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Figure 1: First, we extract layerwise embedding vectors for each token-context pair in the corpus. We obtain reference tokens (i.e., nearest
neighbors), and compute contextualization scores introduced in section 4. The aggregated corpus-level and token-level scores are visualized in
an interactive explanation workspace. In V1, we display corpus-level score patterns enabling fast model comparison. V2 supports token- and
token-group analysis. V3 and V4 provide more detailed insights into layer as well as context properties.

Abstract
Language models, such as BERT, construct multiple, contextualized embeddings for each word occurrence in a corpus. Un-
derstanding how the contextualization propagates through the model’s layers is crucial for deciding which layers to use for a
specific analysis task. Currently, most embedding spaces are explained by probing classifiers; however, some findings remain
inconclusive. In this paper, we present LMFingerprints, a novel scoring-based technique for the explanation of contextualized
word embeddings. We introduce two categories of scoring functions, which measure (1) the degree of contextualization, i.e.,
the layerwise changes in the embedding vectors, and (2) the type of contextualization, i.e., the captured context information.
We integrate these scores into an interactive explanation workspace. By combining visual and verbal elements, we provide an
overview of contextualization in six popular transformer-based language models. We evaluate hypotheses from the domain of
computational linguistics, and our results not only confirm findings from related work but also reveal new aspects about the infor-
mation captured in the embedding spaces. For instance, we show that while numbers are poorly contextualized, stopwords have
an unexpected high contextualization in the models’ upper layers, where their neighborhoods shift from similar functionality
tokens to tokens that contribute to the meaning of the surrounding sentences.

1. Introduction

Recently, a wide range of deep-learning language models (e.g.,
BERT, GPT-2) has been developed, reaching high performance in
natural language processing tasks [QSX*20]. These models are pre-
trained on large corpora (e.g., Wikipedia articles [DCLT18]), learn-
ing language structures in an unsupervised manner. They generate
contextualized word embeddings, i.e., word vectors that are specific

to the context in which they are used [Eth19]. In this work we refer
to context as a token sequence spanning a single sentence. In each
model layer, word embeddings capture different characteristics of
the context [RKR20]. For instance, it has been shown that syntactic
features (e.g., dependency trees) are captured best in BERT’s mid-
dle layers [RKR20]. Understanding such differences is crucial, espe-
cially for researchers applying language models in their work, e.g.,
by using embeddings for similarity tasks, fine-tuning models for clas-
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sification, or measuring token importance using attribution methods.

The explanation of embedding contextualization is an active
research topic, especially in the field of computational linguis-
tics. Most common explainability techniques either use supervised
probing methods, i.e., linear classification models predicting spe-
cific linguistic properties (e.g., [Eth19]), or apply adversarial test-
ing to conclude about models’ capability of learning specific con-
text properties (e.g., [MPL19]). However, the findings of these
two strands of research are often contradictory [SKB*21]. At the
same time, visual analytics approaches are used for the explain-
ability of embedding contextualization. Such approaches visualize
attention-based mechanisms in transformer-based language models
(e.g., exBERT [HSG20]), or explore characteristics of contextual-
ized word embeddings (e.g., [AWLG20]). Despite the existing ap-
proaches, there are still open questions regarding the information
captured in the embedding vectors. Also, the constant development
of new language models dictates the need for a technique that pro-
vides a quick overview of the model’s layerwise context specificities.

To contribute to this direction, we present a novel scoring-based
technique for explaining embedding contextualization. We propose
to quantitatively measure the similarity of tokens to various refer-
ences (e.g., same tokens in different contexts, tokens within the
same context, nearest neighbors) and use them as explanations. The
motivation lies in the work by Ethayarajh [Eth19], who introduces
scoring functions for embedding explainability. In this paper, we
extend this set of scores and group them into two categories: a) the
degree of contextualization category contains scores which measure
the similarity between embedding vectors of different reference to-
kens and capture the degree of changes that occur in each embed-
ding layer, and b) the type of contextualization category captures
common characteristics of tokens and their nearest neighbors and is
measured on token string representations and context properties.

A further, main contribution of this paper is an interactive expla-
nation workspace that visualizes the computed score values. The
visual representation of the scores is crucial due to the huge amount
of data that is generated and has to be investigated, and because
the embedding contextualization differs depending on the token’s
role (e.g., meaning or function) in its context [SKB*21]. Visualiza-
tions are effective means for generating insights into such (complex)
data patterns [KAF*08]. The necessity for a visual representation of
score patterns was also motivated by our collaborators from com-
putational linguistics. In their analysis, they typically first spend a
vast amount of time to explore numerical patterns and formulate
concrete hypotheses, which are then tested in new experiments. A
visual representation of the data can speed up this process by provid-
ing hints into interesting patterns. The visual solution was designed
in an iterative design process in a close collaboration with these ex-
perts. To support various analysis tasks, we visualize score patterns
in two aggregation levels: (1) A corpus-level score aggregation and
visualization provides a quick overview of model-specific contextu-
alization properties; (2) A token-level score aggregation supports
more fine-grained analysis on embedding contextualization.

We evaluate the proposed scoring-technique and the visual
workspace in two steps. First, we compare score patterns for em-
beddings extracted from BERT to previous findings by Rogers et
al. [RKR20]. Second, we investigate score patterns for six popular

transformer-based models and present new insights into model speci-
ficities through case studies. The contribution of this paper is three-
fold. (1) We introduce a scoring-based technique for explaining word
contextualization and group the scores into categories. (2) We inte-
grate these scores into a visual, interactive explanation workspace,
which presents layerwise differences between embedding contextual-
ization in multiple language models. We refer to the combination of
these scoring and visual approaches as LMFingerprints. (3) We com-
pare score patterns to the related work and provide a broad overview
of contextualization differences in six popular language models.

2. Background and Related Work

Research in explaining embedding contextualization has three main
directions: probing classifiers, adversarial testing, and visualization.

Probing – Probing tasks aim at unearthing the linguistic properties
encoded in neural models. This is achieved through a classification
task where the final outputs of the model are used as features to pre-
dict a specific linguistic phenomenon [JSS19a]. Most probing exper-
iments have focused on BERT and have shown that the model cap-
tures a hierarchy of linguistic information (e.g., [Edm20; JSS19b;
LTF19a]): surface linguistic features, such as morphosyntactic in-
formation, are captured best in the lower layers, while syntactic
properties are best represented in the middle layers. The middle to
higher layers capture morphological features best, and semantic in-
formation such as word senses and semantic roles, is captured best
in the higher layers. This captured hierarchy can also be paralleled
to the traditional NLP pipeline of Part-of-Speech (POS) tagging,
syntactic parsing, named entity recognition, semantic role labeling
and coreference resolution [TDP19a].

Adversarial Testing – Adversarial testing aims at exposing the gen-
eralization difficulties of the models, in this way shedding light to
their inner workings. Relevant research has shown how such models
struggle in capturing basic lexical relations [GSG18], identifying
ungrammaticality [ML18], efficiently capturing challenging linguis-
tic phenomena, such as negation [DGS*18; RHMS20] and condi-
tionals [RHMS20], or modeling human reasoning patterns, such as
numerical or common-sense reasoning [NRS*18]. These findings,
however, seem to contradict the results of the probing studies: if
the models are able to capture ‘deep’ linguistic information (e.g.,
about syntactic hierarchies), they should also be able to solve the
challenges posed by adversarial test sets.

Contextualization – Despite these contradicting findings, there
is consensus that the word embeddings generated by such models
are contextualized, i.e., a word has different vector representations
across different contexts. Particularly, recent work by [Eth19] shows
that, by measuring a word’s contextualization on the basis of self-
similarity scores, the embeddings become more contextualized, i.e.,
more context-specific, in the upper layers of BERT. Additionally,
[RYW*19; WRCB19] show that contextualized embeddings gener-
ally cluster with one another with respect to word senses.

Visual Embedding Explanations – For explainability pur-
poses, most relevant work has focused on visualizing at-
tentions (e.g., NLIZE [LLL*18], Seq2Seq-Vis [SGB*18],
BertViz [Vig19], exBERT [HSG20], SANVis [PNJ*19]) and Atten-
tion Flows [DWB20]), and showing how transformers learn. Less
work has focused on visualizing word embeddings and showing
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what the model learns. The first such tools were applied on static
embeddings, such as word2vec, Glove, and fastText, and facilitated
analogies [LBT*17] and various other tasks such as local word
neighborhoods [BCS19; HG18]. Similarly, the recent approach by
[Ber20] explores correlations between embedding clusters in BERT
for a single model’s layer at a time. The novelty of our approach is
the explanation of contextualized word embeddings through a novel
scoring technique, integrated into a visual explanation workspace.

3. Problem Characterization

During our long-term collaboration with computational linguists
working with language models, we have identified several require-
ments for a visual analysis approach supporting the explanation of
embedding contextualization. The requirement analysis included
several informal interviews with two postdoctoral researchers con-
cerning their typical workflow of using language models in their re-
search. We have also reviewed approaches that are currently used by
researchers to explain embedding contextualization, such as probing
or adversarial tests, as well as visual approaches (see section 2). In
the following, we describe the gathered requirements through Mod-
els and Data as well as Users and Tasks [MA14].

Models and Data – To analyze word embeddings, we first need
to consider language models that produce them. There are various
types of language models, with different architectures, generating
word embeddings. For simplicity reasons, in this paper we focus on
transformers, which are multi-layer models that use attention mech-
anisms [VSP*17]. During the training process, each token of the
input sequence (in the following, we will refer to the input sequence
as the token’s context) gets mapped to a high-dimensional vector us-
ing a combination of embeddings that indicate the corresponding to-
ken, segment, and position. Transformer models can be of different
types (e.g., BERT is an autoencoder and GPT-2 is an autoregressive
model) and they can have different learning objectives (e.g., BERT
is trained on masked language model and the next sentence predic-
tion tasks, while GPT-2 is trained on the next word prediction task).

It has been shown that language models capture different linguis-
tic properties, i.e., semantics, syntax, surface features [RKR20]. To
enable such broad analysis of embedding contextualization, we first
need to come up with effective contextualization descriptors (R1).
Due to models’ inner-working differences, it is expected that their
embedding contextualization differs. Hence, the explanation of the
contextualization needs to be generalizable and easily applicable on
different language models for an effective model comparison (R2).
Depending on the size of the corpus, the number of the extracted
embeddings that have to be analyzed can introduce challenges. Pre-
vious work [Eth19; SKB*21] has also shown that some tokens (e.g.,
function words) get contextualized stronger than others. Hence, to
get a full picture, it is not sufficient to compute statistical contex-
tualization values on the complete corpus alone, but we need addi-
tional visualizations for more fine-grained token-group level analy-
sis (R3). Since different layers of a model capture different types of
context information [RKR20], the visual representations must high-
light layer-specific contextualization properties (R4).

Users and Tasks – Boggust et al. [BCS19] describe that espe-
cially expert users, i.e., data analysts, machine learning experts, and
computational linguists analyze embeddings for multiple purposes,

among others, for understanding the model’s strength and weak-
nesses (requires R1, R2, and R3) and the information that it learns in
different layers (requires R4). In the following, we showcase several
tasks that require prior knowledge on embedding contextualization.

T1: Token Similarity Since language models generate embed-
dings for each token’s occurrence in the corpus depending on the
token’s surrounding contexts, one can use them to disambiguate
words with multiple meanings. These embeddings can also be used
as fixed features for classification tasks. However, since each layer
of the model captures different context’s characteristics, researchers
need to decide which layer’s embeddings are the most sufficient for
the use case at hand (requires R1, R4).

T2: Model Fine-Tuning Often, language models get fine-
tuned on labeled datasets for diverse classification tasks [DIS*20],
whereby the initial contextualized word embeddings get adapted to
capture task-specific language characteristics. For example, one can
freeze layers [LTL19] during the fine-tuning to speed up the training
process. Currently, decisions on the layer selection are made through
a brute-force approach, i.e., different layers are selected and the
model with the highest accuracy is chosen manually [LTL19] or au-
tomatically [LAV21], based on the produced accuracy scores. These
decisions are currently not informed by the knowledge of what is
captured in the embeddings in different layer (requires R1, R4).

T3: Token Importance To evaluate what the model learns during
its fine-tuning, one can apply attribution methods [LPK21; ZBRS21],
which are computed on the word embeddings adapted during the
fine-tuning. In order to avoid making false conclusions (e.g., why a
particular group of words such as stopwords has a high or low attri-
bution), one needs to first gain an understanding of the token contex-
tualization, e.g., what type of information is encoded in embeddings,
to which tokens words become similar, and what are characteristics
that the neighborhoods have in common (requires R1, R3).

4. Contextualization Explanation through Scoring Techniques

In this section, we present the foundation of LMFingerprints – a
scoring-based technique for explaining embedding contextualiza-
tion. Instead of training probing classifiers and analyzing their in-
puts and outputs, we compute the similarity of different embedding,
token, and context characteristics and use them as means of expla-
nation (supports R1). In this section, we present existing scoring
techniques and introduce new ones that are computed on the embed-
ding nearest neighborhoods. We categorize these scores into two
types (see Figure 2). First, we present scores that describe the de-
gree of contextualization. These scores measure the changes in the
embedding vectors themselves, e.g., by applying the cosine simi-
larity function. Second, we introduce new scores that characterize
the type of contextualization. These are scores that measure the
similarity between nearest neighbors according to different token
and context properties. In the following, we present a set of exam-
ples for each type. This set of scores is not exhaustive and can be
extended to enable testing of further hypotheses.

Data Pre-Processing – The data pre-processing pipeline is shown
in Figure 1. For each token-context pair in the corpus, we first ex-
tract layerwise embedding vectors. We refer to context as a token
sequence spanning a single sentence. For instance, if a token occurs
in five sentences and the model has 12 layers, we will extract 5 x 12
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Figure 2: We propose using score functions to measure the embed-
ding contextualization, computed on different reference tokens.

embedding vectors for it. If a token occurs multiple times in a sin-
gle sentence, we extract an embedding for each of its occurrences.
Hence, the position of a token in the sentence is stored as its meta-
data. Next, we extract and store k nearest neighbors for each token
embedding. As our previous work shows [KSS*21], the highest sim-
ilarity is observed between embeddings of the same word used in
different contexts. Thus, to explain what information is captured in
the embedding vectors, we exclude the same tokens from the token’s
nearest neighbors, i.e., we obtain nearest neighbors that are the next
most similar ones. The parameter k can vary; we have tested k=3 as
well as k=10 and both produced comparable results. For the score
computation as well as visualization purposes, we assign each token
to its POS tag. Finally, we compute scores for each token embed-
ding that we introduce in the following section. For analysis pur-
poses, the score values get aggregated. The token-level aggrega-
tion represents layerwise average score values for each unique to-
ken string. The corpus-level aggregation represents the layerwise
average score values for all tokens in the corpus.

4.1. Degree of Contextualization

In the following, we present several example scores that can be used
to measure the degree of changes in the embedding vectors. These
scores can be computed on different reference tokens (e.g., same
token in different contexts or nearest neighbor tokens).

Token in Different Contexts: To explain the embedding contex-
tualization, Ethayarajh [Eth19] introduces the self-similarity score,
which is “the average cosine similarity of a word with itself across
all the contexts in which it appears." Expectation: The higher the
similarity, the lower the degree of contextualization.

Tokens in the Same Context: Another score introduced by Etha-
yarajh [Eth19] is intra-sentence similarity, which is the average co-
sine similarity between a token’s embedding to other tokens in the
same context. Expectation: The higher the similarity, the higher the
degree of contextualization.

Nearest Neighbor Tokens: The nearest neighbor similarity is com-
puted as the cosine similarity between the token and its nearest neigh-
bor embeddings. Expectation: The higher the similarity, the higher
the degree of contextualization. The nn diversity score measures the
number of unique nearest neighbors (unique strings). Expectation:
The larger the diversity, the higher the degree of contextualization.

Baseline Embedding: One can also measure the similarity to a
baseline embedding. For instance, we can extract embeddings from
a token without its surrounding context or from the 0th layer [Eth19]
and use them as a baseline. We call them similarity to context-size 0
and similarity to layer 0, respectively. Expectation: The lower the
similarity, the higher the contextualization.

4.2. Type of Contextualization

The previous scores measure solely the degree of embedding
changes according to diverse reference tokens. To obtain charac-
teristics that are encoded in embedding vectors, we introduce
further scores that are computed on token nearest neighbors for
different token and context properties. There are many potentially
interesting scores that can be designed for measuring the type of
contextualization. In the following, we specify example scores cov-
ering the three linguistic analysis directions, i.e., semantics, syntax,
and surface features. In addition, we describe scores related to spe-
cific context properties (e.g., token’s position in the context).

Semantic Similarity: Related work has evaluated which layers cap-
ture token semantic information in BERT and the current findings
are contradictory [RKR20]. To measure this characteristic, we intro-
duce the semantic similarity score. It measures similarity between
a token to its nearest neighbors according to the Wordnet’s [Fel98]
word similarity function [PPM04]. Example tokens with a high se-
mantic similarity: girl – woman. To analyze the contextualization of
named entities, we introduce the same named entity category score.
It measures how often the nearest neighbors share the same named
entity category. Example: Germany (LOC) – Italy (LOC).

Syntactic Similarity: Same POS tag score measures how often a
token and its nearest neighbors have the same POS tag. Example:
drive (VERB) – walk (VERB). Same previous POS tag measures
how often the token before the target token has the same POS tag as
the token before the nearest neighbor. Example: sunny (ADJ) day –
good (ADJ) weather. Same next POS tag measures how often the
token after the target token has the same POS tag as the token after
its nearest neighbor. Example: day is (AUX) – weather will (AUX).

Surface Similarity: To see whether the model captures a token’s
lexical representation (i.e., characters of the string), we introduce
the lexical similarity score. It is computed as the inverse of the edit
distance between a token and its nearest neighbor tokens, normalized
to the longest token in the neighbor pair. Example: drive – driver.

Context Specificities: The positional similarity score measures how
often the token and its nearest neighbors have the same absolute
position in their contexts. Example: This is a sunny... (index 3) – It
was a good... (index 3). The in context score captures how often
tokens that occur in the same context become nearest neighbors.
Example: This is a sunny... – A sunny.... Same context shows in how
many cases the token and its nearest neighbors are part of the same
context. Example: This is a sunny... – This is a sunny.... And a more
restricted version – part of the n-gram – shows how often the token
and its nearest neighbors together create a tri-gram. Example: This
is a sunny... – This is a sunny....

5. Interactive Visual Explanation Workspace

In this section, we introduce the visual, interactive workspace
of LMFingerprints, which explains embedding contextualization
through scoring patterns (see section 4). The design of the workspace
is motivated by the requirements described in section 3.

Design Rationale – The design of the workspace is tailored to ex-
plain contextualization score patterns. In particular, our aim is to
visually summarize in which model’s layers the contextualization
scores have the lowest as well as the highest values for different
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Figure 3: In Model Fingerprints, the cells (i.e., circles) represent ranks for each score (i.e., column) that are extracted from their aggregated
corpus-level values. A bipolar scale is used to highlight the layers with the highest (large yellow circles) and the lowest (large gray circles)
score values. White star icon are added to the top two ranks of both ends of the scale.

token aggregation levels (i.e., the whole corpus as well as differ-
ent token-groups). The design was conducted in close collabora-
tion with experts from computational linguistics, and has been
adapted through several design iterations. Each adaption phase of
the prototype was followed by a feedback round where the imple-
mented prototype was constructively critiqued.

To ease the readability and memorability of the visual elements,
we use the same, globally defined encoding for elements displayed
in multiple views. In all views, layers are colored using a sequential
color scale (i.e., from purple representing layer 1 to orange repre-
senting layer 12). The sequential color scale shows the changes be-
tween the early, middle, and upper layers - a standard degree of anal-
ysis in related work - and is perceptually less overwhelming than,
e.g., 12 categorical colors. Except in the radial layout, in all other
occurrences layers are represented as squares and ordered ver-
tically from layer 1 (on top) to layer 12 (on the bottom). To avoid
confusion, we call the first layers (e.g., 1, 2) – early layers and last
layers (e.g., 11, 12) – upper layers, sticking to the model’s architec-
ture. Furthermore, to ease the analysis of token types ([SKB*21]),
we color function words pink and content words green in all
views where they are displayed.

Workflow – After data pre-processing (described in section 4),
we visualize the aggregated scores in the explanation workspace.
The aggregated corpus-level scores are displayed in Model Finger-
pints (Figure 1 V1) view. The users can select two models (or one
model twice to explore the relation between two scores) and display
them in Model and Score Comparison view (Figure 1 V2). There,
through diverse interaction techniques, the users can gain insights
into specific token-group contextualization. Layer Summaries view
(Figure 1 V3) summarizes layer properties, and Close Reading view
(Figure 1 V4) displays token contexts for close reading.

5.1. Model Fingerprints View

The goal of this visualization is to explain contextualization specifici-
ties for multiple language models simultaneously (R2) and highlight
characteristics that are captured in different models’ layers (R4).

Visual Design The design of a model comparison view was straight-
forward; our experts agreed that a matrix-like visualization would
support the layerwise representation of corpus-level score values
(shown in Figure 3). The idea was inspired by literature fingerprints
by Keim and Oelke [KO07]. The columns in the matrix represent
scores; the rows – layers of the particular model. We first rank lay-
ers according to their aggregated corpus-level score values, and by
default represent each model by its ranks (i.e., rank 1-12 in language
models with 12 layers). Each cell in the matrix is visualized as a cir-
cle that is scaled to the layer’s rank, whereby a bipolar scale is used
to highlight the layers with the highest and the lowest score values
(i.e., circles with the largest radius). In addition, we use two qualita-
tive colors to show the max (yellow) and min (gray) ranks accord-
ingly. For better readability, we add a white star icon on circles of
the top two ranks of both ends of the bipolar scale. We use star icons
since they are commonly used as rating icons in diverse applications.

This representation primarily shows score-wise layer differences,
i.e., in which layers a particular score has the highest or lowest val-
ues. Since embeddings from all layers are extracted from the same
corpus (and, hence, are comparable), such layerwise changes can
indicate that the model in the particular layer captures the score’s
underlying pattern (e.g., POS tags, named entity categories). How-
ever, the fingerprints do not tell us how dominant these patterns are.

Interactions – For a detailed score distribution analysis, users
can click on a single score (i.e., column) and a line chart showing
aggregated corpus-level score values is displayed on top of each
model’s matrix. To ease model comparison for a single score, the

(a) GPT-2 is highly anisotropic, i.e., embeddings have a high cosine similarity. (b) In XLNET’s upper layers, tokens in the context become similar.

Figure 4: The Model Fingerprints can be reordered to group scores according to their category (e.g., degree- or type of contextualization). Hov-
ering over a model, the corresponding lines get highlighted, facilitating score comparison. Models are sorted according to their rank-patterns.
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Figure 5: One line represents score values of one layer. To ease the
readability, we additionally color the area showing score’s differ-
ences to the previous and following layer.

users can change the view to a score-based representation, where the
columns are reordered to group scores according to their category
(e.g., degree- or type of contextualization). By hovering over a col-
umn (i.e., a score for one model), all scores of the particular model
get highlighted in other score-based matrices (shown in Figure 4).

5.2. Model and Score Comparison View

Model Fingerprints give an overview of aggregated corpus-level
score differences. However, related work has shown that contex-
tualization of different word categories differs (i.e., some tokens,
e.g., function words, get more contextualized than others [Eth19;
SKB*21]). To enable the analysis of such differences , we designed
the Model and Score Comparison view. The purpose of this view
is to provide an overview of contextualization specificities for dif-
ferent token-groups (R3), e.g., proper-nouns, function words, etc.
At the same time, the visualization should show the score values
for different model’s layers (R4), and be relatively compact to en-
able the analysis of at least two models simultaneously, displayed
side-by-side (R2). In other words, our goal was to design a compact
visualization that shows layerwise token-group score patterns.

Visual Design – The design of this view was a more laborious
process than for the Model Fingerprints view. Before deciding on
a radial area chart to display token-based score values, we imple-
mented multiple alternative visualizations, among others, a parallel
coordinates plot [JF15] and a zoomable matrix-based visualiza-
tion [BBH*16; FAS*20]. We provided depictions of some design
alternatives as supplementary material to this paper. The parallel co-
ordinate plots represented each layer of the aggregated token-level
score values as a dimension in the plot, resulting in an over-plotted
visualization. To avoid this pitfall, we turned to matrices, as they
do not suffer from occlusion and line crossings [BBH*16]. How-
ever, the matrix required a large area to be displayed. Our experts
reported finding it challenging to compare score values across lay-
ers, and wished a more compact representation. After several failed
attempts to reduce the size of the matrix and improve its readability,
we finally switched to the radial design. One of its main advantages
is the compactness of the layout [DLR09]; it has been also judged
as a natural and therefore a memorable visualization [BVB*13].
Despite the known limitations of radial charts (e.g., angle-based
comparisons [WDG*19]), their ability of presenting patterns in a
compact way was judged positively by our experts.

Figure 6: Example patterns that can be detected using the radial
layer visualization through filtering and reordering techniques.

The radial design displays all tokens in the corpus, groups them
according to their POS tag, and describes them through their layer-
wise contextualization score values. First, we arrange unique tokens
in radial fashion (by default, sorted alphabetically). To let the users
understand layerwise embedding changes, we visualize the score
values for all 12 layers simultaneously. A single layer is displayed as
a line that connects the score values for all tokens in the corpus (i.e.,
12 lines for a model with 12 layers). An example is shown in Fig-
ure 5. We color the lines according to a sequential color scale (i.e.,
from purple representing layer 1 to orange representing layer 12).
To facilitate readability, we additionally color the area between two
succeeding layers (shown in Figure 5) and decrease their opacity
to see overlapping layers. The design is similar to a braided graph
visualization, whereby each braid has transparency and thus, the
overlapping layers are visible. We further group tokens according to
their most frequent POS tag to ease group-pattern analysis.

To enable model as well as score comparison, we display two
radial charts at once, one on each side of the screen. The displayed
model(s) are selected by the user in the Model Fingerprints view.
At the bottom of the screen, we provide an overview of score ranks,
but this time they represent the selected model(s). The users can
change the visualized score in the radial chart by clicking on a
score’s representation at the bottom of the screen. An enlarged
version of the clicked layer-rank visualization is displayed between
the two radial charts, as shown in Figure 7.

Interactions – The radial visualization provides a good overview
of score patterns for token-groups, but, when the radial chart has
to display many tokens, the readability of token labels is restricted.
And, although one can see general differences between two radial
charts, it is perceptually difficult to compare single token values. To
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Figure 7: The self-similarity in different models show different contextualization patterns. BERT’s self-similarity decreases with increasing
layers; XLNET’s highest self-similarity is in upper layers, the largest increase is between layer 7 and 8. To compare the token-level score
values, the users can switch from the layer-rank to token comparison visualization.

ease the interpretation of the shown patterns, we thus support sev-
eral interaction techniques. Yang et al. [YWR02] has suggested five
interaction techniques for radial visualization: selection, reconfigu-
ration, distortion, drill down/roll-up, and pan, zoom, and rotation.
We focus on the first two: the selection of specific token groups and
the reordering of the displayed tokens. An example is shown in Fig-
ure 9. First, to analyze token-groups in more detail, the users can
select POS tag(s) and the corresponding tokens are filtered. Based
on the available space, the token labels are enlarged, enabling their
readability. Second, users can group tokens according to their POS
tags (default setting), or remove this grouping. Third, the users can
sort tokens according to different properties: alphabet, maximum
score value among all layers, score value in a specific layer. The
two charts can be sorted independently of each other, or through a
global sorting. Some examples of patterns that arise in the visual-
ization through filtering and sorting techniques are displayed in Fig-
ure 6. These include layerwise gradient changes, which are visible
in situations when the score values gradually increase or decrease in
succeeding layers. Token-group differences become obvious when
tokens are grouped according to POS tags and the radial chart con-
tains empty areas. The presence of a particular score in a single layer
is shown through (large) areas colored with a single color. Token ex-
ceptions become obvious when sorting them to score values for a
single layer. When the users hover over a token, their score values
are displayed next to the particular score in the layer-rank visual-
ization. To enable single token comparison, we add another helper
visualization – a linear area chart placed between the radial charts
(shown in Figure 7). This chart is linked to the radial chart, i.e.,
when the users hover over tokens in the radial chart, the linear area
chart is scrolled to the position of the hovered token. The users can
switch between the layer-rank visualization and the linear area chart.

5.3. Details-on-Demand Views

Layer Summaries View – To ease the comparison of the different
layers of one model (R4), we add the Layer Summaries view. It is
displayed, when the users click on a layer in the layer-rank visual-

ization of the Model and Score Comparison view. This facilitates
the interpretation of layerwise score patterns, as we summarize the
specific properties for the selected layer using verbalization. Ver-
balization – description of a phenomenon in words – is an effective
alternative for machine learning model explainability [SBE*18]. We
use verbalization to describe which layers are similar to the selected
one, as well as which scores have the highest ranks for the particular
layer. The verbal components are created using a heuristic approach.

Close Reading View – Close reading is a fundamental method in
text analysis applications [JFCS15]. It is needed especially to build
trust [CJS16]. Thus, to provide insights into the token neighbor-
hoods (R3), we add the Close Reading view. This view is displayed
on demand, when a token is selected in Model and Score Compari-
son view. The layerwise token neighborhoods are displayed in a 2D
space (shown in Figure 8), whereby the coordinates for token em-
beddings and their neighbors are obtained using the UMAP projec-
tion [MHSG18], the current state-of-the-art dimensionality reduc-
tion techniques. Each layer is represented through a single projection.
The token as well as each nearest neighbor is displayed as a circle
that is enclosed in a voronoi cell, whereby the cells are colored ac-
cording to the token’s type (i.e., function words are colored pink and
content words green). If multiple nearest neighbors have the same
token string, we display only one label to reduce overplotting. The
label is placed in the average coordinates of its token-context em-
beddings, and their corresponding voronoi cells are joined together.

6. Evaluating the Contextualization Landscape

We conduct a two-step evaluation to evaluate both, the scoring func-
tions and visual representation of the score patterns. First, we com-
pare score patterns of embeddings from BERT to previous findings
from the BERTology paper by Rogers et al. [RKR20]. Second, we
investigate score patterns for six popular transformer-based models
and present several new insights through case studies.

Corpus – We use a corpus of 800 unique sentences of the RTE-
1 [DGM05], RTE-2 [BDD*06] and RTE-3 [GMDD07] corpora.
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Figure 8: Contextualization of function words in BERT. We use UMAP projection to show tokens and their nearest neighbors in a 2D space.
The dots represent token embeddings that are surrounded by voronoi cells. Here, we show the nearest neighbors of the token A in layers 1, 5,
and 11. In BERT’s upper layers, this token becomes more similar to content words (see green voronoi cells) that occur in the same context.

These corpora contain sentence pairs originally intended for Natural
Language Inference. They stem from the news domain and thus
contain variable content. The pairs are split into single sentences.

Models – We compare embedding contextualization in six trans-
former models: bert-base-uncased, bert-base-multilingual-uncased,
roberta-base, gpt2, xlnet-base-cased, xlm-mlm-en-2048. For simplic-
ity reasons, we selected models that have 12 layers in their architec-
tures. From each model, we extract layerwise embedding vectors for
each token-context pair using the hugging-face library [WDS*20].
Since each model uses a different tokenizer, the number of extracted
embeddings slightly varies, but is around 12’000 tokens for each.
We use faiss library [JDJ17] to extract 10 nearest neighbor tokens /
{same tokens} for each unique token embedding. For better compari-
son, we reduce the dataset to tokens that occur at least 5 times in the
corpus. For tokens that are very frequent (e.g., function words), we
limit their set to max 100 unique embeddings per layer. Tokens are
mapped to their POS tags using spacy’s en_core_web_sm model.

6.1. Use Case: Comparing RW Findings to BERT Fingerprints

To show the validity of the LMFingerprints scoring technique, we
first compare scoring patterns computed on embeddings extracted
from BERT to the findings summarized in the paper by Rogers et
al. [RKR20]. We show examples for the different linguistic analysis
levels, i.e., semantics, syntax, surface, and context properties. As
described in section 4, one can design multiple scoring functions to
measure contextualization for one of these categories. Thus, there
is no 1:1 mapping between scores and probing classifiers described
in [RKR20], but we show that both techniques can be used as al-
ternatives since they capture the presence of the different linguistic
properties in the same layers.

Semantics – According to Tenney et al. [TDP19b], semantic infor-
mation is spread across the entire model. In the side figure, we show
the comparison of the study results by
Tenney et al. (see the left hand side,
i.e., the R(elated)W(ork)) and our score
patterns (see the right hand side, i.e.,
S(core)P(atterns)). The results of experi-
ments conducted by Jawahar et al. [JSS19a]
and Cui et al. [CCWZ20] show that seman-
tic features are captured best in upper layers.
Our score patterns show that the basic Word-
net similarity is most present in early layers, i.e., most of the nearest

neighbors of content words have a high general semantic similar-
ity. However, the line chart of aggregated corpus-level score values
show that the feature is indeed present in all layers.Remark: the ag-
gregated corpus-level values are computed on the complete corpus,
including function word; thus, the average similarity is lower than it
would be for content words alone.

Syntax – One of the experiments where the existing experimental
findings show contradicting results is related to the POS
tagging task. In particular, experimental results by Ten-
ney et al. [TDP19b] show that the basic syntactic infor-
mation, i.e., POS tags, is learned by BERT in early layers
(the highest scores for probing POS tags are achieved in
the first two layers). However, the probing experiments
by Liu et al. [LGB*19] find that POS-tagging is per-
formed best at the middle layers (layers 6-8). Our scor-
ing patterns show that in embedding vectors, the POS tag informa-
tion is the most present in early layers, but the highest values are in
layers 3 and 4. Our scoring patterns show that in embedding vectors,
the POS tag information is the most present in early layers, but the
highest values are in layers 3 and 4.

Syntactic information is most prominent in the middle layers of
BERT. This has been shown by Liu et al. [LGB*19] and
Hewitt and Manning [HM19], whose results indicate that
in the layers 6-9 it is possible to reconstruct the syntactic
tree depth. Our score function, which measures in which
layer embeddings capture simple syntactic patterns such
as n-grams with same POS tag structures (e.g., ADJ fol-
lowed by a NOUN), show the same results as probing
classifiers – the values are highest in layers 6-9. This in-
dicates that in these particular layers the embeddings indeed incor-
porate syntactic structure information.

Surface – Surface features are captured best in early layers of BERT.
The original study was conducted by Jawahar et al.
[JSS19a]. The authors trained probing classifiers to test
surface features such as sentence length and presence of
words in the sentence. Instead, we investigate the token
lexical similarity as an example of a further surface fea-
ture. It shows whether the nearest neighbors have similar
spelling, e.g., token run is similar to token runs or run-
ner. As the side figure shows, both the surface features
evaluated by Jawahar et al. as well as our lexical similarity is most
present in early layers of BERT.
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Figure 9: In BERT, numbers have a relatively poor contextualization. Here, the same POS tag score is displayed. We first filter function
words (a), sort them ascending to their values in layer 11 (b), and highlight tokens with POS tag NUM (c). Year numbers have the lowest
contextualization, i.e., their nearest neighbors remain numbers even in the model’s upper layers, which is different from for other function words.

Context Properties – The linear word order is best captured in the
early layers of BERT. The original study was conducted
by Lin et al.[LTF19b] who trained probing classifiers to
predict, among others, the token index in the sentence.
Their results show that especially the first three layers of
BERT can predict the token’s index in its context. Our
score patterns show that nearest neighbors especially in
BERT’s first two layers have the same positional index.
It is important to notice though that Lin et al. limited
the sentences size for their experiment, and tested only specific
indices (i.e., 2 ≤ n ≤ 9). We did not limit the sentence length nor
the positional indexes for testing.

6.2. Case Studies: Token Similarity and Importance

We further show the effectiveness of our approach by presenting
insights related to analysis tasks introduced in section 3. These in-
sights were created collaboratively with two experts (postdoctoral
researchers) from computational linguistics. In an informal setting,
the experts interacted with the workspace and verbally summarized
their observations. Before we present insights that were gained for
tasks T1 (Token Similarity) and T3 (Token Importance), we sum-
marize specificities of the six models. Model Fingerprints (a sub-
set of models is shown in Figure 3) show that the contextualization
in the six models differ. The most similar are BERT and BERT-
Multilingual (i.e., BERT-ML) models. In the early layers, their near-

Figure 10: Semantic similarity for NOUNS. In each plot, the corpus
is sorted according to the layer with the highest score values. In
BERT, the similarity is relatively high in all layers. In XLNET, the
semantic similarity drops already in early layers (purple color is
close to the center of the chart, i.e., value 0). In GPT-2, the similarity
stays the highest throughout the layers except layer 12.

est neighbors have a high lexical and semantic similarity, in mid-
dle layers the models capture named entity categories and token n-
grams, i.e., tokens are more similar to those that have the same previ-
ous or following POS tag. In upper layers, tokens within the context
become more similar to each other. ROBERTA’s properties differ.
Tokens within the context become similar to each other in middle
layers, and the similarity between tokens in similar n-gram struc-
tures is highest in upper layers. Among the six language models,
XLM encodes the positional information the strongest. This feature
is dominant in the early layers of the model. We can confirm find-
ings by Ethayarajh [Eth19] and Cai et. al [CHBC20] that GPT-2 is
highly anisotropic, i.e., its embeddings fall within a narrow cone of
the space, leading to high cosine similarities. Especially in layer 12
the cosine similarity between tokens is close to 1 (in Figure 4a). In
comparison to other models, token nearest neighbors in upper layers
are less frequently from the same context, but rather tokens having
the same POS tag. In particular, in the example of an n-gram New
York city, BERT learns that York is similar to New and city, however
GPT-2 learns that York is similar to Jersey, Angeles, Francisco. Dif-
ferent to the bi-directional learning of BERT, GPT-2 uses an unidi-
rectional learning; it can only reach the left context of the evaluated
token. XLNET model aims to use the strength of the GPT-2-like au-
toregressive model and at the same time, use the bi-directionality
of BERT [GCMA20]. As shown in Figure 4b , in XLNET, tokens
within the context are most similar, and the semantic similarity and
POS tag similarity is less dominant in the embedding vectors.

T1: Token Similarity Contextualized word embeddings are often
used for word similarity tasks, since their embeddings encode the
semantic information better than static embeddings [RKR20]. In all
six models, the semantic information is dominant in the extracted
embedding vectors, whereby it is most dominant in early layers, de-
creasing in model upper layers. Figure 10 shows that in BERT, se-
mantic similarity is highest in early layers and drops in upper layers,
but the decrease is smaller than in XLNET. In GPT-2, the seman-
tic similarity stays high throughout all layers with the exception in
layer 12. Hence, for semantic word similarity tasks, one could use
embeddings extracted from early layers of the different models, or
from GPT-2 from all layers but layer 12.

It has been shown that BERT struggles with the representation of
numbers [WWL*19]. We observe that some named entity categories
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Figure 11: Filtered function words. As shown in (a), in upper layers
(yellow), their nearest neighbors are more often words from the same
context, and (b) they are more often content words than in early
model’s layers. Especially, the embeddings of determiners (DET)
encode similar information to their surrounding content words.

(e.g., geographical locations) and numbers, have a relatively poor
contextualization. Figure 9 shows that the POS tag similarity score
of numbers, and especially of year numbers, stays high throughout
all layers. Also their self-similarity stays high (Figure 5), i.e., their
context doesn’t influence embedding vector. When using embed-
dings for similarity tasks, one needs to be aware of such artefacts.

T3: Token Importance BERT is often used for fine-tuning
tasks [DIS*20], i.e., the model is trained on a labeled dataset for a
classification task, whereby word embeddings get adapted to capture
task specific language characteristics. To understand which tokens
are the most important for prediction making, one can apply feature
attribution methods [LPK21; ZBRS21]. The attribution scores are
calculated on embedding vectors, thus their outcomes are related to
the degree of embedding contextualization. Some works argue that if
an attribution score puts a high weight on function words, then these
explanations are more or less meaningless [WTWS20]. We assume
that this assumption might be too overestimated. When we look at
the stopword contextualization in BERT (Figure 11), one can see that
their embeddings have a low self-similarity, especially in the upper
layers. By visually exploring the type of contextualization scores, we
can see that in the model’s upper layers the neighbors are more often
tokens from the same context. Moreover, the nearest neighbors of
function words are often content words such as NOUNS or VERBS.
When reordering tokens according to their values for opposite type
in layer 11, it becomes obvious that especially determiners (DET) be-
come similar to content words. The actual neighbors are displayed in
the projection view (see Figure 8 with neighbors for token A). Hence,
in the upper layers of BERT (and also in other models), the embed-
dings of function words not only contain the information about their
functionality, but also about the semantic meaning of the sentence.
This might indicate that these tokens could potentially be more rele-
vant for the classification tasks than it is currently assumed. To state
this assumption with a confidence, further experiments are needed.

Expert Feedback – The Model Fingerprints view was judged as
simple yet effective visualization that provides a quick overview of
model differences and enables spotting interesting models/scores
for detailed analysis. Although the Model and Score Comparison
view requires some onboarding phase, the experts appreciated the
simultaneous exploration of different categories of phenomena and,
according to them, the parallels and differences across the categories
could be observed easily. The experts also provided suggestions for

further token-grouping approaches such as syntactic dependencies
and semantic roles that would support new analysis directions.

6.3. Discussion: Observations and Research Opportunities

LMFingerprints is a useful technique for the explanation of embed-
ding contextualization. We presented how we can use the explana-
tion workspace to gain insights into model specificities as well as
token-group differences. During the design and evaluation process,
we discovered several opportunities for future research:

Contextualization and Attribution Scores – To understand func-
tion word role for classification tasks, one could explore the relation-
ship between the degree of contextualization of specific tokens and
their attribution scores. Since attribution score values are computed
on embedding vectors, we would expect to see some relationship
between the degree of contextualization and their importance.

Interaction Techniques for Radial Layouts – We show that ra-
dial charts can provide a compact overview of score properties. It is
also possible to see general pattern differences between two models.
However, we also faced challenges to compare single token values
for the two models, and hence, we applied several interaction tech-
niques to support it. In particular, we extended the view with a linear
are chart that could be used as a lens showing the actual values for
tokens from the two models. We see a potential to extend this tech-
nique, in particular, a more intuitive navigation through the data.

More Advanced Token Grouping – Motivated by the related
work [Eth19; SKB*21], we group words according to their POS tag
and type (i.e., function and content words). More advanced methods
of grouping tokens according to further properties or similarity
might support testing of further, more specific hypotheses.

Collaborative Pattern Exploration – During the design phase, we
had the opportunity to observe the analysis workflow of experts from
computational linguistics. They collaboratively searched for patterns,
commented their observations, that led to active discussions about
potential hypotheses to test. It would be beneficial if the interface
supported such collaborative analysis for geographically dispersed
collaborators. Collaborative analysis in the same visualization space
and pattern annotation could make the process more effective.

Limitations – The computation of embeddings and their nearest
neighbors is time-consuming; thus, they are pre-computed and don’t
influence the tool’s performance. There might be scalability issues,
though, when working on larger datasets with more unique tokens.

7. Conclusion

In this paper, we present LMFingerprints, a novel scoring-based
technique that combines contextualization scores with visual ex-
planations to provide insights into embedding contextualization in
transformer-based language models. We show the applicability of
the technique by comparing score patterns computed on embeddings
from BERT to the findings summarized in the Primer of Bertology
paper by Rogers et al. [RKR20]. Our score patterns confirm insights
from related work. Moreover, we show that some tokens (e.g., func-
tion words) have unexpected contextualization, which indicates that
we might rethink their role in natural language processing applica-
tions. A demo is a part of the LingVis framework [EJS*19] under:
https://lmfingerprints.lingvis.io.
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