibility when analysis tasks require combining
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methods from different sub-fields of communication analysis. However, when
analysis tasks are very specialized, for example exploring the network structure
alone, a node-link approach might be more suitable. Further, a possibly viable
addition to our design choice would be to use coordinated views, providing spatially
separate visualizations that are logically linked. Such an approach could be explored
further (see Section 7.7).

7.4 Methodology: Modeling Communication

In the following two sections, we describe the overall workflow, shown later in
Figure 7.1. We begin by defining requirements for an abstract analysis level in
Section 7.4.1 and define standard task levels to address common functionality. For
the purpose of this work, a level can be thought of as a module which answers
an individual analysis aspect. A level can have both a view (see Section 7.5.1) to
show interactive visualizations and properties (see Section 7.5.2) to configure it. We
give two exemplary descriptions of more complex, extendable levels as a blueprint
for individual communication analysis. Firstly, a dynamics level in Section 7.4.3 to
analyze network and metadata. Secondly, a level for semantic concepts described
in Section 7.4.4. The architecture of the framework makes it easy to add own
levels. While it is desirable for levels to cover distinct analysis aspects, they are
not restricted from covering overlapping aspects. In Section 7.5, we then discuss
the integration of the individual levels and the interactive exploration using visual
analytic principles.

7.4.1 Abstract Level

A communication network can be described as a multidigraph 𝐺 ∶= (𝑉 ,𝑀), with 𝑉
a set of vertices representing the communication participants and𝑀 a multiset of
ordered pairs of vertices representing a communication event. Additional metadata
and content can be modeled by defining an information function 𝑖 ∶ 𝑀 → 𝐷,
mapping a communication event to a data space 𝐷. Individual analysis levels can
now be generically defined as operators that act on the vertex space 𝑉, edge space
𝑀, and the information function 𝑖. All this together forms the graph-like shared
data space, which is used internally to store all information. Hashmaps and support
index structures are used for efficient access. Each level can have none, one, or
multiple in-line visualizations called views in the main interface (see Section 7.5.1).
These visualizations can transfer domain- and task-specific information relevant to
a domain expert. Further, each level has its parameters and filters for control. As
individual, separate levels itself would not provide many benefits, the key idea is
to complement each other on the system scale. Their flexible and simultaneous
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application in a single approach provides support for cross-matches, as level-
specific filtering adds together to form a global filter. Additionally, all levels can
output a feature vector that is fed to a machine-learning-based retrieval system,
described in Section 7.5.3, to enable intelligent user steering. The system can be
customized and extended to more specialized tasks by adding additional levels to
cover specific needs.

7.4.2 Standard Task Levels

Analysis usually requires a set of standard operators for filtering and selection,
so we provide a set of standard task levels. For example, to support simple tasks
like restricting the time ranges, one can define an operator on 𝑀 which filters
edges based on the timestamp information in the data space 𝐷 (a timefilter level).
Other examples are to filter participants in 𝑉 through properties in 𝑀 and 𝐷 (a
user selection level), or keyword-based search by restricting based on content
information in 𝐷 (a keyword search level). As these levels act primarily as filters,
a corresponding view (see Section 7.5.1) might not be required. To provide basic
visual analysis, on can define an operator on 𝑉 and𝑀 (a volume level) which tracks
the amount of communication between users, or an operator on 𝑉,𝑀, and 𝐷, that
track the temporal evolution of such communication (a distribution level). For both,
we provide corresponding views in the main interface (see Section 7.5.1). For the
remainder of this work, we will primarily focus on the more complex levels in the
following two sections as they allow us to define task-specific analyses and only
consider these standard task levels when necessary.

7.4.3 Dynamics Level

Different questions are of interest when analyzing the communication behavior
between entities: For example, how does the volume of communication develop?
Is communication discontinued? Is it one-sided, or are there specific patterns?
However, if we look at communications only as individual messages, it may be
difficult to answer such questions. To analyze the dynamics of communication
events more thoroughly, we follow our previous work [SFS+19], and define a set
of features which operate on the edge space 𝑀 and the information function 𝑖.
There, we model communication not only as individual events but as a flow, which
can be described using distributions and a continuous density function. This view
enables us to easily model influence effects like the response time (both prior and
delay), the width of the temporal influence, or control between spikes and general
tendencies simply by adapting parameters like 𝜇, 𝜎, or ℎ, respectively. For details,
see the original publication. It further allows us to detect breaks in communication
and thereby identify communication episodes. The choice for the granularity of
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the episodes is made globally and dataset-dependent. Together, this facilitates
the structural communication analysis and helps to address the questions posed
above.

In our work, we leverage these previous ideas and adapt them to work on
top of the abstract level formalization defined above: We take the properties and
visualization ideas form the original work and transform as well adapt them to work
with this approach by adding level properties and an in-line visualization (a view),
which we further describe in Section 7.5.1.

7.4.4 Thematic Level

In general, the inclusion of thematic concepts allows a user to refine their search task
in amore powerful way than keyword lists and comesmore naturally to analysts, who
often think in concepts. Regarding modeling, a thematic level operates on the edge
space𝑀, depending on the content information in the data space 𝐷. A standard
method to extract concepts from text data is named entity recognition. There, it is
possible to either use pre-trained models or adapt them with domain-specific or
task-specific concepts. However, a simple search using these semantic concepts
might not be flexible enough to allow for more complex search tasks like ”retrieve
communication talking about a person in connection with a location”. Therefore, we
propose an interactive visual query language that allows for a flexible combination
of semantic concepts to fulfill such search tasks. This query language allows creating
multiple semantic queries based on spatial co-occurrence of semantic concepts.
These queries can then be combined using Boolean algebra to build more complex
filters. For example, the above search could be restricted further by additionally
requiring an organization to be mentioned, which is combined with the first query.
As this level acts more like a filter on the data, it is an example of a view-less level,
not having a separate in-line visualization in Section 7.5.1.

7.5 System Design

This section focuses on the visualization and interaction concepts to integrate
multiple levels in a single framework while providing a tight coupling between the
network and content analysis aspects. The proposed workflow for this architecture
is described in Figure 7.1.

We begin by describing how the overall network can be visualized using a
matrix-based visualization that provides multiple levels as views, representing the
individual analysis levels’ results. Table 7.1 shows the interplay between Levels,
Views, and their properties.
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Figure 7.1: High-level workflow of our system, highlighting the main components and the
interaction flow for the communication network analysis. The workflow begins with raw
data extraction and the generation of the individual level . A multi-level matrix
visualization containing other in-line visualizations presents the current model state
to the user and allows for different interaction and exploration schemes. The domain
expert can then explore and refine the levels through their properties , leveraging an
internal relevance feedback system , updating the overall model state, and adapting
the selection. The history of refinement interactions is archived to provide provenance
information , which can be exported as part of a physical report for inspection,
traceability, and explainability. Components indicated with a * [SFS+19] and † [FAS+20] are
based on and extended from previous work, presented in Chapter 6 and Chapter 5.

Conceptually, the information becomes more nuanced during level drill-down,
going from overview to specific analysis to content, while each level addresses
a specific question related to the level-modeling in Section 7.4. To facilitate the
interactive exploration, the levels can be controlled via a property pane . The
levels can then act as filter methods, enabled through standard operators for
standard task levels, steering options for conversational dynamics, and a visual
query interface for thematic searches. We specify how these individual levels can
act together, which in-line visualizations they provide to support the exploratory
analysis, and how user feedback for the adaptable retrieval system can support the
search. This methodology helps domain experts to gain a better understanding of
the communication data by providing rapid-feedback through interactive filtering,
covering different analysis levels simultaneously. Finally, we describe how all steps
are recorded in a provenance history graph, making the decision-making processes
traceable.
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Level View Properties
Volume x -
Distribution x -
Timefilter - x
User Selection - x
Keyword Search - x
Thematic - x
Dynamics* x x

Table 7.1: The available analysis levels in our system. Among the standard tasks levels, the
two examples of more complex, custom level implementations are highlighted in bold. The
component indicated with * [SFS+19] are described in Chapter 6.

7.5.1 CommAID Interface Design

For the visualization of the communication networks, we adapt the multi-level
matrix technique from our previous work [FAS+20]. However, we change the
meaning of grid layout as well as the levels and the cell information: (1) Instead
of representing nodes (rows) and hyperedges (column), they, respectively, become
senders and receiver. (2) Instead of displaying increasingly detailed cell information,
the in-line visualization represents the results of the individual levels discussed
in Section 7.4 as independent views, which are different, but not necessarily more
detailed. The overall interface of our approach is shown in Figure 7.2.

The novelty here is how existing visualization are combined, adapted, and
integrated into an holistic framework and how the interaction with it is designed.
Apart from the interactive matrix-based visualization A , the linked level property
pane B allows to restricting the search space, using standard task filters, dynamics
settings, and a thematic concept builder C . In this prototype, three different views
are provided: Volume D , Distribution E , and Dynamics F . They are shown
as part of Figure 7.2 and in more detail for three generic cells each in Figure 7.3. A
provenance history graph G , discussed later in Section 7.5.4, allows to keep track
of the analysis steps and results. In the following, we explain the design rationale
of the views. It is important to note that through semantic zoom, the order in which
the views are shown is fixed.

The basic principle of semantic zoom is that each cell of the matrix visualiza-
tion serves as a canvas for a different type of analysis result of the communication
between two entities in the network. However, rendering detailed visualizations
there makes sense if a cell has a specific minimum window size. Otherwise, even
basic visualizations can be impossible to read. Guidelines [FIBK17] have been de-
veloped for the required size to retain readability. Along those lines, and with the
type of views in mind, we have chosen a view switch with every doubling of cell size.
When using a different type of view, the transition criteria might have to be adapted.
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Figure 7.2: CommAID, an integrated visual analytics technique to analyze communication
networks through dynamics modeling, semantic pattern retrieval, and an interactive multi-
level matrix-based visualization A . This visualizations enables the inspection of individual
communication at different analysis levels through semantic zooming, while the linked
level property pane B allows to restricting the search space, using standard task filters,
dynamics settings, and a thematic concept builder C . The in-line views show the visualiza-
tions provided by the individual analysis levels (different zoom steps) presenting volume
information D , statistical distribution information E as well as communication episodes
using conversational dynamics F . A provenance history graph G allows to keep track of
the analysis steps and results. The technique allows to interactively explore communication
activity from a metadata (connectivity, closeness, time, statistics) as well as a content level
(keywords, thematic concepts) simultaneously, reducing discontinuities.

For example, either by using a different scaling factor or keeping the cell size for
some view transitions and just switching the view.

The Volume View (belonging to the volume level) displays the number of com-
munications between two entities, where the amount of communication is visually
mapped to the cell’s color. Different color scales can be used depending on the task
requirements. Figure 7.3a shows a sequential, single-hue gray color scale, where
white indicates that no communications are taking place, and black represents the
maximum number of communications between two entities in the network. Color
schemes are replaceable, for example, for users with visual impairments or by using
diverging color schemes to indicate deviations from the average.

(a) Volume View: The amount
of communication is visually
mapped to the color of the cell.

(b) Distribution View: Provides
an overview of the temporal dis-
tribution using barcharts.

(c) Dynamics View: Visualizes
the communication episodes be-
tween two entities.

Figure 7.3: Overview of the three views that are provided in CommAID. We distinguish
between the volume, distribution, and dynamics view. The first two in-line visualizations
come from standard task levels (see Section 7.4.2), the latter from the dynamics level
(Section 7.4.3).
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The Distribution View (belonging to the distribution level) is used to provide an
overview of the temporal distribution of communications. Similar to TimeMatrix, we
use a bar chart, but add a background color (matching the Volume View) to retain
the overall amount information. Thus, in addition to the temporal distribution of
communications, global information can also be visualized.

While these two represent views for the standard task levels, providing views
for the custom models is especially interesting. Here we offer the Dynamics View,
visualizing results from the dynamics level . There, we represent the
communication episodes between two entities in the network. Depending on the
tasks, the episodes can be shown chronologically or customly sorted.

All three views have in common that they offer additional details-on-demand.
A click on a cell opens a zoom-level-dependent tooltip (see Figure 7.4a), which
provides information about the time distribution, named entities used, or raw data.
A click on an episode also opens a tooltip (see Figure 7.4b), which visualizes the
discussion content between two entities using a chat-style metaphor. In both
details-on-demand visualizations, the user can directly perform a refinement step,
e.g., by excluding entities from the search or evaluating communication episodes
for relevance.

(a) Details-on-demand populated by the distri-
bution and thematic level presenting the time
distribution, thematic named entities used, and,
additionally, the raw data.

(b) Details-on-demand for a communication
episode visualizes the discussion in a chat-
style metaphor. The communication can be
ranked for the classifier discussed in Sec-
tion 7.5.3.

Figure 7.4: Overview of the details-on-demand offered by different semantic zoom levels,
provided by different views.
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(a) The named-entity repository as icons, a dis-
tance token and the query building component
(f.l.t.r).

(b) Building a named entity pattern query is per-
formed via drag&drop of icons and token.

(c) The concepts can be interactively rearranged,
reflecting different query types. The maximum
allowed word distance between two named en-
tities can be set directly in the corresponding
token

(d) After all necessary adjustments have been
made, the current query can be added to the set
of applied queries. Using conjunctive (AND) or
disjunctive (OR) combinations multiple queries
can be combined.

Figure 7.5: Illustration for the step-by-step process for creating a named entity relation
pattern query, searching for two concepts that occur within a given word length of each
other.

7.5.2 Level Properties

Each level can have its own properties, accessible through a property pane on the
right in the main user interface. The standard task levels offer controls like cutoff
values, include/exclude lists, or time sliders. The dynamics level offers restrictions
on the individual properties of conversational dynamics [SFS+19]. Here, we want to
describe one more complex property that can be offered on the property pane
for custom levels, using the Thematic Level as an example: a visual query interface
for thematic searches using named entities. To generate the named entities, we
employ a pre-trained model from spaCy [Hon19], containing a set of 18 named entity
categories. The interface itself is shown in Figure 7.5, illustrating the individual
components and the step-by-step process for creating a sample named entity
relation pattern query, searching for two concepts that occur within a specified
word distance.

As shown in Figure 7.5a, our visual query interface consists of three main compo-
nents: A repository containing a set named entities, such as persons, appointments,
or organizations, a special token to allow distances between naming entities, and fi-
nally, a query building component. To build a named entity pattern query, a user can
drag one or multiple individual named entities from the repository and (optionally)
the special token into the query building component, as highlighted in Figure 7.5b.
The concepts can also be rearranged inside the query building component, reflect-
ing different query types, like single concepts, a chronology order of concepts, or
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distances between the concepts. For the latter, the maximum allowed word distance
between two named entities can be set directly in the corresponding token in the
query builder. In the example shown in Figure 7.5c, the maximum allowed distance
between named entities is set to seven words. After all necessary corrections and
adjustments have been made, the current query can be added to the set of applied
queries (Figure 7.5d). The query shown only serves as a single example of a named
entity query, where other types are possible.

7.5.3 Machine-Learning-based Retrieval System

The design, using multiple complementing levels, allows for cross-level search, with
level-specific properties that can act as filters, acting together to form a global
filter. This already allows for more powerful and interrelated search tasks than
the application of individual levels alone. However, depending on the types of
filtering defined and their interactions, the possible settings might overwhelm
domain experts. Therefore, we propose that each level can output a feature vector
for a communication event. Level-specific vectors can be combined to a single,
large feature vector used for classification purposes in a user-steerable machine-
learning level. Although progress has been made to use deep learning efficiently
by reducing training time [SK16] and improve explainability [GMT+18], their usage
is still problematic when requiring (theoretical) traceability, for example, due to
legal constraints. Consequently, as proposed in the literature [MQB19], we employ
a rule-based approach based on a random forest model. However, while this can
fulfill legal requirements, from a perspective of lay use, a random forest’s decisions
might still be tough to understand. It has, however, the additional benefit that the
training size can be relatively small (usually much less than a few dozens), making it
suitable for an interactive application, while the examples can easily be collected by
the users themselves, based on their expert knowledge. A user can train individual
automatic classifiers that support him on specific tasks and modularly combine
them to compute overall predictions.

The selection of training examples for the classifier happens interactively. A user
can label communication in a binary way as relevant or irrelevant to perform a semi-
automatic classification of communication into user-defined classes. An example of
such a selection is shown in Figure 7.6. Such a trained classifier can then perform the
binary classification for all other communications, acting as an additional high-level
filter. Since we use a Random Forest Classifier, we can model the uncertainty for the
prediction, which is useful for thresholding. This also allows presenting ambiguous
communication, where the classifier is very uncertain, to the user for re-labeling,
allowing for an interactive optimization. To separate between this semi-automatic
retrieval system and manual level property settings, communication that is filtered
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(a) Cutout showing the individ-
ual episodes.

(b) The positive and negative
samples.

(c) Results, with irrelevant
episodes faded.

Figure 7.6: By providing feedback, users train MLmodels to identify relevant conversational
dynamics in episodes. Here, the aim is to identify episodes in which the selected groups
start the conversation, leading to a discussion of both entities.

Figure 7.7: Provenance history component showing previous filter states as nodes in a
directed acyclic graph (DAG). The currently selected node and the leaf nodes are specially
colored and important states can be starred for easier distinction. The states allow for more
flexible navigation, to revert from dead ends or branch of to a different analysis direction.

out by the automatic system is only faded out based on a variable threshold, but
not hidden completely.

7.5.4 Analytical Provenance

To support experts even in lengthy and complicated investigations, we offer a
provenance history component, which is displayed in Figure 7.7. Since explainability
is relevant, for example, in court cases, decision making and a record of the obtained
results must be preserved. The provenance history contains previous filter states
as nodes in a directed acyclic graph (DAG) to allow for more flexible navigation
compared to a linear history [HSS+]. Important states can be visually starred. The
user can navigate between different states, go back to previous results, or branch off
as a new starting point for further analyses. This enables the user to continuously
verify and retrace results, which is especially advantageous for creating trust in the
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user’s results. Further, the individual filter states can be bundled into a physical
report and thus archived. In this way, the analyst’s results can be reproduced,
retraced, and explained, even after an extended period and/or to third parties.
Since each of the steps and all of its belonging information and metadata and
the obtained results can be reviewed and analyzed independently, allowing for
explainability of the results obtained.

7.6 Evaluation

To demonstrate the effectiveness and improvements compared to existing ap-
proaches of the visual exploration of communication behavior in CommAID, we
conduct an expert assessment of the prototype while additionally conducting a case
study together with a small-scale user study later on. As communication data, we
use the largest publicly available source, the Enron dataset [KY04], encompassing
517 431 messages from 151 users.

7.6.1 Formative Domain Expert Assessment

The assessments were conducted by demonstrating the prototype to six domain
experts (LEA 1–3, RS 1, SI 1–2).

Expertise LEA 1 is a criminal investigator at a European law enforcement agency
with extensive experience in the field, including communication and network anal-
ysis with graph-based visualization using systems like IBM i2 Analyst’s Notebook,
Pajek, and Gephi. LEA 2 is a criminal investigator with no prior experience using
graph-based visualizations. He focuses on the communication content, using foren-
sic tools like Cellebrite and IBM i2 Analyst’s Notebook, which is laborsome. LEA 3 is a
senior judicial commissioner in law enforcement with extensive experience in digital
investigation techniques. He is aware of the graph-based approaches used within
his unit, but has limited own expertise. RS 1 is the head of a university-affiliated
institute for policy and security research, a full professor and senior researcher
working on government projects. He has worked with graph-based visualizations
and approaches for over 20 years, for instance, for bibliometric investigations. SI 1
is a senior project lead within the security industry for developing investigative
solutions for LEAs. SI 2 is a junior solutions specialist within the security industry
and worked on visualization techniques, including graph-based visualizations, for
criminal investigations before. All but one (SI 2) of the experts have more than 15
years of experience in digital and criminal investigations.

Methodology The expert assessment was conducted as a formative evaluation
taking 90 minutes, with the experts observing, commenting, and asking questions on
the system, while provided with an user sheet. They were also allowed to steer the
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exploration by requesting specific actions. As such, a formative evaluation without
direct usage usually cannot replace the benefits of a full user study; therefore,
we additionally describe a case study in Section 7.6.2 which we used to conduct a
user study with two further domain experts later on, as described in Section 7.6.3.
The experts were first given a ten-minute introduction about the aim, which is
aligned with the tasks defined in Section 7.1: facilitating the visual analysis and
exploration of large amounts of communication data using different visualization
and filtering methodologies simultaneously to structure and reduce the search
space to a manageable size for inspection by an analyst. The prototype was then
showcased and explained during 30 minutes of interactive demonstrations, where
the experts actively asked questions and commented on the presented aspects.
They include using the network overview to detect promising connections and
explore individual details as well as communication episodes in level-specific
visualization through drill-down. Further, we presented and then debated the
different interaction techniques, then the available filters to reduce the selection,
and finally the example-based machine learning retrieval classifier.

The interactive session was followed by a structured interview, taking about
50 minutes, using a set of 29 prepared questions about various aspects of the
approach. This interview was interluded by interactively presenting aspects in the
demonstrator when requested by the experts. The session aimed to elicit experts’
opinions on the system’s design and interaction decisions and identify aspects they
find helpful or prone to misinterpretation. Further, we were interested in how they
would apply these methods in their specific workflows and criminal investigations
in general. The findings of these assessments are described in the following.

Findings All the experts state that both the approach of using a matrix-based
overview visualization and using a semantic zoom for more details is a new ap-
proach in their domain. For example, according to LEA 1, he has “always worked
with graph tools” so far and thinks of our technique as “very interesting and help-
ful”. All experts think that a matrix-based visualization is superior to graph-based
approaches in “terms of scalability” (SI 2) and displaying “supporting informa-
tion” (RS 1). However, both LEA 1 and LEA 2 recommended the matrix columns to be
freely reorderable.

Regarding the semantic zooming, the experts are familiar with such a concept
from everyday applications like digital maps. For communication analysis, some
did not expect this functionality at first (cf. LEA 2). However, it supports their work
and is an excellent way to drill down to “go into the raw data” (cf. LEA 2). RS 1 juged
the semantic zoom as intuitive, but expected that - instead of the communication
structure and content - more information about the “importance of relations” (RS 1)
is shown. RS 1 proposes to include such information as another level, as the design
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is “flexible enough” (RS 1). For example, an analysis levels for centrality analysis
could be added.

In terms of filtering, the experts are happy to have the standard task functionality
included. However, more advanced concepts like the semantic named entity search
were “unexpected” (LEA 1, LEA 3). In their previous experience, the LEA’s were
only able to search using lists of keywords and were “never able to search for
concepts” (LEA 1). They regard this functionality to have much potential, as it allows
for “more generic” (LEA 1) and high-level search terms. As the prototype’s current
implementation restricts them to AND-based queries, all experts state they would
like to combine the queries more freely using Boolean logic.

Regarding the machine-learning based retrieval of communication episodes, all
experts agreed that detecting related and sequential communication is “important
for contextual information” (SI 1). The visualization as density-based communication
amount can be intuitively understood by all experts. LEA 2 regarded it as beneficial
that the detailed raw data from a communication episode can be inspected within
the visualization. Going on from there, the ability to train a machine learning
model by giving communication episodes as examples is viewed as “opening up
new possibilities” (RS 1). Domain experts especially favored that arbitrary features
can, in principle, be used for the machine learning model (extending upon those
we defined above), which can be communication “based on text, audio, pictures,
geographic information systems, or combined with graphs” (RS 1), using additional
levels. Therefore, the features itself “do not matter much, as the user has to define
them” (RS 1), making the flexibility of our approach “very broad” (RS 1).

With such broad applicability, the explainability and retracing of the results
are “an important issue. If an analyst has a result, he needs to explain how he
ended up there” (LEA 3). This explanation is simplified tremendously “with the
generation of a step-by-step report” (LEA 3), as producible from our provenance
history, whereas currently, “analysts have to write detailed accounts on how they
got to the information” (LEA 3) and justify it each time in writing.

In terms of practical usage, they had “no ideas for additional [conceptual]
features” (LEA 1), except for the inclusion of centrality measures. But the potential
possibilities with the framework are almost “overwhelming at first” (SI 1). The
applicability of the presented approach is not restricted to a narrow use case as the
one presented. Therefore, the system is “broadly applicable to multiple domains
where you have bigger groups of communication data. Data that [law enforcement
experts] often have to deal with. For example, organized crime, financial crime,
or terrorism” (LEA 3). All the other experts share this view. Indeed, the presented
system is “a beginning of an interaction platform where you can combine other
logics as well and [which] offers many possibilities” (RS 1), providing custom analysis
levels specific for your needs (cf. RS 1).
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7.6.2 Case Study

During the formative expert assessment, the experts did not interact on their own
with the system, as we were only able to secure a limited, non-individual amount of
time with them. To compensate for bias, we additionally conducted a small-scale
user study with two further domain experts (LEA 4 and RS 2). For this, we describe a
possible case study, highlighting the benefits of an holistic approach.

Methodology and Case Study The case study is based on an artificially financial
fraud use-case to identify senders→ and receivers← of relevant communications.
The aim is to discover those persons which, during the first nine months of
2001 , disseminated knowledge about legal issues involving persons
in combination with organizations in California , and then identify the only
person who received information from all of them. The experts were given a
system manual and a short written description of this task. Such a task often occurs
in real cases, but is not well supported by existing approaches. Instead, one often
relies on keyword list using domain-specific ontologies, requiring manual work to
create and search through the results. Here, we present how an holistic analysis of
network structure and dynamics , metadata , keyword-based search ,
and semantic concepts can address this task.

The expected solution was to map the task conditions to the analysis levels and
their properties: namely specific time ranges, applicable field offices, and concepts
that are relevant for the search ( persons ⊎ organizations , and legal topics

). In a second step, when they have identified the persons that disseminated
the knowledge, they were expected to make the mental transfer to restrict the view
to those participants as sending persons→ and examine which participant is the
only receiver←. The successful completion of the task was measured by checking
the name of the identified users.

7.6.3 User Evaluation

The case study in the previous Section was used to evaluate the system as part of
a user evaluation. During the task, the users were undisturbed to explore and try
out the system freely. They themselves could decide how long they want to train
and check out the system, before actually starting. It was the first time they saw
and used the system for both domain experts, having no prior experience with it
and having received no introduction, so we could do a blind test. After completion,
we interviewed them shortly about their experience. The participants of the user
evaluation are described in the following, before we discuss the findings.

Expertise LEA 4 is the head of the big data department of a federal governmental
agency supporting criminal investigations. She advises law enforcement agents
on the applications of artificial intelligence to criminal investigations. RS 2 is a
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senior scientist at a federal government research institute with over ten years of
experience in communication analysis and terrorist investigations.

Findings Both experts were able to successfully complete the task within 15
minutes. The interface and interaction concepts were described as “intuitive [and]
self-explanatory” (LEA 4). The first expert was surprised to be offered a search for
concepts and initially tried to use the keyword-based search level for conceptual
searches instead of the visual query interface, while the other did not make this
mistake. We conclude that some users would benefit from a more hands-on ex-
planation. LEA 4 took five minutes longer to complete, exploring the options and
results in between, but ultimately solved it like RS 2 (see solution above), who
went ahead directly. The system offers “helpful” (RS 2) drill-downs of visualizations
and is intuitive and straightforward (cf. RS 2) to use. Both domain experts noted
that the system naturally supports the investigative workflows, and the interaction
design combined with the documentation is sufficient for working productively
and getting relevant results. Compared to their existing systems and workflows,
the system provides a significant benefit in analytical capabilities. Most notably, it
allows the simultaneous application of different search methodologies to support
cross-matches. This allows for more powerful queries, in contrast to manually
merging separate results.

7.7 Discussion and Future Work

During the formative expert assessment and the study, we received several pro-
posals on how to extend our approach further. Leaving out expected requests for
a research prototype like more supported data imports, we instead focus on the
core functionality of the approach by discussing the limitations and the broader
applicability as well as the context of future work. For our prototype approach, we
adapted the generic blueprint of modularized communication analysis to the case
study by providing two example levels.

Of course, the system can be extended modularly with further analysis levels,
for example, those featuring graph centrality measures, community detection, lever-
aging specific meta-data like locations, or more specific content analysis modules
based on linguistics. Currently, this requires modification in the source code, but a
plug-in architecture would be conceivable. Regarding the overall matrix visualiza-
tion, the challenges and limits of such an approach for communication analysis have
partly been discussed in previous work [FAS+20]. When tasks are primarily focused
on network structure analysis, a classical node-link-diagram-based approach might
be more suited. Alternatively, one could consider a coordinated view approach and
adding a synced node-link-diagram. As space is limited, making both matrix and
node-link components user resize-able would allow for a task-adaptable interface.
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Intelligent layouting of the node-link diagram based on different parameters (cen-
trality, connectedness, meta-data) would support visually finding patterns, which
can be further analyzed in the matrix view and vice versa.

A challenging step for future work is to investigate how this approach can be
used for the analysis of multi-party conversations. So far we duplicate messages
with multiple recipients, which partly destroys the group aspect. Future work could
investigate how hypergraphs allow to capture such scenarios or how additional
zoom levels could be leveraged for group communication analysis. Also, we assumed
some practical restrictions to describe the network by requiring receiver, sender
and timestamp information for each message. As some analysis steps require those,
incomplete entries (like unknown recipients) cannot be represented. Another aspect
of the prototype is the visual query language, where it could be valuable to extend
the grammar and support nested queries visually.

Finally, the expert interviews and the user study resulted in a positive response
to our workflow and prototype system. However, we are well aware that the sample
group for our formative experts’ assessment and the user study was quite limited.
To achieve statistically more accurate results and broaden the perspective, the study
could be extended with more participants as part of future work. This explainable
and accountable decision making is not only relevant in the security domain, in
which the case study and expert assessment were conducted. Indeed, the experts
think the applications are not limited to such a narrow set of criminal communication
investigations but can be applied to communication data in other domains. One
different application would be in the business intelligence domain. The system could
be applied as a search and retrieval mechanism to search for hidden, decentralized
knowledge contained in business documents and communications. This knowledge
can then be linked and extracted into centralized knowledge management systems,
allowing for more efficient management structures and avoiding redundancies,
making the processes more accountable.

7.8 Conclusion

So far, most interactive, automated communication analysis approaches focus
either on the network aspects or on the content, in contradiction to communication
research. As such, the individual or isolated analysis may not suffice to capture the
full available information and may lead to less effective, incomplete, and biased
results. Further, it can increase the struggle experts face when articulating their
domain knowledge, not leveraging their full potential.

We address this challenge by arguing for and discussing a holistic approach to
communication analysis, simultaneously applying both methods, allowing for more
structured and detailed analytical capabilities. To help domain experts deal with

7.8 Conclusion 167



the complexity of modern communication data, we present CommAID, a blueprint
for a visual analytics-based communication analysis system that offers a wider
approach, providing a tight coupling between the network and the content analysis
aspects, building on individual levels and supported by a machine learning-based
retrieval system.

We provide two extendable levels as an example for network and content
analysis each, covering dynamics modeling (based and extend from our previ-
ous work [SFS+19]) and semantic text analysis. We leverage ideas from hypergraph
analysis [FAS+20] for a multi-level matrix-based visualization design to integrate
those levels in a single interface. However, we specifically tailor and adapt this
idea to communication analysis by providing specific visualization levels to support
domain experts in their mental understanding during exploration and allow them
to answer more detailed questions about communication behavior and structure,
including identifying individual communication episodes. Combining network and
content aspects in a single visualization allows for maintaining overview and focus
while eliminating demanding context switches, rapidly exploring large search spaces,
and providing details on demand. The realized techniques allow the simultaneous
analysis of network and content aspects, like properties, conversational dynamics,
or conceptual content, to refine the search and supports cross matches.

We evaluate our approach in one case study and through assessments with law
enforcement experts using real-world communication data. The results demon-
strate that our system surpasses existing solutions, enabling the effective analysis of
large amounts of information in a targeted and integrated way. The experts regard
this approach as a novel and promising way for a more meaningful communication
analysis that can readily be applied to comprehensive analytical tasks as encoun-
tered in practical applications. While we focused on communication analysis for
law enforcement as driving application, many tasks in communication analysis are
similar and, therefore, our methods are more generically applicable to a wider vari-
ety of domains, like digital humanities or business intelligence. By bridging this gap
between network and content analysis in semi-automated communication analysis
systems, we aim to pave the path for a more holistic approach to communication
analysis.
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δῆλον γὰρ ὅτι τῶν μερῶν ὄντων οὐδὲν κωλύει τὸ ὅλον μὴ εἶναι, ὥστ᾿ οὐ
ταὐτὸν τὰ μέρη τῷ ὅλῳ
For there, clearly, you may have the parts and yet not have the whole, so
that parts and whole cannot be the same.

— Aristotle, Philosopher
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In the previous chapter, we presented Com-
mAID as a blueprint for a holistic analysis of
communication data. In the following, we want
to extend the general idea for a contextual, nu-
anced analysis by going further and not only de-
scribing the (textual) analysis of communication
data but embedding the analytical capabilities
in a broader concept: Primarily challenges faced
by current approaches are related to the consid-
eration of related multimodal data, the transparent inclusion of AI models, and the
implications as well as difficulties in actually designing such systems from an ethical
and privacy perspective. AI-driven models are increasingly deployed in operational
analytics solutions, for instance, in investigative journalism or the intelligence com-
munity. We discussed the ethical and privacy concerns as well as the challenges
involved previously in Chapter 3 and will apply the lessons learned in the design of
the following technique. Further, we have highlighted the need for a holistic analysis
both in Chapter 2 and Chapter 7, and in the following, we describe a technique to
efficiently combine heterogeneous data sources for both holistic as well as multi-
modal analytics, which also includes related data like audio, video, images or other
data types. To tackle the challenge of multimodal analytics, we present MULTI-CASE,
a holistic visual analytics framework tailored towards ethics-aware and multimodal
intelligence exploration, designed in collaboration with domain experts. It leverages
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an equal joint agency between human and AI to explore and assess heterogeneous
information spaces, checking and balancing automation through Visual Analytics.
MULTI-CASE operates on a fully-integrated data model and features type-specific
analysis with multiple linked components, including a combined search, annotated
text view, and graph-based analysis. Parts of the underlying entity detection are
based on a RoBERTa-based language model, which we tailored towards user re-
quirements through fine-tuning and published as open-source. An overarching
knowledge exploration graph combines all information streams, provides in-situ
explanations, transparent source attribution, and facilitates effective exploration.
To assess our approach, we conducted a comprehensive set of evaluations: We
benchmarked the underlying language model on relevant Named Entity Recogni-
tion (NER) tasks, achieving state-of-the-art performance. The demonstrator was
assessed according to intelligence capability assessments, while the methodology
was evaluated according to ethics design guidelines. As a case study, we present
our framework in an investigative journalism setting, supporting war crime investi-
gations. Finally, we conduct a formative user evaluation with domain experts in law
enforcement. Our evaluations confirm that our framework facilitates human agency
and steering in security-sensitive, AI-supported analysis processes while addressing
ethical and privacy concerns and providing much-needed analytical capabilities.

This chapter is based on the publication [FMJ+24] andmajor parts of the following
sections have appeared in:

• [FMJ+24]: Maximilian T. Fischer, Yannick Metz, Lucas Joos, Matthias Miller,
and Daniel A. Keim. “MULTI-CASE: A Transformer-based Ethics-aware
Multimodal Investigative Intelligence Framework”. In: (2024), pp. 1–16. doi:
10.48550/arXiv.2401.01955.

For a statement of the scientific contributions, as well as the division of respon-
sibilities and work in this publication, please refer to Chapters 1.2 (p. 22ff) and
1.3 (p. 26ff), respectively.

8.1 Multimodal Communication Analysis

AI-driven models have gained wide popularity over the last few years and have
been applied successfully in numerous fields, such as natural language process-
ing (NLP), computer vision, or predictive analytics. Given this general trend, AI
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models are increasingly needed [Mit21] and deployed in operational intelligence
solutions [BYW20; Gan21]. Corresponding application domains, such as investigative
journalism [BDG+19; Str19] or the intelligence domain [BYW20; HM21; OS23; Müg23],
are particularly interesting due to their unique set of distinct challenges. Intelli-
gence analysts often face the task of combining numerous, heterogeneous pieces
of intelligence, often tainted with uncertainty and conflicting information, forming
an incomplete picture. As discussed in Chapter 3, the first set of challenges in this
regard is related to ethical [Shn20] and privacy concerns [Mit21] due to the sensitive
nature of the data and operations involved [Rig19] and the high stakes in case
of errors [Asa19; ADP+22]. Simultaneously, these domains offer opportunities for
increasingly automated, tailored systems to deal with incomplete and tainted infor-
mation. This is particularly the case for heterogeneous and multimodal analytics, a
second area in which existing systems often lack in functionality [FSS+21; FDS+22b].

The analysis of individual modalities in isolation—like network structure of the
participants, named entity detection on the content, or time series analysis of the
individual message intervals—often comes with limited views on the underlying
information with consequences for the derived intelligence. Not considering these
aspects can reduce trust in AI systems, favor prejudices and mistakes, and also lead
to legal consequences. Further, isolated analysis requires human knowledge and in-
tervention to semi-manually find hidden cross-matches between the modalities—a
task where computational support can be highly effective, reduce domain discon-
tinuities, and place less additional workload on the users [FSS+21]. This becomes
even more important when users are no machine learning experts, thus sometimes
having unrealistic expectations or misplaced trust in the systems [FHJ+22; Mit21].
This can be the case for (business) intelligence analysts or investigative journalists,
after which we modeled a case study (see Section 8.5.1).

This study is based on widespread tasks in intelligence, identified by the UN-
ODC [UNO11], which aims to answer the typical six questions: Who? What? How?
Where? Why? When? Based on these six questions, the UNODC authors identify
three common analysis tasks and methods that typically enable the answering of
these questions in relevant investigations: (1) link analysis: searching and identify-
ing relationships between specific entities such as persons or organizations, but
also objects, locations, or events, (2) event analysis: correlating actions or locations
alongside their timeline order, (3) flow analysis: understanding the connectedness
as well as cause and result, for example, the flow of commodities (geolocation for
physical goods or transfers of money) or the propagation of knowledge. Other tasks
described in the report involve the identification of activities, frequencies, or general
data correlations. These tasks can be primarily achieved through four main meth-
ods: (a) keyword and semantic-based searches on text or transcripts to understand
the context or find entities, (b) (social) network analysis to find connections and
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relations, (c) meta-data-filters to restrict, for example, locations, and (d) time-series
analysis, for example, to identify particular communication patterns. However, these
modalities should not be considered to work in isolation but contribute individual
perspectives for corroborating, enhancing, and setting each other in context. For
example, to attribute war crimes in our case study (see Section 8.5.1), our journalist
Alisa leverages semantic analysis, geolocation, link-analysis, and time-correlation
together with several other methods to achieve her objectives.

Our objective is to tackle the existing shortcomings in ethical and multimodal
analysis for intelligence by presenting a framework for holistic communication
analytics. Many specific solutions have been proposed, but the integration and com-
bination have received less attention. In Chapter 2 and Chapter 3, we have detailed
the data and problems faced in intelligence analytics: the need for heterogeneous
data analytics capability due to the diverse set of intelligence received. The different
data types and scenario stakeholder groups like data subjects, software providers,
civil society, and governmental authorities with their different branches with all
their conflicting interests. Their requirements and tasks, which we also revisit below,
as well as the benefits and possible designs of visual analytics applications.

Our contribution is not intended as a fully-fledged analytics system but as an
exemplary framework for a holistic, multimodal approach to intelligence and its
assessment. Therefore, we dedicate significant time towards a comprehensive eval-
uation (see Section 8.5), encompassing multiple perspectives, i.e., ethical aspects,
capabilities, and practical considerations through use cases and expert studies.

Based on lessons learned in Chapter 2, Chapter 3, and Chapter 7, we aim to
enhance the analytical capabilities in semi-automated digital intelligence analysis,
making the following contributions:

Co
nt
rib
ut
io
ns

� MULTI-CASE, an integrated visual exploration framework (see Fig. 8.1)
tailored towards ethics-aware multimodal intelligence analytics in
investigative journalism or criminal investigations.

� A RoBERTa-based NER transformer model, derived by fine-tuning on
GottBERT [STT+20] alongside intelligence-specific training data, which
we both open-sourced at osf.io/eap4r.

� An extensive case study showcasing MULTI-CASE in the context of war
crime investigations together with a classification assessment of its
capabilities [FDS+22b] and ethics design [FHJ+22].

� A formative expert evaluation with eleven domain experts in different
law-enforcement areas, validating the approach’s advantages and
highlighting areas for further improvement.
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With this contribution, we fill a gap in bringing state-of-the-art performance to
applications by providing an explainable visual exploration framework for multi-
modal intelligence analytics. We consider our contribution primarily in the com-
bination of existing visualization and visual analytics methodologies suitable for
this domain and their detailed assessment in the context of the unique challenges
faced. Thereby, we aim to provide more insights into the often opaque workings in
the intelligence domain, furthering research and a critical discussion.

8.2 Related Work

The research on multimodal visual intelligence analysis is sparse. While there
is significant literature on intelligence analysis in general [UNO11; GWA+17] and
some requirement studies for general intelligence analytics tools exists [EPT+05;
Sch05; FDS+22b], actual tool descriptions are rare. If a paper evaluates an actual ap-
proach, their findings primarily focus on user acceptance while ignoring capabilities
or interactive visualizations since tools are often classified and not even named
publicly [Dha17].

Research on some of the underlying techniques itself, for example, classical
Named Entity Recognition (NER) as the foundation for comprehensive tasks like
entity linking, is much more common. Techniques evolved over time from using
rule-based to more statistical systems [NS07]. Traditionally, NER relied on annotated
corpora, which posed challenges for domain transfer and new label tasks, with
brittle results [NS07; LSHL20]. However, with the advent of deep learning-based
approaches, such as BERT [JMKK19], the landscape has changed, and transfer learning
(i.e., adapting pre-trained models to shorten training times for new tasks) can cope
with much smaller amounts of annotated text. This has significantly improved the
adaptability and efficiency across various domains and tasks, making knowledge
transfer and few-shot labeling easier [JMKK19; LDS17], which can be leveraged in
investigative tools.

Similarly, advances in ethical design [BM19; FHJ+22], like the concept of pro-
viding guidance [SCE22], visualizing hidden uncertainties [ZLVV22], or ensuring
provenance [Cor19] as well as privacy considerations [FHJ+22], like selective mask-
ing [THW+21], federated learning [GKN17], or data perturbation [SMC20] have been
made. Also, insular solutions like Pajek [BM02] for social network analysis, Mal-
tego [SC21] or InSight2 [KKG20] for link analysis, or Cosmos [DWM+19] for semantic
text analysis exist but do not combine modalities.

Within the visualization community, multimodal multimedia analysis [ZW14] can
be considered partly related: Several approaches have been proposed to consider
different aspects of multimedia content simultaneously, like the presentation styles
and techniques [WQ20], the emotional coherence [ZWW+20], or the automation
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of explicit content through video moderation [TWW+22]. While these approaches
propose valuable insights into how (primarily visual) media can be analyzed and
set into context, many of the approaches target very specific applications, and very
few in this domain truly support a holistic approach to analyzing generic pieces
of intelligence, which also includes text-based information. Further, Zahalka and
Worring presented a pathway to comprehensive multimedia analytics, detailing a
general four-tiered multimedia analytics model and discussing it alongside how
it may support addressing the semantic and pragmatic gap encountered in actual
systems [ZW14]. This follows a similar overall direction as our research, however,
with one particular difference: The model is applicable in general for the analysis
of multimedia data and also with a particular focus on such data, for example
multimedia collections of images. While some aspects overlap, these collections
of images do not necessarily have a underlying storyline, may come from any col-
lection mechanism (e.g., underwater camera), an the model primarily focuses on a
multimodal analysis of multimedia with additional metadata (e.g., annotated text or
features). Our approach instead focuses primarily on communication between hu-
mans, emphasizing much more the interactive aspects of the information exchange
via various modalities over time.

The research on leveraging visual analytics for intelligence applications [DGLR09;
KGS09; KS11; LKT+14] had its prime in the mid-to-late 2000s, with frameworks such
as VIM [KC04] or Jigsaw [SGLS07]. Both primarily focus on text documents (and
not so much multimedia), and only a few approaches [FSS+21] were proposed later
on. Therefore, this area seems to be one of those few domains where commercial
research has outpaced academic, scientific research for now.

In the context of actual usage—also for commercial systems—we surveyed re-
lated communication analysis systems [FDS+22b], where we identified four publicly
known intelligence systems in wider use: DataWalk [Dat20] and Nuix Discover / In-
vestigate [Nui20] are sometimes used, while the market leaders are IBM i2 Analyst’s
Notebook [IBM20] along with Palantir Gotham / Foundry / Meta-Constellation [Pal20].
While they cater to government applications, parts are commercially available and
are used by international banks, advertisers, manufacturers, telecommunication
providers, media organizations, and NGOs [Pal20].

To our knowledge, no new visual analytics approaches to intelligence have
been publicly proposed since our recent survey of AI-driven intelligence applica-
tions [FDS+22b], also available as an interactive browser at https://communication-
analysis.dbvis.de. Regarding practical usage, the ongoing shift from IBM i2 to Palantir
seems to accelerate. Palantir’s solutions (in particular Meta-Constellation) are also
employed effectively [Sco22] by Ukraine in its defense against Russia in coordinating
their military.
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The academic research on this topic has been falling short, with problematic
consequences for accountability and oversight, which has also been realized by
some key stakeholders. For example, in the European Unions Horizon 2020 funding
period alone, projects such as ASGARD (700381), MAGNETO (786629), STARLIGHT
(101021797), COPKIT (786687), and AIDA (883596) (some still ongoing) have been
funded, although preliminary results show insular capabilities. For the upcoming
Horizon Europe funding period, several calls have been proposed (e.g., HORIZON-
CL3-2023-FCT-01). With slight deviations, they all aim to increase analytical big data
capabilities for law enforcement. In the US, similar research is often conducted by
national laboratories but mostly remains classified.

While many visualization approaches can be leveraged for intelligence, only few
consider the combination of challenges faced in this particular domain, including the
inherent uncertainty and inter-modality, while even fewer evaluate them consistently
and publish the results, which is the goal of this work.

8.3 Methodology: Model Development

In Chapter 7, we have presented a matrix-based, holistic communication analysis
framework through semantic zooming. As our studies have shown, however, despite
the potential benefits in scalability, matrices are uncommon for many analysts,
which are used to graph- and relationship-based visualizations. Further, semantic
zooming is space-limited in the amount of context information in the upper layers.
We, therefore, aim to explore an orthogonal design, with two key advancements: (a)
Following a similar modular approach, we leverage a more powerful fully-integrated
data model (structuring and relating the intelligence information pieces) that also
supports multimodality. (b) Instead of matrix-based semantic zooming, we use a
graph-based overview with several linked views and integrated specialized views.

This decision is based on the task descriptions and requirements described in
the UNODC report [UNO11] described above, as well as feedback from several domain
experts in law enforcement, which state the following three user requirements for
such a framework: (1) A centralized, multimodal platform for collaborative case
working. (2) Assistance in labor-intensive tasks such as big data analytics. (3)
Transparency and reliability.

This reflects their need to work collaboratively on a case together with their col-
leagues on larger investigations, needing to share results or to leverage knowledge
generated by colleagues investigating specific aspects of a case by collaboratively
working on a shared data space and being able to access the information in-situ.
Due to the sheer volume and sometimes repetitive tasks, support by automation
and AI is considered essential while being reliable and understandable. All the while,
the analysis steps taken need to be transparent and reproducible for accountability.
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Guided by these overall principles, we further justify individual design decisions
and capabilities while describing the system design in Section 8.4.

One central aspect of intelligence analytics is the analysis of communica-
tion [FSS+21]. However, common international NER labeling schemes (e.g., PER,
ORG, LOC, OTH) often do not meet the specialized requirements for investigations
since they are too ambiguous and not specialized enough, requiring more narrow
tag categories [MWBB13; RR09]. In practice, specialized NER model development
for semantic understanding is still challenging, with many pitfalls, although the
attention-based transformer architecture [VSP+17] has significantly increased the
accuracy compared to previous neural models. Therefore, as part of this work, we
track the necessary steps for training and deploying transformer models, including
interactive tools for labeling, while also highlighting major lessons learned. The
necessary steps range from choosing a suitable base model, preparing representa-
tive training data, then training and evaluating, to finally supervising and validating
the model in deployment and adapting it in the face of changing language patterns,
terms, or requirements. As a result, we provide a strong baseline NER transformer
model with a large set of relevant entity labels to simplify future applications.
For the underlying language model, we considered existing models from the Hug-
gingface transformers [TLV+19] library based on evaluation performance on the
GermEval14 dataset [BBKP14], a well-known dataset for German NER recognition.
For German natural language processing, we considered two language models: The
RoBERTa-based GottBERT [STT+20] and BERT-base-german-cased [Sch22] based on
the original BERT transformer architecture [JMKK19]. Additionally, we chose a strong
multi-lingual baseline (XLM-RoBERTa) [CKG+20].

In general, the creation of specific training datasets, for example, through la-
beling of domain-specific datasets, is often tedious and error-prone. Therefore, we
implemented an interactive labeling tool that is compatible with the MULTI-CASE
framework, allowing us to label and subsequently review a given document collec-
tion on a large scale, facilitating the easy creation of ground truth training datasets
in specific domains, like intelligence. This is particularly relevant in our application
because it utilizes a large set of custom-named entity labels for domain-specific
analysis. Many non-English models only provide standard categories like PERSON,
LOCATION, ORGANIZATION, and MISC. However, based on expert feedback, custom
categories like EVENT or PRODUCT and more fine-grained time and numeric labels
were introduced, with the full list shown in Table 8.1. We provide an enhanced,
re-tagged version of GermanNER alongside our model at osf.io/eap4r.

For the training, we apply a train/validation/test split of 70/15/15 of the full mixed
dataset (domain-specific and re-tagged corpus data). We train each baseline model
with Adam [KB15], weight decay [LH19], and 0.1 dropout. We also experimented with a
slanted triangular learning rate (i.e., using a warm-up and linearly decaying learning
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rate) [JS18] and found a slight positive effect on final performance. Early stopping
was implemented based on the validation F-score with a number of patience steps
of 10. Fine-tuning of all models was performed on a single RTX4000 GPU. We report
the full set of hyperparameters and additional results at osf.io/eap4r.

After training, we evaluate the model performance alongside other base mod-
els on a held-out test set and describe the results in Section 8.5.4. We also note
the recent advances by Large Language Models (LLMs), which can drastically im-
prove specialized NER-tagging through zero- or few-shot learning, in the outlook in
Section 8.6.2.

8.4 System Design

The proposed architecture for our framework and the fully-integrated graph data
model described in the following is shown in Fig. 8.2. When necessary, we also
detail the expert reasoning and the ethical considerations behind individual design
decisions while also referring to Sections 8.3 and 8.5.5 as well as 8.5.2 for further
discussions on these topics. The guideline numbers for the ethical and privacy
reasoning (e.g., C1-6, R1-5, A1-6) refer to the nomenclature established in Chapter 7.

Overall, the system consists of individual plugins 1 Analysis Modules for
specific analysis tasks and data types, a 3 Main Graph-based UI together with
specialized 2 Visualization Modules (e.g., text analysis or video-analysis) for a web-
based exploration. This fulfills the demand by experts to be capable of specialized
analysis that interfaces with an overall case working framework. Similarly, the heavy
computations are run on a centralized server, while the interface nowadays is a
standard web-based approach running on a regular (or thin) client. One key aspect
of the overall system is the 4 Fully-Integrated Data Model stored in a 8 Graph
Database, which acts both as a conceptual abstraction layer between modules and
a central source of shared knowledge. This enables the experts to work on a con-
sistent data set in an integrated environment and not lose information compared
to switching between applications, increasing Efficiency (A4) while addressing the
working together of machines and users (C5). Supporting roles fall to the 7 Object
Storage to store any input and intermediate data and the 9 Provenance Archive as
a revision-safe storage, which is considered essential for Opacity (C3) and Account-
ability (C6). The 10 domain experts can communicate with the system by interacting
with the visualization, forming a collaborative Human-Machine-Configuration (C5),
refine the display through analysis parameters, as well as verify the results, which
increases understanding and fosters trust and works against Lack of Accountability
(R1), while enabling Human Oversight (R5) and also facilitating a critical reflection
(R4). This verification is available both in the interface and in a 11 physical report,
which the experts still need to document their findings in a structured way.
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8.4.1 Data Model

Diverse types of 5 Raw Data are supported, ranging from unstructured data
(images, video, audio), over semi-structured documents (e.g., PDF documents), to
structured data types (like geolocation tracks or exports), as well as streaming
data. The needs of the domain experts naturally vary here depending on their
organization and tasks, but typically the first two types are the most common ones.
The input is only limited by the plugin analysis modules. When data is 6 ingested,
it is stored in the 7 Object Storage. Based on the input type, the Orchestration
Layer selects one or more analysis modules for knowledge extraction, for example,
NER for text documents. The main results are mapped to the 4 Fully-Integrated
Data Model stored in the 8 Graph Database. For example, for NER, this could
be the detected entities, like persons, location, or dates, as well as their relations,
while for video analysis, an object like a car along its properties and a relationship
to time and location. Two aspects are of primary importance:

(1) the data model ideally has to be as mutually exclusive and collectively ex-
haustive as possible. The data model was designed with several domain experts
and generalized from existing case models like IMP (Information Model Police). In
our case, we arrived at 50+ hierarchical entities (graph nodes) and 10+ relation-
ship types (graph edges), trying to find the right balance between a generic data
model and enough specialization. While a very generic data model allows for the
reflection of virtually all analysis results, the automatic conclusions, connections,
and information enrichment in such a case can remain very limited. In contrast, a
highly specialized data model allows to reflect on the findings with high precision
and enables many automated conclusions. However, it always poses the danger
of being too specified (i.e., available properties on a type) to capture all relevant
information. Indeed, the principle design is flexible, subject to change, and can
be adapted by adding more specialized entities or data fields. Analysis modules
are change-agnostic if the entities and attributes they work with are untouched.
In our case, we derived everything from a root Thing, with Entity, Event, Datetime,
Location, and Document as the first hierarchical layer, each having further subtypes
(e.g., Person or PhoneCall). For example, a Timespan, as a subtype of Datetime,
represents a specific time range and can be related to a PhoneCall via a relationship,
which in turn may be related to specific phone numbers, which again might be
related as belonging to actual persons. Attributes for each entity store associated
information. Through relationships, one can also model source attribution (source
document and analysis module) and 3 confidence scores, e.g., based on the 6x6
intelligence scoring [UNO11], which many analysts are well familiar with, strengthen-
ing Literacy (A5). This scoring can have an influence on automatic decision-making:
when certainties are considered by algorithms, this can support working towards
Preventing Automated Inequality (R3) and limit Exaggerated Expectations (C4) and
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Discriminatory bias (C1) through manual priming. Simultaneously, the opposite
could also be true, where the system warns a user of inherent prejudice evident in
analysis choices.

(2) The data model allows a structured information exchange and also informa-
tion enrichment process between modules, which the experts consider essential.
Updates of the data model can trigger subsequent runs of other analysis modules
when they have signed up for specific creations/updates: for example, an imported
audio file might be analyzed first by a speaker detection (with the creation of a
specific audio entity), then by a speech-to-text transcription (with a text entity), and
then by a NER process, which can result in an enrichment of the graph with the
conversation content through multiple entities (e.g., persons, location, or times). All
changes (creations, updates, hidings) in the graph data are logged via a write once,
read many 9 Provenance Archive.

8.4.2 Component Integration

The individual 1 Analytics Modules like NER or transcription are designed as
plugins and can be flexibly combined depending on the analytical needs, allowing
for Customization (A6) and ensuring User Agency (A1) of the experts. In this work,
we primarily focus on the search and NER modules as an exemplary prototype
developed by us, while othermodules are provided as open source (e.g., transcription
via Whisper [RKX+22]) or by commercial partners. During startup, the modules
register themselves, their supported data types for ingestion, and the graph change
listeners via the Orchestration Layer. Further, each analytics module can register
custom context actions (e.g., show similar persons) and preview handlers (e.g., picture
or video player), which are integrated into the 3 Main Graph UI, allowing for a
tight coupling between the UI and individual modules functions in 2 specialized
UIs, supporting the mental mapping of the experts.

8.4.3 Interfaces and Interaction Principles

The interfaces are web-based, and the provided views are tightly coupled and
inter-linked, strengthening the Human-Machine-Configuration (C5) and the User
Agency (A1) through Opacity (C3). Entities are consistently mapped via the unified,
fully-integrated data model, allowing for the enrichment of information within the
main graph-based overview and across views.

The main interface to start explorations is the 3 Main Graph UI (see also
C in Fig. 8.1). It provides a highly scalable GPU-based rendering of a Knowledge
Graph (a network-based visualization of the interconnected data items and their
relationships), together with several linked views. This graph-based overview is
less scalable than a matrix-based approach [FSS+21], however, aligns more closely
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Figure 8.3: Neighborhood exploration 2 , acting as a magnifying spotlight to show a
manageable local context for a seamless exploration.

with the mental image of analysts when exploring a network, as link charts have
been used in investigative work for a long time [Spa91]. The user can navigate this
graph with a mouse and keyboard, select, hover, move, and (context) click individual
nodes (data or extracted information items) and edges (their relations). The graph
uses a selectable 2D or 3D node-link representation and is rendered using a force-
directed layout. Strengths are calculated using centralizing, link, and charge forces
based on a Barnes–Hut approximation. While this graph is initially automatically
generated, the expert can (and is expected to) explore, interact, add, modify, and
enhance it while working on the case. When modifying or judging information,
user confidence in relationships (edges) can be encoded using the 6x6 intelligence
scoring system for 3 relevance grading. The default confidence is F (Unknown),
and for automated decisions that have not been manually reviewed, never above C
(fairly reliable) to prevent Automated Inequality (R3) and wrong conclusions. All the
interactions happen within the graph view or via individual visualization modules,
which are reachable via the registered context actions and context menus, allowing
for seamless transitions, which are appreciated by users.

The visual interface to the graph model has several features to enable Customiza-
tion (A6) and User Agency (A1): A sidebar on the right offers several features: (1)
control options for visualization (e.g., color, line thickness), layouting (force-direction
layout strengths), and modes (e.g., 2D/3D-dimensionality, display modes for explo-
ration like only displaying cross-matches, i.e., results from multiple documents)
allow for customization and task-specific adaption, (2) an interactive search func-
tionality allows filtering the graph quickly, (3) a context display shows information
about a selected entity, and—leveraging the integrated graph model—occurrences,
e.g., in text documents, (4) an overview of all available nodes and edges grouped by
types, (de-)selectable individually or in groups.
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A timeline at the bottom shows both datetime information as part of the Knowl-
edge Graph and document times, allowing for brushing and filtering to optimize the
graph view and empower investigators to follow an event- and time-based workflow
in alignment with their exploration. When hovering over documents, only these are
shown, while selecting zoomable and shiftable ranges restricts the shown parts of
the graph. As can be seen from the examples, the amount of information displayed
in the graph view is typically quite large, which hampers exploration. Therefore, a 2
Neighborhood Exploration, acting similar to a magnifying glass or spotlight, allows
to show the local neighborhood of a node (for example, 3 or 4 steps), and clicking
any visible node transitions to the new neighborhood, allowing for a seamless
exploration with a manageable amount of local, contextual information displayed
without overloading the users, which can improving Efficiency (A4). Another ap-
proach to reducing the amount of clutter is to selectively merge confirmed relations
to clusters, for example, aliases for persons or create groups. A slider allows for a
confidence level based on the 6x6 system, which means that automated decisions
without manual verification are never categorized as (very) likely (A or B), preventing
Automated Inequality (R3) and enforcing Fairness (A3) and critical reflection (R4)
through Human Oversight (R5).

Due to the amount of information shown (for typical investigations, this can be
30k nodes and 100k edges), we need to use several techniques to achieve 60+ fps
performance: The graph is rendered entirely on the GPU and leverages instancing
and custom shaders. This results in, once set up, a fixed-sized geometry of a few
hundredth vertices and three WebGL draw calls (nodes, edges, labels), resulting in
efficient rendering performance. Much of the visualization and visibility status is
controlled from within the shaders, with crafted texture atlases and mipmapping
for efficient textures, especially for nodes and text labels. To render more than 0.5
million text characters in real-time, we use a pre-generated font texture atlas and
supply each node label instance with its correct, fixed-size ASCII-Code label (Unicode
would be possible, but increase the texture size). This supply of instance-specific
data (e.g., labels, position, node render state) is achieved through uniform buffer
objects, acting similarly to a memory map, which is highly efficient. The sidebar
uses virtual lists to render on demand, further reducing DOM usage. However, the
number of nodes and edges is still limited by JavaScript and Browser performance.

The NER module offers an A ontological search and B textual view (see Fig. 8.1)
as UI components. In the UI, a 1 context overlay can be shown, for example, over
a person’s name with a preview image of a person together with other meta-data.
This reduces domain boundaries and relieves the mental load of the users. Text
understanding can be helped (see Section 8.5.5) by color-coding named entities
according to type and offering aggregation and interactions. Linked views at the
bottom show all entities in the document grouped by type and ordering, e.g., by
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count, can be used to quickly navigate between occurrences through auto-scrolling,
highlighting, and stepping.

The ontological search uses multiple (de-) selectable semantic search modes
(exact match, substring match, fuzzy match, or ontological match). The latter allows
searching semantically instead of guessing the correct keywords. This ontological
search is considered very beneficial by the experts, as it reduces the burden on
them to know the exact terms used but more generically describes the concept of
what they are looking for. Search results are shown with specific probability scoring
based on the distance (steps) taken in an ontology database, linking different
properties. One example would be to search for ”accommodation” and get results
with ”hut”, ”hotel”, or ”cottage”. The quality of the results, of course, depends on the
extensiveness of the ontology, which often has to be adapted domain-specifically.
Here, the experts can modify the ontology on the fly, e.g., to adapt to specific
codewords.

Another type of interaction resulting from the tight integration comes even closer
to the traditional visual analytics loop: While updating analysis parameters within
a module usually only affects this module’s results, through the fully-integrated
data model and module listeners, it becomes possible to achieve inter-module
exploration and refinement, coming closer to the expected levels of automation
by current users. For example, when several speakers in audio files are recognized,
and the transcripts are polluted by some of the speakers being background noise,
the user can manually deselect the speakers, resynthesizing the audio, and the
downstream analysis is automatically re-run, i.e., transcription and then knowledge
extraction through NER. Old results can, in this process, be hidden (i.e., flagging the
old document and its inference) to avoid an over-cluttering of the graph, which is
considered extremely relevant by the experts to allow them to focus on relevant
information only but can also be used to preserve Privacy (A2, C2).

While users work with the application, all performed actions are logged to
achieve provenance, provide Accountability (C6), as well as prevent abuse through
Human Oversight (R5).

8.5 Evaluation

We conducted a thorough evaluation of our approach, including feedback from
multiple perspectives, to determine the effectiveness of the system. To showcase
the practical usefulness of our approach, we present a case study in an investiga-
tive journalism setting, supporting war crime investigations (see Section 8.5.1). To
scrutinize the ethical and privacy risks involved, we then evaluate our approach
based on ethics design guidelines [FHJ+22] for intelligence applications (see Sec-
tion 8.5.2). To judge the resulting capabilities of the developed framework, we use a
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state-of-the-art intelligence capability assessment [FDS+22b] (see Section 8.5.3). To
assess the quality of the underlying language model, we performed benchmarks
on relevant NER-task, achieving state-of-the-art performance (see Section 8.5.4).
Finally, to evaluate the system from an expert perspective, we conducted a formative
user evaluation with eleven domain experts in law enforcement (see Section 8.5.5).

8.5.1 Case Study

In the following, we describe a simplified, artificial case study modeled after real-
world workflows seen in investigative journalism. Here, we describe the process
of identifying, placing, attributing, and documenting war crimes. We have chosen
this example due to its high relevance, the high analysis stakes both for the victims
as well as innocent persons, and the plausible availability of large amounts of
multimodal data.

Goal — Alisa is an aspiring journalist for the respected newspaper The Custodian.
She has been reporting about a brutal war in her home country for months now.
While there have been some high-profile reports on war atrocities, she knows this is
just the tip of the iceberg, and many people are missing. After reading some OSINT
(Open Source Intelligence) reports, she wonders if she can also find out more about
the forgotten victims of war. Simultaneously, she wants to see the perpetrators
held accountable, so she aims to document her findings meticulously and hand her
chain of evidence over to the ICC (International Criminal Court), which has started
pre-trial investigations.

Data Collection — She starts off by collecting raw data: From various online
sources reporting about the war, like Telegram, she exports messages, images,
audio, and videos. From a friend and contact working for a large telecommunication
provider, she gets a large dump of telephone calls and texts originating from foreign
cell phone numbers logged into the telco’s network. They were recorded by order
of the nation’s domestic intelligence agency. Further, on her newspaper’s website,
she allows for a SecureDrop submission for images and videos. Overall, she 5
receives thousands of hours of audio and video and tens of thousands of texts and
images, which she imports into MULTI-CASE. The system ingests this data and runs
the analysis pipeline.

Initial Exploration — First, Alisa is overwhelmed by the sheer amount of data
in the C Knowledge Graph view. She looks around and randomly starts listening
to some recorded phone calls via the 1 preview hover menu. Some are hard to
understand due to multiple persons talking intermittently in the background.

Analysis Pipeline— The system offers her 1 automatically-generated transcripts
through the Speech to Text module while the audio is played simultaneously. She
notices that the transcripts are not perfect when hearing the recordings, but they
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still help her a lot, as she can skim over the content in the B Document Viewer
much quicker. Wondering if the speakers talked about locations, she searched
manually for common city names, finding many results. She realizes she can also
use the entity search to display all locations the semantic text analysis has found,
a summary of which is shown at the bottom. Through these and reading some
context, she realizes the transcripts are intermingled with speech fragments (and
locations) from the background speakers.

Multimodal Combinations— She 5 jumps back to the graph view and selects the
Speaker Recognition module for the selected node. It identified four speakers and
offered some best shots to listen to, together with individual transcripts. Hearing
them in isolation, she realized that two were radio moderators. She deselects both
speakers and lets the downstream analysis task run again. In the C Knowledge
Graph view, the old entry is 4 transparently archived and replaced by the new
audio. Now, the recordings and transcripts are much clearer, but listening or reading
through only a few would still take hours.

Semantic Search — She decides to A search literally for some terms and words
she suspects might have been used but get fewer results. Instead, she enables
the fuzzy as well as the ontological search. Now she receives many more results.
In some, the spelling seems off, and in others, she gets synonyms and hyponyms
for her query. Reading over some of the matching sentences, she realizes several
specific words are used and also learns some new ones the system did not detect.

Retraining On-The-Fly — She adds those words to the 4 built-in ontology and
re-runs the search. As she reads a conversation about a small village where ”a
lot of —– things happened,” she feels she might be on to something. Semantically
searching through the remaining transcript in the B Document Viewer, the speakers
refrain from mentioning the village or such events again.

Cross-Matches — However, the system has recognized the village’s name as
a location descriptor and offers her to view it in the C Knowledge Graph view.
There, she uses the 2 Neighborhood Exploration to see all connected entities up
to three steps from this town. She finds out that another document mentions this
tiny village in a spatial context to a larger town while the village is again allegedly
mentioned in connection with some persons named 𝐴 and 𝐵 repeatedly over an
extended time period. Using the C timeline view, she restricts the view to a specific
time range where she knows that the area around this larger city was temporarily
invaded before the attackers were forced out into the neighboring woods. The
graph becomes less crowded, and the system displays a weak link from person 𝐴 to
another name 𝐴‵ with a longer name form. The weak link comes from yet another
transcript, where the persons named are mentioned closely together.

Manual Investigations — Alisa requests her assistant to read the transcript while
she briefs her boss about the preliminary findings. After returning, Alisa sees that
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her assistant (working collaboratively on the case with her) has concluded that the
persons mentioned in the report are likely similar and 3 has assigned a B score
(highly likely) for the link in the 6x6 system [UNO11]. The person 𝐴‵ has also been
mentioned in the caption of a Telegram picture. Having used the Image Analyzer
module, her assistant has found visual matches for this person in several pictures
and also two videos, which he has flagged for her. She watches both videos, and
one clearly shows a war crime.

Handling Fakes — She also A searches for 𝐵, and she finds a graphic image
but also sees 𝐵 in a similar setting, seemingly taken weeks prior. She identifies
the environment and obtains a broader view of the situation: the image is fake,
likely disinformation. She 6 adds a comment and marks it as disproved, becoming
archived by default.

Progressive Analytics — During her background research, interviewing one ICC
representative, she is offered access to the ICC evidence collection platform, where
users worldwide can upload materials of suspected war crimes. She also 6 imports
this potential evidence enriching the underlying data model. Now, she runs a further
person search using Image and Video Analyzer and finds the picture of a military
photo ID. The person in the picture looks very similar to 𝐴.

Evidence Collection — Using the 11 reporting functionality, she prints out a
trace of her analysis steps, including the transcripts with reference to the original
audio files, the connection network with locations, all the associated imagery and
data as a PDF report, and the associated document dump. She plans to hand
it over to her ICC contacts and lawyers for them to further verify the potential
claims for a subsequent trial. They plan to perform classical investigative work like
forensic audio, facial analysis, and site visitation to collect evidence to back up and
corroborate the potential war crime she found using the system, now knowing what
to look out for.

8.5.2 Ethics Design Guidelines

In Chapter 3, we have discussed in depth the ethical implications of using VA systems
in intelligence and derived the first comprehensive overview of detailed, technical
considerations to take into account when designing such systems. As pointed out,
the ethical implications [have to be considered] as an integral part of the design
process from the outset [FHJ+22]. In the following, we describe how we have applied
those considerations during the development of MULTI-CASE. The guideline numbers
(e.g., C1-6, R1-5, A1-6) refer to the nomenclature established in Chapter 3.

Semi-automated analyses are used, but the user remains in control for Human
Oversight (R5), and the automated decisions are transparent (e.g., through 4 attri-
bution and 3 confidence scoring) for Opacity (C3), addressing User Agency (A1) and
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Lack of Accountability (R1). 9 Provenance of the analysis steps taken can further
strengthen this Human Oversight (R5) and provide Accountability (C6). The ability,
for example, to 6 flag wrong or unrelated content can support Privacy (A2, C2)
aspects by being less intrusive than human verification (as humans might memorize
sensitive information). All automated system risk exhibiting inherent Discriminatory
Bias (C1), but human operators also do. We published our underlying model for
transparency reasons (cf. Opacity (C3)) and to detect or Prevent Automated Inequal-
ity (R3). The design as a hybrid Human-Machine-Configurations (C5) inherently 5
allows for mutual checks and balances to facilitate more Fairness (A3) and Human
Oversight (R5). The semi-automated analysis undoubtedly can 2 improve Effi-
ciency (A4), while care was taken not to abstract too much and for the information
to remain 1 transparently attributable (cf. Opacity (C3), Accountability (C6), Lack
of Accountability (R1)), which is achieved through the unified 4 fully-integrated
data model. By making clear what aspects are automated and which are manual,
by providing 3 confidence scores, and by not offering unrealistic features such
as ”solve investigation” buttons, one works against Exaggerated Expectation (C4).
Effective usage of the system and Literacy (A5) can only come with experience and
daily usage. Integrated 6 sharing between colleagues, e.g., of saved search filters
or information through comments, can support this. However, we note that more
could be done here for our approach, but we expect that literacy will primarily be
achieved through classical Training and Community-Building Among Users (R2). By
enabling 4 interactive modifications to the underlying models like the ontologies,
Customization (A6) can help users to adapt the system to their needs. One aspect
to further improve upon is automated guidance to facilitate critical reflection (R4),
for example, by automatically trying to detect biased behavior by human operators.

8.5.3 Intelligence Capability Assessment

We assess our framework according to a system capabilities classification [FDS+22b].
This generic classification aims at knowledge exploration systems, including holistic
approaches, focusing on intelligence applications. The classification’s main focus
is to assess the (technical) capabilities in a structured form, for example, if time-
series data is supported, what type of interactions are used, or which type of
knowledge is generated through AI support. In this regard, it indirectly includes
results from older requirements studies in intelligence [DGLR09; KGS09; KS11; LKT+14].
However, these previous studies primarily describe the user interactions with the
system like Jigsaw [SGLS07] through Overview and Detail, or Find the Clue and
Follow the Trial [KGS09]; those aspects included in the older studies but not in
the capability assessment were evaluated as part of the expert evaluation (see
Section 8.5.5). We describe and assess our approach according to the 52 criteria
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posed in the classification scheme [FDS+22b]. The icons indicate # no, G# partial,
and  full support. For a detailed discussion on the attributes themselves, we refer
to the original paper while we provide examples and placement of MULTI-CASE’s
capabilities in the following:

In the dimension Data and Information, MULTI-CASE can compete with the state-
of-the-art: It supports all basic Data types: text like documents and messages,
audio like recordings, image/video like pictures or video recordings, network like
relationship networks or call records, and G# time-series, primarily through meta-
data like discrete timestamps. Classical, continuous time series are not explicitly
supported. Regarding the coding of data, only digital modalities (i.e., the face-value
of information) are supported, not # analogical ones (e.g., interpretation of facial
expressions to detect lies or irony). This is comparable to the vast majority of ap-
proaches. Regarding the orthogonal Expression, explicit information is supported,
but also implicit one, through the use of the underlying ontologies, which is a rare
capability. With regards to communication between Parties, group communi-
cations are supported, but not specifically nested groups (i.e., subgroups). Analysis
of # Power Relations is not supported. However, the investigative application is
designed in such a way that it accounts for acts of deception and partially considers
the G# Measurement Problem: For example, the use of code words is, in principle,
supported through the domain-specific ontologies and specially trained NER model
and also by looking at meta-data, which is harder to craft. This is a crucial capability
in investigative systems, which many current approaches still delegate fully to the
users.

In the dimension Processing and Models, our approach is suitable for a wide
variety of analyses. Regarding the Methodologies, supported are Representational
analysis to present the information, and especially Confirmatory analysis to validate
hypothesis as well as Exploratory analysis to find relevant, a priori unknown facts.
G# Predictive Analytics is partly integrated, depending on the employed modules. In
terms of the employed analyticalModalities, all primary ones are equally supported:
Content like actual text or videos, for example, through the Document Viewer or
the Video Analyzer, Network for relationship analysis through the Knowledge Graph
and Neighborhood Exploration, or Meta-Data through the Knowledge Graph and
the Timeline in combination with the filtering functions. This holistic, integrated,
and interconnected analysis is a crucial factor distinguishing MULTI-CASE from most
existing approaches. The Analysis itself supports an incremental, streamed data
import, making it an online analysis. Regarding the Latency, the standard use case
for an investigative system will be a delayed D analysis. One key advantage of
the underlying model and the modular architecture is the achieved Scalability. It
supports huge (IIII) investigative volumes for ingress. Also, through its Neighborhood
Exploration, the number of concurrent entries under consideration in the analysis
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can be regarded as medium (II), more than many other approaches. As our approach
is a research prototype and not a commercial application, the support for # Data-
Mappings, like many importers, is limited.

In the dimension Visual Interface, many combined strategies are leveraged.
Regarding the visualization Pane, the usual 2D is supported, but the Knowledge
Graph also leverages 3D. Stereoscopic 3D # S3D is unsupported but easily addable.
Regarding the Operation Methods [YKSJ07], all are supported: one can Select an
entity to get more detailed information from all modules combined, Explore different
semantic matches or the Knowledge Graph, Reconfigure the confidence thresholds
for automated merging, Encode the data as inferred graph relation representation,
Abstract/Elaborate by adapting the Neighborhood level or inspect information
within a specialized module, Filter trough the semantic search or a timeline range,
and Connect by showing graph neighborhoods. The Manipulation happens both
directly, e.g., by selecting entries, and indirectly, for example, by choosing specific
analysis modes, for example, only showing corroborated cross-matches. The Goal
of the actions is primarily data tuning to show relevant information. However, the
approach also partly supports G# model tuning, where the interactions influence
an underlying mode, e.g., by manually confirming relationships between entities
or updating the ontology. The Strategy involved in interactions are both iterative
and progressive, which go hand in hand in investigative scenarios. The G# active
learning depends on the individual analysis modules, through feedback or showing
an example.

In the dimension Knowledge Generation, the Explanation of information is
performed through numerical, textual, and graphical representations, for example
through scoring/sorting, annotated highlighting, or charting, respectively. The Trans-
fer Function operates both on the machine model, which updates the underlying
model through interactions, as well as the mental model of the analysts. Factors
that are considered in our approach are confidence, trust and privacy. For a more
detailed discussion, see Section 8.5.2. With regards to the Time Dimensionality
of the Knowledge Generation, the approach primarily enables the exploration of
past information but also allows conclusions based on this information for the
given dataset . The Predictive Power of the system relates to explaining past
events and potential upcoming links but also forms predictions about yet-to-ingest
data . Regarding the Evaluations performed, we present a case study (see
Section 8.5.1), this capability assessment (see Sections 8.5.3-8.5.2), as well as an
expert evaluation (see Section 8.5.5).
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8.5.4 Model Evaluation

We evaluated our NER model (Huggingface model via osf.io/eap4r) and five base-
line models based on a hold-out test set of the re-tagged news dataset that we
publish for future benchmarks. Based on preliminary experimental results, we
decided to train our own NER classifier based on the weights of the pre-trained
GottBERT [STT+20] language model. We report precision, recall, and F1-score for
each entity label (see Tab. 8.1). As an overall observation, we find that our test
dataset is challenging for the NER model, as the achieved performance is below
scores reported for existing benchmark datasets like GermEval2014 [BBKP14] for all
models, including the baselines.

The best-reported score for the GermEval dataset is 86.8% [STT+20] with cate-
gories PERSON, LOCATION, ORGANISATION and MISC. However, on both our generic
news dataset and, in particular, the scenario-specific text data, we see significantly
lower performance. Still, our model outperforms or matches baseline models on
the core categories while achieving satisfactory performance on most additional
categories. Still, we observe a drop in performance in broad, newly introduced
categories like EVENT or PRODUCT.

8.5.5 Domain Expert Evaluation

To showcase the effectiveness of our approach in comparison to existing methods,
we conducted an expert evaluation with eleven domain experts (LEA 1-2, RS 1-3,
SI 1-3, LAW 1, EE 1, POL 1) working in the context of law enforcement.

Expertise LEA 1 is a recently retired former special police forces commander
with a 40-year career, now working as a security consultant for law enforcement
agencies. LEA 2 is a leading investigator at a federal police force with a 20-year career
investigating organized crime. RS 1 is a research scientist and head of the research
department with a 30-year career in speech recognition. RS 2 is a junior researcher
and developer working for a federal security agency developing analytical solutions
for law enforcement in the area of digital forensics. RS 3 is a junior researcher
working for the same federal security agency on the topic of phone analysis. SI 1
is a senior principal research engineer with an almost 30-year career overseeing
numerous identity solution projects for an international security company. SI 2 is a
project manager with a 25-year career working on video analysis and investigative
systems at the same company. SI 3 is a principal research scientist with more than
ten years of experience in video object tracking also at this company. LAW 1 is
a professor and criminologist specializing in security management, hate crimes,
and legal aspects with more than 15 years of experience in the field. EE 1 is a
sociologist and ethics advisor offering guidance for security research projects. POL 1

8.5 Model Evaluation 193

https://osf.io/eap4r


sm
m
d

lg
BE
RT
-G
er
m
an

XM
L-
Ro
BE
RT
a

O
ur
s

Ty
pe

P
R

F1
P

R
F1

P
R

F1
P

R
F1

P
R

F1
P

R
F1

PE
RS
O
N

.6
9

.72
.70

.76
.77

.77
.78

.78
.78

.93
.8
9

.9
1

.91
.8
7

.8
9

.9
4

.8
8

.9
1

O
RG
AN
IZ
AT
IO
N

.5
5

.47
.51

.5
6

.5
2

.5
4

.5
9

.5
5

.57
.8
1

.6
5

.72
.75

.6
4

.6
9

.78
.78

.78
LO
CA
TI
O
N

.5
3

.57
.5
4

.5
9

.61
.6
0

.61
.61

.61
.9
0

.6
3

.74
.8
4

.6
2

.71
.8
8

.9
0

.8
9

M
IS
C
(O
rig
in
al
)
.14

.29
.19

.17
.3
7

.24
.18

.3
6

.24
-

-
-

.3
0

.4
5

.3
6

-
-

-
M
IS
C
(O
w
n)

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

.15
.2
2

.18
EV
EN
T

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

.9
9

.40
.57

PR
O
DU
CT

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

.49
.5
9

.5
4

DA
TE
TI
M
E

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

.9
9

.9
9

.9
9

LA
NG
UA
GE

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

.9
8

.9
5

.9
6

LA
W

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

.6
0

.6
0

.6
0

Q
UA
NT
IT
Y

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

.97
.9
6

.97
NU
M
BE
RS

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

.9
8

.9
8

.9
8

Ta
bl
e
8.
1:
Ac
cu
ra
cy
on

th
e
va
lid
at
io
n
da
ta
se
tf
or
th
e
fiv
e
ba
se
lin
es
(d
e_
co
re
_n
ew
s_
{s
m
,m
d,
lg
},
BE
RT
-G
ER
,X
M
L-
Ro
BE
RT
a)
an
d
ou
r
NE
R
m
od
el

194 Chapter 8 MULTI-CASE: A Multimodal Visual Analytics Technique



is a project supervisor at a national project management agency overseeing civil
security research and policy expert.

Methodology The expert evaluation was conducted as a formative evaluation and
took a combined 180 minutes, split into a 60-minute presentation and a 120-minute
hands-on evaluation. The 60-minute introduction delivered to all experts described
the capabilities of the system on a conceptual level while also demonstrating actions
in the form of one to three-minute-long screen recordings. During the evaluation, a
single station (27-inch FHD screen, mouse, and keyboard) with the prototype was
available to the experts, together with two researchers standing by to help with
questions and advice. During this time, one of the experts would typically use the
system to explore the prototype while being encouraged to think aloud. The other
experts could meanwhile observe, comment, and ask questions. After irregular
intervals, the experts switched positions, and usage time between experts varied
between five to 20 minutes. During the whole session, the experts were asked
questions aligned with a semi-structured interview sheet containing a set of 38
prepared questions covering various aspects of our approach. The session’s aim
was to elicit the domain experts’ opinions about the system and gain insights into
how they would use the system in their investigative workflows. Further, the experts
were asked to comment on the approaches’ capabilities, user-interaction concepts,
and visualizations while identifying opportunities for improvements. The detailed
findings of this evaluation are presented in the following.

Findings Asked about the benefits they see in an investigative framework like
MULTI-CASE, the criminal investigators state that they hoped to be relieved of
the time-consuming, “extremely high manual workload, which currently requires
much personnel” (LEA 1) “and time” (LEA 2). Of course, there are existing use case
management systems, but “their usage and the casework is performed very much
in a manual way […] with little technical support” (LEA 1), which becomes a “big
problem for mass data” (LEA 2), where “automation can be very helpful” (RS 2). In
“particular observations produce very large amounts of video data” (LEA 1). For
particular problems, some isolated technical solutions exist at some local partners,
for example, geo-based analyses (cf. LEA 1), but access depends on the local support
and willingness of the partners to help (cf. LEA 1). Further, one of the most important
features for them is to import many different types of multimodal documents like
“existing records, images, videos” (LEA 2). Here, MULTI-CASE as a 1 “large overview
system for multimodal data like audio, text or video has the potential to drastically
improve investigative work” (RS 3), making it “uncharted territory” (LEA 1). The other
experts strongly agree, noting that currently they lack “a complete picture [in a
single system]” (LEA 1) and “nothing in this form exists” (LEA 1): neither for phones
(cf. RS 3), speech (cf. LEA 2), or text (cf. LEA 1). “Multimodality is the largest benefit,
as everything can be seen in context” (RS 2).

8.5 Domain Expert Evaluation 195



Regarding the risk of automation, they are aware of potential pitfalls but do not
consider them highly problematic: It is likely that ”there are errors in the analysis”
(RS 1), for example, by different spellings (cf. RS 1). This, however, can also happen
when case workers need “to read through thousands of pages or watch weeks of
video recordings, where things might be overlooked and error rates increase with
time as frustration increases” (cf. LEA 1). “From an automated perspective, it might
not be most important to find everything, but to start and find many relevant things”
(POL 1). From a “legal perspective, this might be much more critical, as innocent
individuals can become part of an investigation” (RS 1). They note that “automated
analysis is less of a problem when there is reasonable suspicion for a suspect, but an
infringement on fundamental rights is” (LAW 1). In this regard, the modality differs:
“images are considered more critical than voice, which in turn is more critical than
text” (cf. LAW 1). Possible ways to solve this are “by not focusing on the subject, but
on the right infringements [for involved parties]” (cf. LAW 1). This means automated
analysis has the potential to be considered less invasive than manual analysis, but
“for example through data economy and short-term storage, but this depends on
the case” (EE 1).

From an ethical perspective, it might be more “justifiable to let the computer
search for targets instead of humans” (EE 1) as the human “remembers” (EE 1)
offering potential for misuse, while the system forgets after the comparison. Current
approaches “do not consider privacy or ethical aspects sufficiently” (LEA 2) and
the investigators are independently responsible on their own to follow the rules -
however, “there is a wide gap between theory and practice” (LEA 2). “A verified system
that works with high accuracy [and without bias] could be fairer than an arbitrary
human” (EE 1), as “many humans are very selective and inherently biased” (LEA 1).
Regarding the fear of intransparent, autonomous decisions, it was noted that ”the
systems are always support systems and humans always the final instance” (LEA 1),
and before a “prosecution will always be manually verified” (LEA 1). A problem can
arise when “humans become too careless and trust the system too much” (EE 1).

One interesting discussion arose regarding the error rate: From the perspective
of an analyst “false positives are less of an issue as they can be manually verified,
while false negatives are missed” (LEA 1). From the “perspective of innocents, this
is directly inverse, but this again depends on the context” (cf. EE 1). “When misses
lead to extreme dangers for others, this can be very bad” (cf. EE 1).

The experts consider 6 collaboration features relevant, where multiple users
can work on the same case, as they sometimes have to work with “widely distributed
experts” (cf. LEA 1). Also, the “parallel work between colleagues is nice” (EE 1).

Regarding the central Knowledge Graph, many experts agree that it can provide a
key overview, as “it is extremely important to show all the relations” (POL 1) and the
“connections” (LEA 1), which is a “large advantage” (RS 2). “Showing everything to-
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gether is very relevant for keeping an overview” (SI 1). For this, the 2 Neighborhood
Exploration is considered “a must, especially when many data items are loaded”
(RS 2), as it allows to reduce the visual clutter and only show contextual information.
This is an example of a filtering functionality, which is regarded as “essential” (RS 2).
Also, the ability to filter the graph and the mergings by 3 confidence is regarded to
be beneficial (RS 1). Similarly, the timeline is also considered “very helpful” (RS 2),
as “the time and event sequence is very important for the investigation” (LEA 2).
In this context, the interactions are regarded as “very smooth and nice looking”
(RS 2). However, some experts questioned “if 3D is necessary” (cf. LEA 1) and would
favor the 2D graph that is also available. The graph view can act as a “supportive
mental map […] and a large digital notebook” (LEA 2), which “currently is often only
in ones head” (LEA 2). For this, the “comment function” is essential and helpful
(cf. LEA 2 and EE 1) to make notes, which can be shared between users. Regarding
the confirmatory investigative work, however, the “graph view is less important”
(LEA 1), where the “individual analysis modules like the document viewer or audio
analysis are more relevant […] supporting the daily work” (LEA 1). For example, in
the document viewer, the “automated recognition of entities in the document which
are shown at the bottom with their number of occurrences, is especially helpful,
as it allows to get a 4 summary understanding of the content of the text already”
(cf. LEA 1). Also, the automated transcription of audio “given sufficient quality, is
very important and a key advantage” (cf. LEA 1). Especially relevant is the ability
to seamlessly switch between view and modalities, for example, 5 “to jump from
a node in the graph to the text location in the document viewer” (LEA 1) as well
as “jumping to search matches” (LEA 1). However, it was noted by several experts
that a proficient usage would “require training” (cf. LEA 1, EE 1, RS 1, LAW 1), after its
completion, however, would be a “productivity boost” (EE 1).

In terms of potential future features, some ideas were mentioned: Among
expected quality-of-life improvements like more file type support (cf. RS 2), one
area of improvement could be group conversations (cf. RS 2), for example, through
colored attributions also inside the document viewer, the creation of cluster-nodes
in the graph view to merge related, but currently less interesting entities (cf. RS 2)
or show a modification and usage history from co-workers (cf. RS 3). Also, for
the comments and exploration history of colleagues, a “misuse button” (cf. EE 1)
would potentially be useful to report incorrect use. Also, some more explainability
for the automated parts, i.e., why a “speaker was recognized” (cf. EE 1) as such,
would be useful and increase trust. Overall, the approach “will be well usable for
semi-automated investigative analysis […] between a knowledgeable user and a
supportive system” (LEA 1).

8.5 Domain Expert Evaluation 197



8.6 Discussion and Future Work

As we demonstrated, our approach enhances the capabilities for multimodal intelli-
gence analytics. In the following, we discuss the valuable lessons we learned during
development, the implications of the valuable feedback we received about our
prototype, architectural design trade-offs, limitations of the approach, and potential
future work that remains.

8.6.1 Findings and Lessons Learned

Based on the evaluations in the previous section, we have succeeded in working
towards fulfilling the experts’ requirements posed from the beginning: MULTI-CASE
is an exemplary centralized, multimodal platform framework that allows several an-
alysts to collaboratively work on cases and empowers users through the transparent
inclusion of AI-aided decision-making while relieving them of burdensome tasks
and considering ethical design guidelines. Following the UNODC [UNO11] task defini-
tions, the main tasks can be performed: link analysis between entities is supported
while also allowing to consider them in the context of the surrounding events based
on a timeline. While it supports a basic flow analysis in principle, the visualization
modules presented here are not particularly suited for this analysis, but through
the modular design, a component operating on the shared data model could be
developed. We have seen how the multimodal approach can support the analysis of
otherwise difficult-to-detect cross-matches, while a visual analytics-based approach
has benefits in terms of agency, accountability, and trust. The experts are open
to AI-based solutions, especially when it relieves them of mundane tasks, and
they feel supported. Leveraging both computational power and human intuition
in a tight feedback loop can positively influence the capabilities of the resulting
human-machine configuration. Regarding the displayed results, they tend to believe
them at face value to some degree when they seem plausible, somewhat similar to
findings reported to them by colleagues.

However, we also saw that experts have high expectations regarding the machine
results and—especially when not specifically trained for the system—are rather un-
forgiving with respect to unexpected or contradictory results. Also, they can be easily
annoyed in case they feel the system hinders them, holds them back, or torments
them through seemingly obvious confirmations. Based on these observations, we
can derive several key findings:
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F1: A Holistic Approach Supports Finding Cross-Matches
The case study and expert evaluation shows that intelligence investigations
require interconnected, multimodal analytics.
Implication: A holistic approach can combine these different analysis modalities
within a single context, reducing domain boundaries and enabling effective
search for cross-matches. Especially relevant here is a vertical integration
between all analysis modules, for example, through a fully-integrated data
model.

F2: Unobtrusive Support-Systems are Accepted
As long as a system remains supportive and unobtrusive, relieving analysts of
mundane tasks or providing them with valuable hints and insights on request
or through nudging, semi-automated systems are accepted. Tormenting ap-
proaches hindering the workflow or being intuitive or unreliable can destroy
an initial level of trust placed in the system.
Implication: A self-explanatory, easy-to-use user interface combined with help-
ful but unobtrusive functions is essential. For this, the right balance has to be
found between automation and manual confirmation. Unreliable or inconsis-
tent results (without indications) or hindering of workflows should be strongly
avoided

F3: Reduce False Negatives for VA—and False Positives for AI
Initially surprising to us was that for many tasks (e.g., search, filter, linking), the
domain experts (both LEA 1-2 and EE 1) prefer the error rate to depend on the
automation level: for semi-interactive VA a reduction of false-negatives is often
preferable, while automated systems should reduce false-positives.
Implication: Consider the optimization task carefully, as the cost of error, where
not finding something (i.e., FN) or a wrong attribution (i.e., FP) is consideredmore
costly than the opposite. A missed lead might break the whole investigation,
while a wrong attribution might cause serious harm to innocents.

F4: Limited Acceptance of Unreasoned Decisions
At least for now, to support an ethical and privacy-aware analysis and offer
transparency, fairness, and accountability while fostering user trust, the experts
prefer an explainable, interactive system compared to a fully automated ap-
proach.
Implication: Due to the high stakes in this domain, experts have concerns about
fully-automated systems that cannot provide a rigorous chain of evidence,
which—at least for now—is rarely possible. Future developments might shift
this balance.
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8.6.2 Limitations and Future Work

Nevertheless, the approach remains a research project with limitations:
The Knowledge Graph representation uses custom GPU-optimized rendering

achieving excellent performance, but it comes with the disadvantage that some of
the more advanced results from graph drawing, like more complex curved lines,
are not directly applicable without heavy performance penalties. We also want to
highlight that we do not see our contribution in designing state-of-the-art graph
drawing but in the interactions, combinations, and linkings between the different
modalities for the graph.

The integration of the underlying language model itself is modular, such that
any other transformer-based NER model can be easily used, as the system features
a built-in language detection. However, for the evaluation in this chapter, we only
used our customized German NER model due to the domain experts’ preferences
and expertise. We did not explicitly show a generalization, which we, nevertheless,
certainly expect. In the future, off-the-shelf transformer-based NER models can
be used, with limitations in the types of detected NER and resulting degradation
in relationship inference. Alternative models would need to be fine-tuned with
additional NER types, requiring appropriate training data. Another problem in this
regard can be the analysis of multi-lingual or inter-lingual text and transcripts.

The recent progress with Large Language Models (LLMs) like GPT-4 [Ope23]
offers interesting opportunities in this regard. This is, in particular, relevant when
models are capable of supporting multiple languages as well as providing up-to-
date and case-specific query context, as the New Bings underlying Prometheus
Model [Rib23] shows to some limited degree. Three domain experts (LEA 1, SI 1, SI 2)
in our study tried Chat-GPT on crafted case material and were astonished both by
the easy workflow of querying and the (relative) quality of the findings as potential
leads. They regard such text-based, interactive prompting through LLMs, which
imitates basic reasoning and summarization capabilities, as potentially very useful.
Integrating such natural language prompts in applications, maybe only in supportive
roles, seems very promising. Interestingly, GPT-4 also shows surprising capabilities
in zero-shot NER labeling. For testing, we let GPT-4 auto-label a subset of our
test data. We achieved this zero-shot labeling by prepending a prompt ”Extract
named entities of the given types from the following text: person, organization and
location”, resulting in only slightly less quality than manual, human labeling. This
could potentially replace specifically trained NER models, like the one we described
in Section 8.3. Recent experiments [GAK23] suggest superior results are possible.
While this shows the viability of the transfer learning approach, ”close-to-real-
life” scenarios often perform worse compared to controlled benchmarks [PUL22].
Therefore, evaluating such scenarios in the wild is important to identify persisting
limitations, which can be supported by interactive analysis. Also, care must be taken
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to consider the additional risks involved when using LLMs: They do not learn from
mistakes outside their limited context window (32k for GPT-4-32k), which is relevant
when using all documents as context, and most seriously, they tend to suffer from
hallucinations that are hard to detect. Further, employment of such solutions would
require on-premise solutions or specialized contracts.

Overall, depending on the jurisdictions, legal requirements might regulate the
allowed automated analysis tasks [BVe23]. The ethical and privacy-aware design,
as well as the semi-automated analysis, always subject to human verification,
performed in our approach, should allow for usage even in tightly regulated juris-
dictions. The concrete usage in critical cases, however, should be accompanied by
a prior legal counsel.

One general limitation in this line of research is the opaqueness of the intel-
ligence community. Many systems are classified [Dha17] and capabilities are not
shared openly–which can be frustrating from a scientific perspective, hampering
progress and introducing problems from ethical and privacy perspectives due to
missing accountability. It also remains difficult to recruit domain experts to evalu-
ate and analyze the techniques developed in the scientific community. One way
to reduce increased reliance on expert evaluations is to also incorporate general
interaction strategy design guidelines derived from numerous user interaction eval-
uations regarding relevance feedback [KJZ+21]. Efforts are ongoing to finance more
research in open and accountable intelligence solutions (e.g., within Horizon Europe
and others). However, we are well aware that some aspects of this domain will
likely remain hidden. With our work, we try to contribute to ongoing research in
this domain and discuss ways to make these more accountable.

8.7 Conclusion

Over the last few years, AI-driven models have become increasingly prevalent in
many domains. This tendency can also be observed in operational analytics solu-
tions in investigative journalism, intelligence, or law enforcement. These domains,
in particular, pose distinct challenges due to their sensitive nature. Two aspects,
in particular, stand out: ethical and privacy concerns, as well as difficulties in effi-
ciently combining heterogeneous data sources for multimodal analytics. A lack of
such holistic and multimodal approaches can lead to biased results and increased
manual efforts through domain discontinuities.

To address these two challenges, we present MULTI-CASE, a holistic visual ana-
lytics framework that enables the exploration and assessment of heterogeneous
information spaces (i.e., unstructured, diverse, and multimodal) supported by an
equal joint agency between humans and AI to ensure ethics and privacy awareness.
To fulfill these requirements, the system operates on a fully-integrated data model
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while featuring type-specific analyses with multiple linked components, including a
modality-wide search (i.e., full-text, semantics, and all multimodal analysis results),
text, and graph-based analysis. Different information streams are linked in a knowl-
edge graph, providing in-situ explanations and transparent source attributions
while facilitating responsible exploration through numerous interlinked explorative
modules. We discuss the potential for improvements, for example, in rendering,
completeness, or the use of more advanced LLMs.

We demonstrate how our framework fulfills the design goals through state-of-
the-art intelligence capability assessments and evaluations according to ethics
design guidelines. The underlying transformer model showed state-of-the-art
performance on relevant benchmarks. To showcase our prototype’s analytical capa-
bilities in practice, we presented a case study describing war crime investigations in
the context of investigative journalism. Finally, a formative expert evaluation with
eleven domain experts in law enforcement confirms that MULTI-CASE facilitates
human agency and steering in security-sensitive, AI-supported analysis processes,
addresses ethical and privacy concerns, and provides much-needed analytical
capabilities.

With this contribution, we aim to provide more insights into the often opaque
workings of the intelligence community and strive towards a more accountable and
responsible use of modern AI capabilities.
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Ask what you can do

— John F. Kennedy, 35th U.S. President
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This dissertation discussed communication
analysis research from a digital and holistic per-
spective. This concluding chapter will reflect
on our contributions to the field and its impli-
cations. We take a retrospective view, summa-
rize our key contributions and place them in a
broader context, point to promising research directions in the future, and discuss
perspectives on communication analysis.

9.1 Summary

The ultimate goal across various economic disciplines when analyzing complex and
heterogeneous datasets is to enhance understanding of the information contained
in the data and the generation of knowledge from it. Leveraging computer-aided
data analysis techniques in this process primarily addresses the issues of computa-
tional power (the amount of data that can be analyzed in a given time) and accuracy
(in the sense of reproducible, tireless correctness). At the same time, humans so far
are often still superior in areas such as creativity or decision-making with limited
information through intuition. Visualization plays a crucial role in this endeavor,
as it is essential to communicate the results to the human operators and allow
them to show and explain intermediate results and context to them. Interactive
visualizations—particularly visual analytics, where the interactive visualizations are
integrated as part of the analysis loop—aim to bridge the gap between computers
and humans to form an effective joint agency. Ideally, both parties form a symbiotic
relationship, mutually empowering each other, so they can achieve more than on
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their own. This is especially relevant for tasks that are not clear-cut but more
open-ended with an a priori unclear result type, like in communication analysis.

Human communication is often subjective, constrained by social and historical
norms, heavily context-dependent, and employs various channels. It is one of
the most fundamental ways the human mind expresses creativity and identity,
reflecting themulticultural and diverse human society. Whilemany written or spoken
languages have rules like spelling or grammar, communication semantics and the
information exchange underlying communication are highly complex. Humans can
often navigate this complex space effortlessly, while computers and algorithms
struggle with these built-in assumptions and uncertainty. Leveraging the power
of visual analytics for big data applications in communications is therefore not
only beneficial but imperative when one wants to avoid a narrow and isolated
analysis. Due to the heterogeneity and difficulty of communication analysis, the
problem is addressed in several fields and methods. Natural Language Processing
(NLP) works on the textual (content) level, while social network analysis (SNA)
looks at the social context and the information flow. Further, metadata analysis
aims to learn from patterns in associated metadata, while time-series analysis
investigates temporal correlations. However, as described in Chapter 1 and Chap-
ter 2, the existing research is relatively segregated and isolated, missing out on
opportunities from a combined analysis. Further, while communication behavior is
studied in many different disciplines, much of this research is not considered part of
algorithmic solutions. As such, the interdisciplinary analysis has yet to be compiled
and considered in a coherent framework in the context of digital communication
and its semi-automated analysis in computer science, which is the focus of this
dissertation.

The contributions of this dissertation consist of four parts: After the introduc-
tion, the Part I sets the stage. In Chapter 2, we have positioned our work within
the context of related work and compared it with the state-of-the-art. Based on
this analysis, we have contributed a formalization of the field through a conceptual
framework and outlined the research gaps, most of which have been addressed in
the following chapters. Before we then start with the technical aspects of how com-
munication analysis can be conducted in a broader and ethically-ware context, in
Chapter 3 we have investigated ethical and privacy considerations of communication
analysis and proposed ways in which visual analytics can address them, supporting
communication analysis. In Part II, we have discussed different techniques that
relate to the identification and interpretation of communication as a first step.
In Chapter 4, we first have surveyed hypergraph model visualizations before we
presented Hyper-Matrix, a technique for the identification of communication in
Chapter 5. After we have identified possible communication topics and partici-
pants, we have focused on their interpretation through metadata pattern analysis
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in Chapter 6, describing the concept of Conversational Dynamics. In Part III, we have
combined the lessons from previous chapters to discuss holistic approaches. We
first focused on a primarily text-based level, where we have presented CommAID
in Chapter 7, which usages a multi-level matrix-based view to analyze communi-
cation. We then have taken a more multimodal perspective in Chapter 8, where
we presented MULTI-CASE as a knowledge-graph-based multimodal framework for
interdisciplinary communication analysis. In this final Part IV and Chapter 9, we
have summarized our findings in a broader context, pointed out promising future
research aspects, and concluded the dissertation.

9.2 Future Research Aspects

At the end of each previous chapter, this work has already outlined challenges and
potential future work. In most cases, these considerations address the techniques
and methods we discussed in the individual chapters. We can, however, notice
some common topics and overarching challenges spanning the whole research
field addressed within this dissertation. In the following paragraphs, we highlight
general limitations and promising future research challenges and perspectives of
visual communication analysis in a broader context.

Analogical Code and Broader Context — The analogical code as defined by Watzlaw-
ick et al. [WBJ74] is concerned with the soft factors of communication, which refer to
the implicit meanings. When one begins to include non-text-based information like
audio or video, there can be non-verbal signals such as intonation, body language,
facial expressions, or gestures, compared to the written word. These codes can
transport and contain important cues that might support the analysis of the mean-
ing and provide additional information about the context. In principle, this type
of analysis can be conducted as a module in MULTI-CASE (see Chapter 8) and then
provide the results towards the combined analysis framework. Similarly, it can be
beneficial to also leverage additional context provided in the analysis, for example,
information about the power relations of participants, which can influence aspects
like formality, choice of words, irony, or content. This might enable the resolution
of contradictory information or ambiguities and lead to a richer analysis.

Scalability— The techniques we proposed and developed as part of this dissertation
work well for medium-sized datasets in the order of (tens) of thousands of commu-
nication parties and events. The primary limitation is not the amount of information
in itself, which can often be managed through adequate steps in the analysis process
like pre-filtering, indexing, or aggregation. With sufficient computing resources, our
approaches could, in theory, handle many millions of such events without compli-
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cations. Many of them, like MULTI-CASE follow a modular and flexible streaming
architecture, which load and queries data on demand and, given a powerful data
structure behind it, is quite scalable. Also, when filtering, for example, by time
ranges and topics is one of the first analysis steps as in CommAID, the scalability is
equally high. The main problem in scalability arises when the potentially interesting
amount of possibly correlated information cannot be filtered or reduced through
(semi-) automatic means. This is a fundamental problem, as finding cross-matches,
in general, has an order of 𝒪(𝑛2) time complexity when the comparison function
is arbitrary. One way around this issue would be to use a well-defined, limited
set of comparison metrics, thereby enabling – through pre-computations, sorting,
and hash-maps—an 𝒪(𝑛 log 𝑛) time complexity. This, however, limits the possible
comparison techniques. Secondly, displaying the filtered and cross-matched data
in a visual interface is further limited by the available visual space. Even matrix-
based visualizations are limited by the theoretical pixel-dense maximum. Another
option would then be again to use aggregation, summarization, or intelligent zoom-
ing/scrolling, all of which can shift the boundaries further but also have drawbacks
as they limit overview and place a burden on the analysts to explore the whole space
sufficiently. Opportunities range from the development of pre-computable, rela-
tively generic comparison metrics to further study which information aggregation
levels—beyond those presented in Hyper-Matrix, CommAID, and MULTI-CASE—are
tolerated and accepted by the domain experts.

Interactive Querying with Large Language Models (LLMs) — The recent advance-
ments with extremely large deep learning models based on a transformer archi-
tecture, more precisely Large Language Models (LLMs), particularly with models
such as GPT-4 [Ope23], have unveiled a plethora of intriguing possibilities [KW23] to
explore. Due to their design as a Mixture of Experts (MoE), they demonstrate strong
capabilities in multiple domains, especially when working with enough context.
Communication analysis can provide these models with enormous amounts, making
applying LLMs to communication analysis particularly promising. Current models
are still somewhat limited by their finite context window, but with increasing window
size or the ability to externalize the context window, these issues become less and
less. On the one hand, in the case of multilingual models, translation tasks become
less relevant. On the other hand, and more importantly, the inclusion of language
models can fundamentally change the way analysts interact with the system: In-
stead of visually exploring prepared analysis results and tweaking the analysis, the
users can use interactive querying of the content. For example, one could ask about
providing a summary of a long conversation or about any abnormalities as defined
by their usual topics. As we showed in Chapter 8, such an interactive prompting
imitates rudimentary reasoning and summarization capabilities and is regarded
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as a potential game-changer by domain experts. It is important to note that these
prompts are unlikely to answer very complex questions or replace the analysts
completely. Instead, they help analysts articulate their intent more naturally instead
of needing to mentally translate their intent into algorithmic settings. As such, these
techniques can take a supportive rule to perform more loosely defined analysis
tasks, which can still increase overall performance, explainability, and foster user
trust. This becomes especially relevant when the model result generation is a multi-
step process, where the model refines and explains itself, similar to repeated prompt
invocations with queries to check and explain and refine the previous answer until
it converges. Despite these advances, it is essential to acknowledge and study
that the transfer learning approach can fail in more complex, real-life scenarios,
and LLMs are prone to hallucinations or otherwise erroneous outputs. Therefore,
it is extremely relevant to identify and evaluate persisting limitations, while the
combination of visual analytics and LLMs can also act as a mutually supervising
and supporting joint agency.

9.3 Concluding Remarks

In our quest for understanding communication, this dissertation has addressed
the question of how human communication analysis can be performed by digital
means through visual analytics and how the expertise of subject matter experts
to gain useful knowledge can be included. By doing so, we faced the issue that
in contrast to classical communication analysis, as defined in domains such as
social psychology, many existing approaches follow insular and segregated analysis
strategies. We, therefore, contributed a conceptual framework for communication
analysis in the digital age and identified visual analytics as a means to tackle the
holistic integration of both different analysis modalities as well as leveraging human
expertise (RQ1, see page 22). By doing so, given the delicate topic and its potential
misuse, we put a particular emphasis on the ethical and privacy dilemmas arising
in large-scale digital communication analysis to shed light on the difficulties and
dilemmas faced. From there, we work out the benefits of ethical-aware approaches
and how visual analytics can contribute to such an aim by taking the interface
as a starting point, not only in a technical but rather in a socio-technical way
(RQ2). We then continue to focus on technical solutions and approaches, discussing
in depth the details of identifying and interpreting communication. The lessons
learned are applied and described as part of two holistic analysis frameworks, which
are evaluated in detail (RQ3). Potential applications of this overall work can be
found in many intelligence areas, for example, investigative journalism, criminal
investigations, or business intelligence, while many of the individual contributions
presented as part of this dissertation can be applied more broadly.
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