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Figure 1: US Census Data on a traditional scatter plot and three generalized scatter plots with different pixel placements: 
(b) circular pixel placement, (c) ellipsoid pixel placement without shading, and (d) ellipsoid pixel placement with shading. Note, 
that there are no overplotting points in figures (b), (c), and (d). (x-axis: Longitude, y-axis: Latitude, color: Income) 

Abstract 
Scatter plots are one of the most powerful 

techniques for visualizing relationships between two 
continuous variables. Using scatter plots, it is easy to 
find how one variable is affected by another. 
However, scatter plots may have a high degree of 
overlap, and therefore, important local patterns and 
trends may be hidden. Generalized scatter plots 
provide overlap-distortion optimized views, but the 
point repositioning algorithm used for avoiding 
overlap does not take the local structure of the data 
into account. In this paper, we enhance scatter plots 
using ellipsoid point placement and a cluster shading 
algorithm. In particular, we use local correlations to 
compute the rotation and aspect ratios of the 
ellipsoids used for the point placement, and add 
shading to the point clusters to visually encode the 
points' original locations. The effect of the shading 
and lighting can be controlled by the user.  

1. Introduction  
1.1. Motivation 
To reveal correlations and trends in large multi-
dimensional data, scatter plots are one of the most 
powerful and widely used techniques. They are 
intuitive and easy-to-use, but often have a high 
degree of overlap that may occlude a significant 
portion of the data values shown.  For example, the 
traditional scatter plot in Figure 1(a) shows 333,488 
income observations, but only about one thousand 
distinct points are visible in the scatter plot. In our 
previous work [1], we proposed a generalized scatter 
plot technique, which allows an overlap-free 
representation of large datasets to fit entirely into the 
display as shown in Figure 1(b). 
The generalized scatter plots help to avoid the 
overlap problem by repositioning points to the 
nearest unoccupied screen position using a circular 
pixel placement. However, the overlapping points are 



not placed according to the relationship between two 
variables of the scatter plot.  The generated dense 
area always has a circular shape, as shown by the east 
and west coasts in Figure 1(b) which is an artifact of 
the technique and may mislead users.   
    In this paper, we derive a new ellipsoid pixel 
placement technique to arrange overlapping points 
based on the local correlation of the two variables as 
shown in Figure 1(c). Users can quickly distinguish 
different orientations of the areas with a high local 
point density.  The different orientations of the 
ellipsoids reveal local structures, e.g., on the east and 
west coasts and in the Chicago area, which are not 
visible in Figure 1(b). In Figure 1(d), we add shading 
to encode the original locations of the repositioned 
points, which is important in a geographical 
application, such as US census data.   
1.2 Related work 
There are many extensions of scatter plots trying to 
solve the overlap problem of traditional scatter plots. 
In 1984, Cleveland [5] introduced sunflowers to draw 
overlapping points and used different glyphs to show 
the data density. Cleveland’s approach is an 
improvement, but it does not consider the direction of 
local correlations. There are a number of interesting 
approaches to solve the overlap problem based on 
density, distortion, and animation as described below. 
    In 1999, Lee Wilkinson [8] suggested the usage of 
semi-transparency to make overlapping data points 
partially visible. JMP 8 Software [9] generated 
scatter plots with nonparametric density contours and 
marginal distributions to show where the data is most 
dense. Each contour line in a curved shape encloses 
5% of the data. Another aggregation based 
visualization approach to detect data anomalies is 
presented by Maciejewski et al. in [26]. Carr et al. [4] 
used a hexagonal-shaped symbol with its size 
increasing monotonically as the number of 
observations in the associated bin increased, and 
HexBin scatter plots [12] determined the brightness 
value of each HexBin cell depending on the number 
of data points. Later, Bowman and Azzalini’s smooth 
contour scatter plot [2, 3] applied smoothing 
techniques to show linearly increasing overlaps with 
different shades, and Bachthaler and Weiskopf’s 
continuous scatter plots [13] built a continuous model 
out of the discrete data input. The Information Mural 
by Jerding and Stasko [23] uses anti-aliasing and 
greyscale to deal with overplotting when the number 
of data points exceeds the number of available pixels.  
    Distortion plays an essential role in avoiding 
overlap in scatter plots. Büring et al. [10] provided 
two interaction techniques on a small screen: a 
geometric-semantic zoom that smooths transitions 
between overview and detail, and a fish-eye 

distortion that displays the focus and context regions 
of the scatter plot on small screens. Other well-
known distortion techniques are cartograms which 
can be seen in [11] for example. In the book by 
Antony Unwin et al. [6], overlapping points are 
drawn in bright white on a darker background with 
slightly larger sizes. Unwin et al. also suggested 
using the alpha-transparency to represent data points. 
As a result, highly over plotted areas have high 
opacity and sparse areas have higher transparency. 
Later, Keim et al. [1] introduced generalized scatter 
plots to allow the analyst to optimize the degree of 
overlap and distortion to generate the best possible 
visualization as described in section 2 with more 
detail. Another technique dealing with replacing data 
points avoiding overplotting is presented by Trutschl 
et al. in [24]. The basic idea is to use neural networks 
(SOMs) in order to prevent overplotting while 
visually grouping similar objects. Using this grid-
based approach comes with the disadvantage that 
there might be gaps as not every neuron may 
represent a data point. A simple kind of pixel 
placement is furthermore proposed in [25] by Aris et 
al. where overlapping points are replaced in a 
column- and row- based manner. 
    Robertson et al. [7] used animated scatter plots and 
small multiples to show trends in multi-dimensional 
data. Yu-Hsuan Chan et al. [14] used flow-based 
scatter plot techniques that extend 2D scatter plots 
with sensitivity coefficients to highlight local 
variations of one variable with respect to the other. 
Both Chan et al.’s streamline clustering and our 
ellipsoid pixel placement is able to show local trends. 
The overlap problem still remains in Chan et al.’s 
scatter plots but not in our new ellipsoid scatter plots.  
    Figure 2 compares six existing methods that are 
related to the method presented in this paper. The 
data used in Figure 2 for the representations is a 
telephone service usage data set with 37,787 records. 
The dataset shows the duration of the call on the x-
axis and the total charge on the y-axis. The traditional 
scatter plot in Figure 2(a) shows some interesting 
linear patterns being unfortunately obscured by a 
high amount of overplotting. Figure 2(b) shows the 
same dataset with a logarithmic scaling of both axis. 
A density-equalizing distortion is applied in Figure 
2(c) enlarging the high density region in the lower 
left. For a fair comparison, the same distortion is used 
for all subsequent visualizations as our technique is 
applied to the distorted data set in Figure 10 in 
section 5.2. Aggregation based methods like HexBin 
and the smooth contour scatter plots resulting from 
2D kernel density estimations [2, 3] in Figures 2(d) 
and 2(e) do not suffer from overplotting as they 
display density and not the original data 



Figure 2: A comparison of related work dealing with the overplotting problem for telephone conference usage data
(x-axis: duration of call, y-axis: charge for call).

 
points. Smoothed contour scatter plots show linearly 
increasing overlap with different shades. Another 
well known technique tackling overplotting is to 
apply sampling (see for example [22]) in order to 
reduce the number of points. In Figure 2(f) we used a 
five percent sampling with the result that dense 
regions will still remain visible while low-density 
patterns may disappear. Note that the techniques (a), 
and (b) do not tackle overplotting while (c) may 
reduce the amount of overplotting.  
Concerning the applied shading approach there are 
several methods that apply a lighting model to 
enhance the visual representation. For instance Van 
Wijk et al. use lighting in [20] to make treemaps 
better readable and understandable. Furthermore, an 
approach similar to ours is followed by Willems et al. 
[21] to light aggregated trajectories with a technique 
similar to bump mapping. Note that our technique is 
also related to a three dimensional representation of 
kernel-density estimation [16], which only shows an 
aggregated view of the data instead of showing each 
individual data point. Our technique enables us to 
show an additional third dimension by color and 
access and interact with each data item being crucial 
while accessing meta-information stored for each 
data point. 
1.3 Contributions 
In this paper, we combine the best properties of the 
above methods. We enhance scatter plots with the 
following three novel techniques:  
Ellipsoids replace circular pixel placement to show 
the local correlations between two variables. The 

direction and aspect ratio of the ellipsoid is the result 
of applying a local Principal Component Analysis 
(local PCA).  Shading is added to the pixel placement 
to visually encode the original location before 
repositioning. For example, in the US census data set, 
if the points are repositioned without applying 
shading and lighting, it is difficult to determine the 
original location of these points. Each data point 
(pixel) is accessible and can be queried for detailed 
information. 
 
2. Generalized Scatter Plots 
 
Basic idea  
Generalized scatter plots with circular pixel 
placement as shown in Figure 1(b) introduced in [1] 
are an overlap-optimized representation of large 
datasets that fit entirely into the display. In order to 
avoid overplotting a density-equalizing distortion is 
applied and a circular pixel placement algorithm is 
proposed to move data points still overplotting to the 
next free pixel position. The main contribution is to 
allow the analyst to optimize the degree of overlap 
and distortion to generate the best possible view. The 
authors assumed providing only the final result of 
distortion or pixel result may not result in the best 
possible visual representation. An intermediate state 
should be the optimal visualization according to some 
optimality criteria. Therefore, interaction possibilities 
were provided to the user allowing any intermediate 
state between a traditional scatter plot and a fully 



distorted view or a scatter plot without any 
overplotting. 
 
Technique 
To avoid overplotting the authors implemented 
methods changing the data point’s position. 
Basically, two ways of dealing with any overplotting 
occurring in the scatter plot visualization were 
provided. One method is a density equalizing 
distortion which may reduce the occurring 
overplotting, as it enlarges regions with a high 
density and shrinks regions with low densities. The 
data space is partitioned and for each bin the density 
is determined and this information is used to resize 
each bin (shown in Figure 3). After applying a 
distortion technique there might still exist 
overplotting and the authors therefore propose a pixel 
placement approach replacing overplotting data 
points to the next free position in a circular fashion. 

Figure 3: Distortion technique calculating relative density 
of regular grid cells and resizing the cells accordingly.

In Figure 4 we show a schematic explanation of the 
pixel placement algorithm. The basic idea is to iterate 
through all data points in an ordered manner (e.g., 
ordered by a third dimension color value) and check 
whether their original position is still unoccupied. If 
it is unoccupied, the data point can be placed there, 
and in the other case the next free pixel position has 
to be found. Therefore, a circle around the original 
position  is calculated (green area in Figure 4) and all 
the pixels of the green area are checked, whether they 
are unoccupied and the first free position found is 
chosen. Note that while iterating through all data 
points processing them one-by-one and not in 
parallel, the final result can not contain any 
overplotting data points. Even when two circles may 
visually merge together (in the middle of Figure 4), 
there is no overplotting in the intersection area. The 
intersection area contains only single data points, 
namely the ones that were processed first. In the 
description above, we have omitted some details of 
the pixel placement algorithm and assumed for 
easiness of explanation that there is only a possibility 
to turn pixel placement on or off and there exists no 
intermediate state. But the algorithm is parameterized 
allowing the user to adjust the degree of overplotting 
to his needs. This allows also to cope with cases 
when the amount of data points exceeds the number 
of screen pixels.  
Merits 

Generalized scatter plots have variable degrees of 
distortion and variable degrees of overlaps. 
Traditional scatter plots are just special cases of 
generalized scatter plots with no distortion and a data 
induced overlap, as shown in Figure 2(a). As in 
normal scatter plots, each data point is presented as 
one color pixel, and users can move a pointer to see 
the content. In the distorted and/or overlap-optimized 
generalized scatter plots, data values are placed as 
overlap-free as possible and as closely as possible to 
their original positions.  
    Generalized scatter plots enable analysts to use 
color to visualize the third attribute for identifying 
patterns, while the previous approaches use color to 
represent density. For example, color can be mapped 
to “income”, as shown in Figure 5. In Figure 5, 
analysts can quickly identify three different types of 
income (low: blue; medium: green; and high: red) by 
three different colors for the west coast. Analysts are 
able to quickly observe the income distribution and 
relationships in the dense area, such as the largest 
cluster, formed by low income families (blue). The 
smallest circles represent high income families (red). 

Limitations 
The generalized scatter plots described above use a 
circular arrangement of the overlapping points 
without taking the local distribution of data points 
into account.   Therefore, analysts can only find 
overall patterns and trends. This overall information 
is important but not sufficient. Analysts want to find 
the relationships between two variables in the local 
high density area, such as on the longitude and the 
latitude in the west coast area in Figure 5. The other 
serious drawback of repositioning overlap points is 
that the original location of a replaced point is lost. 
As a result, the local correlation cannot be detected. 

Figure 4: Schematic explanation for the circular pixel 
placement algorithm, which is used to avoid overlap of 
points at all.



Analysts have difficulties to recognize the local 
structure on the west coast area from the display 
shown in Figure 5. 

 
Figure 5: US Census west coast analysis using circular 
pixel placement to avoid overlapping of data points. 
(x-axis:  Longitude, y-axis: Latitude, color: Income).

 
3. Generalized Scatter Plots with Ellipsoid 
Pixel Placement 
As mentioned above, Generalized Scatter Plots have 
several limitations. The circular arrangement of the 
overlapping points, for example, introduces artifacts 
that are not related to the properties of the data, and 
there are many other ways to arrange the overlapping 
points. In this paper, we propose an ellipsoid point 
placement based on the local correlations of the 
overlapping data points to decrease the visual 
artifacts and follow a more data-driven approach.  
We tackle also another problem of Generalized 
Scatter Plots, namely the merging of point clouds 
originating from different centers and furthermore 
enhance the visual mapping of a replaced point to its 
original position.  In the example, shown in Figure 5, 
it is in some cases very difficult to determine the 
original positions of the data points. Our way to solve 
this problem is to add a modest degree of shading or 
more specifically, bump mapping [18] to visually 
encode the structure of the underlying data.  
In the following subsections, we will discuss both 
techniques in more detail. 
3.1 Ellipsoid Pixel Placement 
A typical reason for using scatter plots is to search 
for local and global correlations and clusters. Global 
correlations are, for instance, patterns of the whole 
data set described by a global model (e.g., 
regression). Local correlations in contrast are patterns 
of parts of the data described by a local model (e.g., 
regression per cluster).  By using a circular pixel 
placement, we lose information about the local 

correlations of the two variables, because they are 
hidden by the circular visual artefacts. In our new 
approach, we use an ellipsoid pixel placement to 
show the local properties of the data. The parameters 
of the rotated ellipsoid shape used to place the data 
overlapping data points is based on the results of a 
local correlation analysis to represent the strength and 
direction of the correlation.  
    The first task in determining the local correlations 
is to partition the data set into disjoint subsets with 
clusters of overlapping data points. As local 
correlations can vary over the whole data range it is 
important to partition the data set appropriately.  A 
simple method would be to partition it into a regular 
grid, but this may again result in artefacts. We 
therefore decided to apply a partitioning clustering 
technique in order to determine the local correlations 
per cluster.  
    In our current implementation, we use the OPTICS 
algorithm [19] for partitioning the data set. We 
support the user in finding the right epsilon parameter 
by providing an interactive representation of the  
reachability and core distances. The user can set the 
threshold for partitioning and gets immediate visual 
feedback of the resulting  clustering.  
    After partitioning the data set, we have to 
determine the local correlation of each partition. To 
enhance the visibility of the local correlations, we 
calculate the direction and strength of the correlation 
for each cluster by applying a Principal Component 
Analysis to determine the most dominant local 
correlations. As input for the PCA, we use the 2x2 
correlation matrix for each cluster. The result of the 
PCA provides two eigenvectors (directions of the 
local correlation) and two eigenvalues (strength of 

 
Figure 6: Overall process of ellipsoid pixel placement and 
shading.



the local correlation). 
    The strongest eigenvector as shown in Figure 6(b) 
with the highest eigenvalue is used for the orientation 
of the ellipse, which means that the first half axis 
(length) of the ellipse is parallel to the strongest 
eigenvector in Figure 6(c). The ratio of length and 
width is calculated by the ratio of the first two 
eigenvalues, which determines the second half-axis 
or the width of the ellipse. We allow a minimal ratio 
of 1:4 to avoid to narrow ellipses in case of a perfect 
linear correlation. 
    The rotation and aspect ratio of the ellipse is used 
as an input to a modified Bresenham algorithm which 
is adapted to drawing a rotated ellipsoid. We take the 
output of a standard ellipse algorithm and use affine 
transformations for the rotation. The pixel placement 
algorithm iterates over all data points ordered by 
value used for coloring and checks whether their 
original position is unoccupied. In cases where the 
data point has to be moved, positions on the ellipsoid 
are calculated and checked whether they are still 
unoccupied and can be used for the relocation of 
overlapping points. Algorithm 1 shows the pseudo 
code of our ellipse drawing algorithm which is a 
variant of the Bresenham algorithm [15], which is 
extended by affine transformation for the use of 
ellipsoid pixel replacement. 
 

 
Algorithm 1: Determine ellipsoid points with extended 
Bresenham algorithm for pixel placement. 
3.2 Combining Shading with Pixel Placement 
A serious drawback of all pixel placement techniques 
is that the original location of the repositioned points 
is lost, even if they are placed at the nearest free 

location. Also, local correlations may be hidden as 
shown in Figure 6. We therefore add a visual 
encoding to the pixel placement to represent the 
origin by applying a variation of Bump Mapping [18] 
shown in Figure 6(d).  
    We assume the points belonging to an overlapping 
pixel to be a small hill and calculate the normal 
vectors accordingly (see Figure 8). In this way, after 
applying the pixel placement to all clusters we get a 
three-dimensional landscape out of the two-
dimensional scatter plot. From the landscape we 
calculate the normal vectors, which are then used for 
light calculations, in our case Phong shading [17]. 
For each data point we determine how much light is 
reflected by the data point, and this information is 
blended on top of the point’s color information. By 
the shading, the user perceives the center point of the 
hill and may easily conclude where the original 
location of the data point is located. Since the 
lighting decreases the expressiveness of the coloring, 
we allow the user to control the strength of the effect, 
providing the user with the possibilities either seeing 
the third dimension values or seeing the point’s 
origin more clearly. 
    The shading technique is closely connected to the 
outcome of the ellipsoid pixel placement. In order to 
have a shading of each ellipsoid, we have to calculate 
the normal vectors for the light computation 
accordingly. Therefore, we determine the normal 
vectors for each data point by weighting the distance 
from the original position according to the half-axis 
of the ellipsoid to which it belongs. In calculating the 
illumination of each pixel, we only consider the 
diffuse term of the Phong Illumination Model [17], 
making the intensity proportional to the angle 
between the normal vector and the outgoing vector of 
the light source. Figure 7 depicts the shading 
algorithm. The parameter alpha can be adjusted by 
the user via an “Ambient Light” slider. If the slider is 
dragged to the very right, the shading does not 
change the intensity of the data points’ color. Thus, 
the users can adjust the visualization result according 
to their needs. 

Figure 7: Schematic approach to calculate the normal 
vectors which are used for shading 



Figure 8: Comparison of different shading variants, all providing a non-overlapping view to the data, even though it seems as 
if the ellipsoids merge and seem to overlap each other.

 
An important factor influencing the shading result is 
the location of the light source. Our application 
suggests four locations for the light source. Most 
patterns in the ellipsoid landscape are best visible if 
the scene is illuminated in a direction vertical or 
parallel to the orientation of ellipsoids. Therefore, the 
application assigns local light source to each ellipse 
in infinite distance, either parallel or vertical to the 
orientation of the ellipsoid. The user is free to select 
one of these suggested options or to choose manual 
another location for a global light source.  
4. Evaluation  
The new pixel placement technique was developed to 
enhance the visibility of local patterns. Previous 
techniques, for instance, circular pixel placement, just 
used the nearest free position without regard for the 
underlying local correlations. For a comparison of 
both approaches we applied them to a data set 
containing several different local correlation patterns, 
as shown in Figure 8. The example shows the 
generated dataset containing a small number of 
clusters with random positions, random size, and 
random local correlations. 
Obviously, the ellipsoid pixel placement (b) 
visualizes more of the underlying local correlation 
patterns than the circular one (a). But even more 
interesting from a data analyst’s perspective is the 
visibility of the different directions of the local 
correlations.  
    Another important issue is the effect of shading on 
the perception of pixel color. The shading indicates 
the origin of repositioned data points as this 
information is lost when replacing over plotting data 
points but it also modifies the point’s color, making 
them darker if the light source does not illuminate 
them orthogonally. Figure 8 shows the effect of 

different shading variants. Figure 8 (c) shows the 
illumination with one light source per ellipse along 
the dominating local correlation of each cluster; in 
Figure 8 (e) the ellipsoids are illuminated orthogonal 
to the cluster orientation; and Figure 8 (f) shows a 
global illumination with only one light source 
orthogonal to the main correlation of the whole data 
set. Our expectation was that (c) would provide the 
best results since it best enhances the visibility of 
local correlations but the results of our informal 
evaluation show that (e) and (f) provide better results 
depending on the application scenario as each of 
them enhances the visibility of different local 
correlations. For completeness Figure 8 (d) depicts 
the illumination applied to the circular pixel 
placement result of (a) 
Our technique, therefore, uses the shading from the 
overall main direction as the default but also allows 
selecting the perspective orthogonal to the main 
direction. Advanced users may change the position of 
the light source to any position they want. In 
addition, the users may control the strength of the 
shading or switch the shading off completely to see 
the original color of the data points better. We also 
use color maps that are based more on the change of 
the color hue than on intensity. The problem with an 
intensity-based colormap is that differently colored 
points may become identically colored because of the 
shading. 
 
5. Applications  
5.1 Financial analysis  
The main task of financial analysis is to support the 
investor in the decision process of purchase and sale. 
In order to explore the whole market and to capture 
the development over time, we can apply our     



Figure 9: The temporal performance-risk analysis of 130.000 American funds from 1995 to 2010. (x axis: risk of an 
investment, y axis: performance of an investment, color: investment period of one year, e.g. red: purchase 2009, sale 2010).

 
technique in the performance-risk analysis. The 
performance captures the wins and losses over a 
certain holding time (from purchase to sale). Funds, 
which have many up- and downturns during this 
time, are very risky. This can be measured by the 
standard deviation over the holding time.  Figure 9 
shows the performance (y-axis) and risk (x-axis) of 
about 130,000 American funds over 15 years. For 
each of those funds, we determined the performance 
for one-year intervals. Consequently, each of the 
funds will result in 14 data points (15 one-year 
intervals from 1994 to 2010). The color represents 
the year of sale or respectively the begin of the one-
year interval. The red color, for example, encodes the 
performance/risk of the funds from 2009 (year of 
purchase) to 2010 (year of sale). We chose a rainbow 
color scale in order to visually separate the years, 
which are considered in our case to be ordinal instead 
of continuous.  
The sparse area in the middle of the subfigures in 
figure 9 indicates that high risks implicate very high 
performances (negative and positive). The more 
interesting finding is that the funds form four clusters 
(C1-C4). C1 seems to cover the big financial crisis in 
the recent years like the "Dotcom" crisis in 2000 and 
the "Global Financial Crisis" from 2007-2009, which 
are clearly separated from the other clusters. In 
contrast to them, this cluster shows a clear negative 
local correlation of performance and risk. C4 shows 
interesting trends as well. It is surprising that right 
after the crisis most of the funds recovered very fast 
at the cost of high risks. This indicates some 
"gambling" in those years. The other few funds of 
2010 can be found in C2, which shows low risk but 
positive performance. Cluster C3 contains the years 
2005-2007. After the "Dotcom" crisis the market 
recovered slowly from 2004 on, ending in a "boom" 
in 2007 just before the "Global Financial Crisis". 

5.2 Telephone Service Usage Analysis 
The application uses a telephone data set containing 
37,787 telephone conference records. IT service 
mangers use the data to analyze the usage patterns 
and correlations among different attributes (i.e., 
charges, the duration of the call, and the number of 
participants) in order to detect potential for cost 
savings. Figure 10 shows both the results from the 
circular and the ellipsoid pixel placement including 
shading for shifted points. Both scatter plots are 
arranged such that call duration is mapped to the x 
axis and charge is mapped to the y axis. The color of 
the pixels represents the number of participants.  
    Analysts are able to use the generalized circular 
scatter plots shown in Figure 10(a) to find the calling 
distribution and overall correlation between the 
duration of the calls, the costs, and the number of 
participants. In the high density areas, however, it is 
difficult to determine the local relationships between 
these variables area even if distortion is used. Data 
points that overlap each other in traditional scatter 
plots form circular clusters in the generalized scatter 
plot. The ellipsoid pixel placement adds information 
about the local correlation of the overlap data points 
and the shading encodes the relationship to their 
original position. As a result, the partitioning between 
the two clusters (national and international calls) 
which are merged in the circular case becomes clear 
with our new ellipsoid pixel placement. 
    Analysts are able to learn important additional 
facts from the data, demonstrating the additional 
value of our ellipsoid scatter plots. By assessing the 
single data points analysts were able to make the 
following observations as meta-information about the 
calls like provider or time are available and each data 
point is accessible: 
1. The left curve (national calls) illustrates that the 

most expensive calls have a high volume (many 



Figure 10: Telephone service scatter plots with the same amounts of distortion, but different pixel placement techniques. Figure (a) shows 
the result of the circular arrangement and Figure (b) the results from the application of the new ellipsoid pixel placement combined with 
shading. The new pixel placement technique splits the correlation (see empty spot in the middle), whereas they are merged by the circular 
pixel placement. In both figures are no overlapping points at all. (x-axis: call duration, y-axis: call charges, color: the number of 
participants (logarithmic scale)). 
 

data points) and correlate with the duration 
time. However, there is a wide distribution 
incharges. Interestingly, national calls are more 
expensive than international calls. But there 
seems to be a quantity discount for national 
calls as the slope of the charge decreases with 
increasing duration. 

2. The right section (international calls) contains 
the international calls. There are two green / 
blue lines representing different service 
providers (AT&T and Sprint). The rightmost 
curve has the highest number of calls (AT&T 
representing the thickest curve). 

3. The thickness of the curves in figure 10(b) 
reveals the number of national and international 
calls. From the comparison of the detailed 
structure of the curves, we learn that the 
international calls have a clear charge structure 
for each provider (solid lines) while the charges 
for national calls are more scattered and depend 
on other parameters not shown in the 
visualization (e.g., time of the day). 

4. The new ellipsoid pixel placement separates the 
local patterns better. While both figures 10(a) 
and 10(b) were generated with the same amount 
of distortion, the ellipsoid arrangement and 
shading enables the user to differentiate the 
patterns better. 

5.3 US Census Data Analysis 
To show the general applicability and power of our 
technique, we also applied our technique to the block 
level median household income data of the US 
census data set.  Figure 1(a) shows a traditional 
scatter plot with longitudes and latitudes mapped to 
the x and y coordinate axes, resulting in a normal 
map with a maximum data-induced overlap. Figure 
1(b) shows the circular placement without any 
overlap; Figure 1(c) shows our ellipsoid pixel 
placement without shading; and Figure 1(d) shows 

our ellipsoid pixel placement with shading. Colors 
indicate household income with blue for low income, 
green for medium and red for high. The 
visualizations in Figures 1(c) and 1(d) show the 
advantage of our ellipsoid pixel placement and 
shading technique. High income areas that are 
completely hidden in the traditional scatter plot in 
Figure 1(a) become visible. A nice feature is that the 
local distribution patterns remain intact and can be 
easily detected and interpreted by the analyst. At the 
same time, depending on the overlap level, all data 
records are visible and accessible for further 
inspection. Analysts are able to easily see the 
longitudinal and latitudinal correlations with strong 
coastal orientations on the east and west coasts. 
Applying the shading helps in separating the different 
population centers from each other, which are 
merged by the pixel placement techniques. 
 
6. Conclusions 
In this paper, we enhance general scatter plots using 
ellipsoid pixel placement and shading for visualizing 
large volumes of high density data. Our techniques 
map each data point to one pixel on a display and 
each data point is accessible to the user for visual 
queries. The ellipsoid pixel placement algorithm does 
not only solve the overlap problem of data points, but 
also retains the direction of local correlations. 
Furthermore, the combination of shading with pixel 
placement nicely encodes the point’s original 
locations. The effect of the shading and lighting of 
the data points may be controlled by the user. Users 
can easily adjust the light to change the shading 
either to see the third dimension values correctly or to 
see the point’s original location. 
    We have applied our new techniques to three real 
business data sets dealing with American fund 
analysis, and telephone services. Also, we have used 



ellipsoid placement and shading to visualize US 
census data with known geographical structures. A 
series of informal evaluations have been conducted to 
determine how the ellipsoid pixel placement 
improves the existing techniques and how much 
shading/lighting is best. Our future work includes 
further studies to evaluate the effect of different 
degrees of overlap, distortion, and shading, and to 
further optimize these parameter settings. 
Furthermore, we want to measure the distance the 
points are moved comparing circular and ellipsoid 
pixel placement. 
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