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Abstract. Biomedical experts are increasingly confronted with what is
often called Big Data, an important subclass of high-dimensional data.
High-dimensional data analysis can be helpful in finding relationships be-
tween records and dimensions. However, due to data complexity, experts
are decreasingly capable of dealing with increasingly complex data. Map-
ping higher dimensional data to a smaller number of relevant dimensions
is a big challenge due to the curse of dimensionality. Irrelevant, redundant,
and conflicting dimensions affect the effectiveness and efficiency of analy-
sis. Furthermore, the possible mappings from high- to low-dimensional
spaces are ambiguous. For example, the similarity between patients may
change by considering different combinations of relevant dimensions (sub-
spaces). We show the potential of subspace analysis for the interpretation
of high-dimensional medical data. Specifically, we analyze relationships
between patients, sets of patient attributes, and outcomes of a vaccina-
tion treatment by means of a subspace clustering approach. We present
an analysis workflow and discuss future directions for high-dimensional
(medical) data analysis and visual exploration.
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1 Introduction

Today, experts in Life Sciences are not only confronted with large amount of
data, but particularly with high-dimensional data e.g., by the trend towards
personalized medicine [1]. A big challenge of biomedical informatics research is to
gain knowledge from these complex high-dimensional data sets [2]. Within such
data, relevant structural and/or temporal patterns (“knowledge”) are often hidden
and not accessible to the expert. While automatic data analysis can provide
candidate patterns for user exploration, it is not always clear which analysis
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methods are suitable for a given problem. Often, methods which consider the full
data space are applied. However, these may fail to deliver useful results due to the
curse of dimensionality [3]. We present a case study on the applicability of full-
and subspace-based analysis methods on a real-world immunization data set. We
present a potentially effective analysis workflow, which can help to understand the
relationship of clusters of patients in context of attribute similarities and outcomes
of an immunization treatment. We also provide a discussion of limitations and
possible extensions to subspace analysis in this domain.

2 Related Work

We briefly survey related work in the area of clustering including subspace
methods and interactive data exploration.

Cluster Analysis. Cluster analysis is a widely known tool to reduce large data
sets to a smaller number of clusters, which can be compared with each other
and in relation to some target attribute of interest [4]. Traditional clustering
approaches such as k-means or hierarchical clustering [4] take all dimensions into
account. However, it has been shown that for many dimensions the so-called curse
of dimensionality may prevent effective cluster analysis, as the similarity measure
may become less discriminant [5, 3]. To this end, subspace cluster algorithms
search for clusters not in the whole data space, but within different subsets of
dimensions (called subspaces) in which discriminating clusters can be found [6].

Interactive Data Exploration. Data analysis algorithms typically require
parameters to be set, and often, multiple solutions need to be considered before
arriving at a satisfactory result. To this end, methods of interactive and visual
exploration of the data and the analysis outputs can be very helpful. Specifically,
many visualization techniques have been developed for exploration of high-
dimensional data and clusterings. For example, Parallel Coordinate Plots [7]
map high-dimensional data to Polylines, allowing the user to discern groups in
data and potentially relevant relationships, effective for moderate numbers of
dimensions. Another standard approach is to reduce data dimensionality and
show relationships of data points by their positions in a data projection [8]. In
[9], users could compare data clusterings with constituent data dimensions.

The latter approaches have in common to consider all input data dimensions
at once. In other work, visualizations to explore clusters in subspaces, by a
combination of heatmap and glyph representations in the so-called ClustNails
approach [10] were proposed. The system was applicable to any subspace clustering
approach. In [11], 2D projections of the data in alternative subspaces were
applied, to identify complementary, orthogonal or redundant subspaces; again,
the approach was applicable to different subspace selection methods. Another
system to rely on subspace cluster comparison is VISA [12], which implement
a simple glyph alternative to represent and compare subspace clusters. In [13],
visual comparison of data groups across dimensions using linked views in an
encompassing system was presented.
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Fig. 1. Subspace clustering: algorithms compute multiple, alternative solution in differ-
ent subspaces, i.e. clustering by color (subspace 1) or by shape (subspace 2).

3 Data Analysis with Subspace Clustering

As discussed in Section 2, subspace clustering can be a promising tool for analysis
of high-dimensional data with respect to multiple different groups in data and
their relationships to dimensions. Its main idea is illustrated in Fig. 1. The goal is
to understand data in terms of (a) groups of similar records (clusters), and (b) the
underlying dimensions (subspaces). As an outcome of subspace cluster analysis
applied on a high-dimensional data 1 , depending on the parametrization and/or
subspace cluster method, clusterings in multiple different subspaces may be found,
constituting different notions of similarity; e.g. grouping according to color 2
or shape 3 . Each subspace cluster may give rise to a different interpretation.
Depending on the underlying algorithm, we can state that all cluster members are
similar to each other w.r.t. the dimensions of the subspace. The main difference
to feature selection [14] is that subspace analysis aims for different patterns in
different subspaces while feature selection typically determine a single subspace
to optimize a quality criterion such as the classification error.

For our experiments in Section 4.3, we rely on a subspace clustering approach
called Proclus (Projected Clustering) [15]. Proclus is similar to k-means [4] as
it generates, by an iterative process, a partition of the data. Each data point
can belong to one cluster, and each cluster is represented by a prototype point
(medoid). Proclus needs two parameters: the number of clusters C and the average
dimensionality per subspace D. The subspace computation starts by a random
initialization of medoids. In a refinement step, for each of the C medoids a well-
fitting subspace of average dimensionality D is found. This is achieved by finding
dimensions that show a low variance of the distances between the respective
medoid and its cluster members. The resulting subspace contains dimensions
in which the values of the cluster members are similar. While other subspace
clustering methods are available [6], we chose Proclus for its simplicity, efficiency,
and robustness to noise, using the OpenSubspace Framework [16] implementation.

4 Use Case: Explanations for Vaccination Outcomes

We study the potential of a subspace clustering-based analysis on a real-world
medical analysis problem. We introduce a relevant dataset from a clinical research,
describe our analysis goals, present results of initial experiments, and interpret
them from the domain perspective.
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4.1 Considered Data Set and Analysis Goal

Data Set Used. The examined data set is based on a real patient data
which describes volunteers vaccinated against influenza. Patients were selected
to represents a high-risk population for influenza complications. All subjects
were suffering of multiple (age-related) chronic medical conditions which interfere
with the immune system. The investigated group of subjects consists of 35 male
and 58 female persons aged between 50 and 89 years. The data set contains
61 dimensions describing clinical parameters such as sex, age, anthropometric
measures, hematological, and biochemical tests. In addition to that, dimensions
containing diagnosis results of common chronic diseases are included. Finally, a
single target attribute representing the positive or negative vaccination outcome
(36 positive, 57 negative) is included. Further details about the dataset and the
underlying influenza vaccination can be found in [17].

Analysis Perspectives. According to the domain expert (medical physician
and researcher) who created the dataset, the reasons for a positive or negative
vaccination outcome can neither be described by a single dimension, nor by a
fixed combination of dimensions. Instead, a variety of different reasons may cause
the positive or negative outcome. In the remainder of this paper, we analyze
the above described dataset by means of a subspace clustering based method in
order to discover multiple reasons for different outcomes. Our idea is to apply
a subspace clustering algorithm to the dataset in order to find similarities of
patients of the same outcome class. The subspace dimensions can be interpreted
as possible explanations for an outcome.

Data Preprocessing. As shown above, the considered dataset is heteroge-
neous as it contains both numerical and nominal dimensions. Existing subspace
clustering algorithms typically work on numerical data only. Also, for existing
implementations there is no description how missing values are treated. As a
consequence, we preprocessed the dataset in the following way: (1) We removed
all patient records that have a missing value in any of its dimension. Afterwards
the resulting dataset contains 29 patients with a positive and 42 patients with
a negative outcome. (2) We transformed all nominal dimensions such as sex,
hypert, or statins into a numerical representation. Due to the fact that all nominal
dimension (except for diabetes mellitus (DM )) consist of only two different values
(mainly yes and no), we converted the values to either 0 or 1. Finally, we nor-
malized all dimensions linearly in the range [0, 1]. After this, all dimensions are
numerical in the range of [0, 1], enabling further analysis with equally weighted
dimensions.

4.2 Experiments in Full-Space Analysis

In our initial experiments on the dataset, we found that a full-space analysis is
not useful. We used data mining tools such as KNIME [18] to cluster patients
into different groups, or applied different classification algorithms to correctly
predict the vaccination outcome of a patient.
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Fig. 2. Dendrogram illustrating the hierarchical clustering of our dataset (Euclidean
distance and average linkage type). The x-axis represents the individual patients, while
the y-axis indicate the dissimilarity between two patients or patients with clusters.

Full-Space Clustering: A hierarchical clustering was applied. The results are
illustrated as a Dendrogram in Fig. 2. The x-axis is mapped to the individual
patients, the y-axis represents the dissimilarity between two patients or a patient
cluster. A large y-value corresponds to a high dissimilarity. From Fig. 2 we see
that none of the patients are considered similar and, as a consequence, no useful
grouping of patients can be identified. We assume the reasons as: (1) Patients are
typically similar to each other only in a subset of dimensions, (2) a similarity in
one dimension can be countered by a dissimilarity in another dimension, and (3)
the concentration effect [5] affects the similarity computation in high-dimensional
spaces.

Full-Space Classification: For the classification task, did not remove missing
values but rather replace them by the average value of the dimension. We applied
several classification algorithms to find useful predictors for the vaccination
outcomes. Our experiments comprised e.g., Decision-Trees, Bayes Classification,
and Random Forest. We split the dataset into a training set (80% of the records)
and a validation set (20% of the records). For the validation, we measured the
percentage of correctly classified patients after the model training. While the
accuracy of the classification of the training dataset performs very well (approx.
84% for decision tree), the accuracy for the validation dataset dropped below 50%
for some algorithm; which is worse than random classification. We assume the
poor classification performance is caused by (1) the size of the training dataset
which is too small, and (2) there are no global aspects allowing a classification
into the two outcome classes. Instead, different combinations of features may be
of relevance to predict the outcome properly.

4.3 Subspace Analysis: Initial Experiments and Results

To search for local explanations of the vaccination outcome, subspace analysis
techniques are beneficial. In the following, we describe three different experiments
that we conducted. The experiments apply the subspace clustering algorithm
Proclus to different subsets of the data. We interpret the discovered subspaces
as a mean to describe the similarity between a subset of patients and, as a
consequence, as possible reasons for a vaccination outcome. Supplementary
material of the experiments and the attribute description can be found on our
website (http://files.dbvis.de/bih2015/).
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Subspaces for patients with a positive vaccination outcome.

Subspaces for patients with a negative vaccination outcome.

Fig. 3. Subspaces detected by experiment 2: subspace clustering (Proclus) applied
separately to patients with a positive, or negative outcome. The columns represent the
different dimensions (green indicate that dimension belongs to subspace). Each row
represents a clustering result of different dimensionality.

Experiment 1. In the first experiment, we apply Proclus to the preprocessed
dataset and aim for subspace clusters that contain mainly patients of a single
outcome. The dimensions of these clusters and the respective values of the cluster
members are a means to describe the specific outcome. For this experiment, we
vary Proclus’ parameters (#clusters: 2-8; avg. #dimensions: 3-14). We evaluate
each cluster with the Entropy score [16] which measures the purity of a cluster
w.r.t. a specified class label. The supplementary material on our website provides
an overview of the results. We can see that almost none of the detected clusters
contain patients of only one specific class, but rather a mixture of both classes
without a significant majority of a positive or negative outcome. We believe that
this result is caused by (1) the computation strategy of Proclus which aims for
large clusters, and (2) the dataset contains dimensions in which many patients
are similar to each other - independent of their class label. These dimensions
dominate the detected clusters and prevent Procus from finding clusters relevant
for the description of the vaccination outcome (c.f. experiment 2).

Experiment 2. To find descriptive clusters for each vaccination outcome, we
split the dataset into subsets according to the outcome class. Further analysis
is applied to the individual subsets. In the first part, we configure Proclus to
detect subspaces containing a single cluster. The dimensions of the subspace
indicate global similarities of a class. For each subset the average number of
dimensions varies between 3 and 14. The results can be found in Fig. 3. The
different dimensions are indicated as columns while each row represents a subspace
cluster with a different dimensionality. The cells of a row are marked with a green
background, if the subspace contains the dimension. E.g., the first subspace for a
positive outcome contains the dimensions: HbA1c, COPB, and RF.

Proclus determines the dimensions of a subspace cluster by ordering all
dimensions by the variance of its cluster members, and selecting the dimensions
with a minimum variance (c.f. Section 3). Therefore, subspaces with a larger
dimensionality may include dimensions in which its cluster members are less
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similar. As all records belong to the same cluster, dimensions in lower-dimensional
subspaces are more descriptive for an outcome class (w.r.t. global outcome
similarity). Consequently, the height of the green bars in Fig. 3 illustrates the
importance of a dimension for an outcome class. Except for HPA and PRL, the
globally descriptive dimension are identical for both outcomes. This result is
in-line with the detected subspaces of the first experiment (see supplementary
material), i.e. the following set of dimensions is discriminative for all patients
from a global perspective: HbA1c, COPB, aller d, HPA, CRP, RF, INS, PRL,
TSH, ANA, and IGE. Most patients in our dataset are similar in these dimensions,
however, we do not get much knowledge about the patients w.r.t. the vaccination
outcome. This observation is confirmed by the second part of experiment 2. In
addition to the first part, we also varied the #clusters between 2-4. The complete
result can be found in the supplementary material. In summary, we can see
that even for results with 4 clusters, the majority of dimensions is from the
given set above. From the second experiment, we can conclude that subspace
clustering helps to find dimensions in which patients of a specific class are similar
to each other, hence these dimensions may be an indicator for the reason of
the classification. However, experiment 2 shows, that dimensions in which most
patients are similar to each other, highly influence the clustering results. As a
consequence the subspaces for both outcome classes are similar to each other.

Experiment 3. In our last experiment, we concentrate on more local patterns.
From the previous experiments, we know that all patients, and in particular
all patients of one outcome class are similar to each other in the dimensions
described above. To find more local patterns, we remove these dimensions from
both subsets and re-apply Proclus. Afterwards, a heuristic is used to search for
a result in which all patients are assigned to any subspace cluster, the cluster
sizes are similar, and the number of dimensions is rather high. For both outcome
classes, we selected a result with four different clusters and an average number
of dimensions of 14. A table of the subspaces and the assigned cluster members
for each outcome class can be found in the supplementary material. From these
results, we can make the following observations: (1) The patients belonging to a
subspace cluster are similar in all of the dimensions of the subspace; (2) For one
outcome class, we found subspaces that differ significantly in their dimensions; (3)
The relevant subspaces for a positive and a negative outcome class are different.
We provided our results to the domain-expert who created the dataset. The
expert liked the result very much and provided some insights into our findings:

Positive Vaccination Outcome : One subspace shows a group of patients that is
homogeneous in all dimensions of the subspace. Based on the following dimension
and its values, we can state that the group of patients is rather healthy, i.e.
a positive vaccination outcome: The patients do not have hypertension, CVD,
neoplasm, (attribute noo), psychiatric disorders and do not have adverse reaction
to drugs (attribute dr aller). Furthermore, the patients do not use any of the
following medications: statins, anticoagulants, or analgesics which results in
preserved renal function (dimension CLEAR).
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Fig. 4. Our proposed workflow to discover relations between patients, relevant dimen-
sions and different class labels (here vaccination outcomes).

Negative Vaccination Outcome : One subspace show a clear reason for a negative
vaccination outcome: although not having DM, adverse reactions on drugs (dr
aller), not having increased Fglu values, not having anaemia (E, HB), patients
can have negative vaccination outcoume due to impairment in some relevant
pathophysiologic mechanisms, including slightly increased MCV (a sign of de-
creased VITB12 and/or FOLNA), and decreased cortisol (CORTIS ). Further
examples for both outcome classes are described in the supplementary material.

4.4 Proposed Subspace Analysis Workflow

Based on our findings in the experiments described above, we propose a subspace
clustering-based workflow (c.f. Fig. 4) to find relations between data records,
dimensions, and associated class labels. The workflow consists of the main steps
A and C as well as an optional step B improving local similarity aspects.

The first step of the workflow is to separate all data records based on their class
label A . The subsequent steps are applied to each record subset individually. The

optional step B is in-line with the findings of the second experiment. In many
datasets, there are dimensions that highly influence the detection of subspace
clusters. On the one hand, these dimensions are interesting as they show the
global similarity between data records. On the other hand, such dimensions can
distort the results, e.g. a dataset with non-relevant dimensions in which all records
are similar. Subspace clustering consider these dimensions as a relevant and add
them to most clusters. In such a case, step B can be applied to remove such

dimensions. In C , a subspace clustering is applied to the remaining dimensions
to finally determine the similarities between records, dimensions, class labels.

5 Discussion

The explorative analysis of patient treatment data is a challenging task. As our
experiments show, subspace clustering can be a valuable tool to discover relevant
groups of patients w.r.t. different medical subspaces and their relationship to
the treatment (here: vaccination outcome). As a key finding of our experiments,
an analysis in the full attribute space may not be the best choice, but subspace
methods can be an interesting tool, especially if used in an appropriate analysis
workflow. We proposed one workflow, considered as promising starting point.
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We also identify a number of extension possibilities to our approach. For
one, we may need heuristic criteria which could select, from a large number of
parameters (e.g., input dimensions, number of clusters, distance thresholds etc.)
a small number of results which are not redundant but can be meaningfully
interpreted. To this end, we need a formalization how to measure what alternative
or complementary means in terms of dimensions, cluster size, and attribute subsets.
We need to include additional medical background into such a specification. Visual
interfaces may be particularly beneficial to this end. A key issue in visualization is
how to effectively map patient records, cluster, and attribute properties to visual
displays. Regarding data size, scalability of the cluster analysis may become an
issue, which could be addressed by efficient implementations.

We considered Proclus which considers all dimensions of a subspace as equally
important for the subspace. However, there may also exist non-linear relationships
between attributes which might be relevant. Alternative analysis tools like non-
linear multivariate regression could be considered to optimize attribute selection.
Also on the preprocessing side, how to appropriately treat categorical and binary
attributes in the analysis is a problem. We here chose standard approaches, but
the expert may be needed to specify how to treat such attributes.

While often, analysis is handled by ad-hoc approaches, it would be desirable to
have a software framework to allow a flexible, interactive specification of analysis
workflows, to easily apply and re-use proven workflows. We imagine a workflow
editor which could support the analysis process in a scalable way, and at the
same time, allow experts to document which and why analysis steps were taken.

6 Conclusion and Future Outlook

The life sciences, biomedicine and health care are turning into a data intensive
science, where we face not only increased volumes and a diversity of highly
complex, multi-dimensional and often weakly-structured and noisy data, but
also the growing need for integrative analysis and modeling [1]. Considering
that analysis in the full attribute (feature) space may not be effective, we here
explored subspace cluster analysis to study the relationship between patient data
and immunization treatment outcome on a specific research data set. We found
that a segmentation of the patients for treatment outcome followed by subspace
clustering allowed to identify relevant patient groups and respective medical
attributes, which can be a basis to generalize medical knowledge. Our proposed
workflow is only a first step, and we identified a number of interesting challenges
and extensions for future work in the area. The grand vision for the future is to
effectively support human learning with machine learning - visualization is close
to the end-user, hence indispensable within this approach.
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