TS-MULE: Local Interpretable Model-Agnostic
Explanations for Time Series Forecast Models

Udo Schlegel', Duy Lam Vo!, Daniel A. Keim!, and Daniel Seebacher!

University of Konstanz, Germany
u.schlegel@uni-konstanz.de

Abstract. Time series forecasting is a demanding task ranging from
weather to failure forecasting with black-box models achieving state-of-
the-art performances. However, understanding and debugging are not
guaranteed. We propose T'S-MULE, a local surrogate model explanation
method specialized for time series extending the LIME approach. Our
extended LIME works with various ways to segment and perturb the
time series data. In our extension, we present six sampling segmentation
approaches for time series to improve the quality of surrogate attribu-
tions and demonstrate their performances on three deep learning model
architectures and three common multivariate time series datasets.
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1 Introduction

Time series forecasting is an essential task with applications in a broad range of
domains, such as industrial process control, finance, and risk management, since
predicting future trends and events is a critical input into many types of plan-
ning and decision-making processes [1]. Recently, deep learning methods have
increasingly found their way into the field of time series forecasting as a result of
their successful application in other domains such as natural language process-
ing [2] and object detection [3]. A major drawback of such models is that, due to
their non-linear, multi-layered structure, they are black box models that suffer
from a lack of explainability. Such a lack of explainability prevents deep learning
from being used in production in sensitive domains, such as healthcare [4], as
opposed to statistical methods [5], or is complicated by laws, such as the EU
General Data Protection Regulation [6], which enforces a right for explanations.
Thus, agencies such as DARPA introduced the explainable AI (XAI) initiative [7]
to promote the research around interpretable Machine Learning (ML).

Gaining the necessary understanding of these complex models to provide ex-
planations globally for the whole input space is often infeasible, leading to the
development of methods that provide only local explanations of the underlying
prediction function, such as LIME [8]. LIME is an XAI technique that can ex-
plain the predictions of any classifier by learning and providing an interpretable
surrogate model around the classification. An advantage of LIME in terms of
interpretability is that it perturbs the input by changing components that make
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sense to humans (e.g., words or parts of an image), even if the model is using
much more complicated components as features (e.g., word embeddings) [8].

For images, such interpretable components can be superpixels, which are a
perceptual grouping of pixels, or for texts, it can be individual words or sentences.
However, finding such semantically meaningful components for univariate or even
multivariate time series data is not trivial. Segmenting the time series into fixed-
width windows might miss meaningful elements between windows by weighting
them equally or are larger or smaller than the chosen window size. Thus, such
a fixed segmentation can potentially miss important subsequences in the time
series by splitting them. One possible approach could identify motifs in the time
series. Such motifs are subsequences of the time series very similar to each other.
However, even optimized algorithms can have a worst-case complexity of O(n?)
[9] and are, thus, not suitable to identify potential patterns beforehand.

To tackle such issues, we propose T'S-MULE, an extension to LIME by im-
proving the segmentation, for local explanations of univariate and multivariate
time series. We provide five novel algorithm approaches to provide a meaningful
segmentation of time series to enable local interpretable model-agnostic explana-
tions of time series forecasting models. To provide such meaningful segmentation,
we incorporate the matrix profile [10] as well as the SAX transformation [11]
and extend the results of these algorithms with binning or top-k approaches to
incorporate the findings of these techniques. We evaluate these segmentation al-
gorithms against each other and the baseline of a uniform segmentation on three
standard forecasting datasets with three different black-box models. !

2 Related Work

An important distinction when selecting methods for explaining complex ma-
chine learning models is for which user group these XAI methods must be ac-
cessible. Most of the proposed XAI methods used, especially for time series deep
learning models, are usually only accessible to model developers. For instance,
by examining the activation of latent layers [12], or via relevance backpropa-
gation [13]. However, especially for other groups, particularly model users (see
Spinner et al. for an overview of user groups [14]), such approaches are less
practical since explanations need to be provided at a higher level of abstraction.
Available approaches with a higher level of abstraction currently come primarily
from the computer vision domain for explaining image classifications [15].
There are already first works that apply these concepts in time series classi-
fication and prediction. For example, the approach of Suresh et al. [16] replaces
each time series observation with uniform noise to study the impact on model
performances and thus determine feature importance. Since replacing features
with out-of-domain noise can lead to arbitrary changes in model output, Tonek-
aboni et al. use data distributions to produce reliable counterfactuals [17]. Both
previous approaches rely on observation-level replacement and thus, cannot iden-
tify important larger patterns in time series. Two recent approaches tackle this

1 Source code and evaluation results are available at: https://github.com/dbvis-ukon/ts-mule
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issue by using longer time segments as input for the perturbation and replac-
ing it with, for instance, linear interpolations, constant values or segments from
other time series [18], or with zeros, local or global mean values, or local or
global noise [19]. However, both of these approaches rely on fixed window sizes.
Thus they are incapable of modeling, e.g., semantically meaningful patterns in
the time series, which can have variable lengths. Additionally, they might miss
important patterns if the predefined window size is smaller or longer than the
pattern or if patterns lie between the fixed time segments.

Hence, we provide an extension of the LIME approach to identify superpixels-
like patterns, i.e., semantically related data regions, in time series data. This
paper presents a set of suitable segmentation algorithms and evaluates their
suitability for providing explanations under various data characteristics.

3 Post-hoc local explanations with LIME

Creating explanations for decisions of black-box models has various alternatives.
One of these possibilities is the post-hoc approach LIME by Ribeiro et al. [8].
Local Interpretable Model-Agnostic Explanations, shortly LIME, uses an inter-
pretable surrogate model to create explanations for black-box models. In the
first step, a chosen sample to explain and a model to be explained are given as
input to the approach. The sample is then segmented by a previously chosen
segmentation algorithm, e.g., a superpixel segmentation for images [8]. LIME
then creates masks for the sample deactivating segments or replacing them with
non-informative values. In many cases, this step is called perturbation and is
something different than the perturbation mentioned later. These newly gener-
ated (perturbed) samples are predicted with the input model to get new predic-
tions. LIME collects these predictions and trains a new interpretable classifier,
often a linear model, on the masks with the predictions as the target. In the case
of a linear model, the coefficients are used to weigh the different input segments
and to explain the model for the given sample. Fig. 1 demonstrate the described
approach on time series with a uniform segmentation.

LIME is generally applicable for any data type, but there are some chal-
lenges due to the necessity of segmentation. Valuable segmentation makes sense
to humans as it incorporates their domain knowledge. For instance, superpixel
segmentation identifies perceptual groups in images, which in most cases cor-
respond to a human interpretable object. As time series are generally hard to
segment without domain knowledge, a general approach is rather difficult, even
with domain knowledge not applicable. A forecasting black box model often just
uses a window as input to predict the target value in many cases. Such a window
is fixed beforehand and slides over the data, thus having no strict segmentation
in itself. Finding such segmentation is a significant challenge for time series as
it needs to be generally applicable.
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Fig. 1. The LIME approach applied on time series starting with the uniform segmen-
tation on a time series sample. Next, doing the masking, perturbing, and predicting
step of LIME to generate more local samples. Afterward, a linear interpretable model
is trained on the masks and predictions using local weighting. At last, extracting the
coefficients of the model leads to the wanted attributions for the initial sample.

4 Finding suitable segmentation mappings

We propose T'S-MULE, extending the LIME [8] approach for time series with
novel segmentation algorithms. Our approach presents five segmentation tech-
niques created for time series and three different replacement strategies.

4.1 Using static windows

Uniform segmentation is the most basic method to segment a time series into
windows. In this approach, we split the time series ts = {tg,t1,t2,...,t, } into
equally and non-overlapping m-sized windows ws = {wg, w1, wa, ...,wq} with
d = [n/m]. If n is not a multiple of m, the final windows may have more or
less time points. We expand the uniform segmentation to exponential windows,
which ignores the size m and has longer windows at the end. A time series
ts in exponential segmentation is split into d = log(n) windows and its length
increases with [€°], [e!],[€?], ..., [e?]. To cover all the points of the time series,
in the final window, we adjust its length by n — >_([€°], [¢!], [€?], ..., [e?~]). A
benefit of such segmentation is that we put more weight on the latest points
with longer windows.

4.2 Using the Matrix Profile

A matrix profile is a vector that stores the z-normalized Euclidean distance
between any subsequence within a time series and its nearest neighbor [10]. Such
a matrix profile can be used to identify motifs as well as outlier subsequences
in large time series [10]. We introduce the slope and bin segmentation based on
the matrix profile on time series to incorporate local trends and patterns.
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The slope segmentation has the parameters window size m as input for the
matrix profile and k for the number of partitions for the segmentation. The basic
idea behind this segmentation approach consists in the opportunity to find pat-
terns in the time series using the matrix profile. By further focusing on the slope
of the matrix profiles distances, we can identify drastic changes in the nearest
neighbors to find not only possible patterns but also uncommon changes in the
time series itself. Such a uncommon changes can be used as plausible splits for
the segmentation as the pattern are still included in the segments. We calculate
the matrix profile mp = {dy, ds, ..., d;} with our previously adjusted window size
m so that j = n —m + 1 to find interesting distances, e.g., to identify motifs.
Afterward, we either calculate the gradient on the resulting matrix profile Vmp
and take the absolute value |[Vmp| to identify peaks as steep slopes. Or, depend-
ing on the configuration, we sort the resulting matrix profile vector ascending
and compute the slope to identify jumps in distances to find significant changes
in the time series. We sort the resulting vector in both cases and take the k-
largest values to find segment borders. The time series indices of these k values
segment our time series and describe drastic changes in the time series.

We further present bin segmentation based on the matrix profile with the
same parameters m and k as above. Again the idea behind this approach enables
finding patterns in the time series by not using the gradient to find drastic
changes in the nearest neighbor but using bins to combine similar distances in
the matrix profile to segments. We calculate and sort the matrix profile again.
However, we further split the min-max range of the matrix profile into k-bins.
Afterward, we label the k-bins numerically so that lower numbers have a low and
higher a high matrix profile. We convert our matrix profile to the corresponding
bin number and assign our base value to the max or min bin. Next, we slide
over the resulting profile with a window length m. Due to the sliding window
approach, a time point can be either in the segment seg; or seg;. For our bins-
min segmentation, we assign the time point ¢; to seg; if bin; is smaller than bin,.
Our bins-maz segmentation, oppositely, uses the seg; if bin; is larger than bin;.

4.3 Using the SAX transformation

SAX segmentation introduces a segmentation based on horizontal binning of a
time series with k partitions as the parameter. The basic idea behind this seg-
mentation approach includes the changes in the range of the values by splitting
the overall distribution of possible values into bins. The SAX transformation [11]
converts a time series ts into a sequence of symbols sa = {sg, $1, S2, ..., S, } With
s; € {a,b,c,...} based on a continuous binning of intervals in the vertical direc-
tion. We incorporate a base number of bins b = 3 for the SAX algorithm and use
repeating symbols as segments, e.g., sa = {a1,as,as,b1, b2, a1, c1,ca,c3} involves
four segments leading to {ay, as,as}, {b1,b2}, {a1}, {c1,ca, c3}. At each iteration,
the amount of bins is increased b+ = 1 to finally achieve a previously selected
k partitions as more bins generally convert to more partitions. For some cases,
the exact partition size is not possible, and we allow a difference of ten percent
to the selected partition size to mitigate such edge cases.
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4.4 Comparing the segmentation algorithms

Existing and proposed segmentation algorithms lead to different segments repre-
senting potentially suitable techniques for various data sets. Fig. 2 presents these
algorithms on two differently scaled time series features. Especially, comparing
the uniform segmentation with the others demonstrates the advantages of the
other approaches. Depending on the algorithm, different segments are visible
and present some more focused parts of the time series samples. Choosing from
a broader range of techniques can lead to improved explanations for humans.
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Fig. 2. Comparison of the different segmentation variants. Red stripes show segment
splits. Some segmentation algorithms proposed end up with more as well as very short
segments than the uniform segmentation with default parameters.
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5 Evaluating TS-MULE on time series forecasting

The evaluation of our proposed segmentation and perturbation approaches is
based on the perturbation analysis for fidelity by Schlegel et al. [15,20] adapted
to forecasting tasks using the mean squared error. As datasets for our evaluation,
we use the Beijing Air Quality 2.5, Beijing Multi-Site Air Quality, and the Metro
Interstate Traffic data to show the results on divers multivariate time series. For
the air quality datasets, we use a fixed input size of 24. The metro traffic fore-
casting has an input length of 72. We use three different basic implementations
of black-box models: a basic one-dimensional convolutional neural network, a
deep neural network, and a recurrent neural network (LSTMs [21]).

The perturbation analysis by Schlegel et al. [20] consists of three steps: expla-
nation generation, data perturbation based on explanations, and perturbation
evaluation. At first, a selected dataset, e.g., the test data, is evaluated with a
quality metric (e.g., accuracy), and explanations are generated for every sample.
Next, every sample of the selected dataset is perturbed such that time points with
high relevances for the explanation are replaced with non-information holding
values. As non-information holding values for time series are challenging to find,
we focus on the proposed ones (zero, inverse, mean) by Schlegel et al. [20]. Often
the high relevance attributions are identified by using a threshold. Lastly, the
perturbed data gets evaluated, and the quality metric change is calculated. The
assumption is that a value change of the predicted data at highly relevant input
positions decreases the quality metric performance of the model as the data loses
valuable information. Such an assumption then leads to the conclusion that a
working XAI technique decreases the performance more than a random change.

Zero 2| CNN DNN RNN|Z|CNN DNN RNN |€|CNN DNN RNN
Uniform | 2{2.31 4.24 232| %[ 1.50 9.00 7.67 |5 243 0.22 6.55
Exponential| S| 0.56 1.12 1.41§ 0.62 0.16 11.52|20.55 0.01 0.62
Slopes 131 211 1.95\5] 13 676 3.97 |%3.39 0.18 9.29
Bins Min  [<|0.35 3.43 3.6 || 041 10.46 571 |£/125 04 7.8
Bins Max E 169 1.22 238 |51.52 1.68 2.67 S| 1.44 044 2.68
SAX 2|1.24 2,58 2.23|K[1.10 8.00 4.15 51.55 1.16 7.34

Table 1. Evaluation results of the perturbation analysis for every segmentation tech-
nique for three datasets and three models. We calculate the perturbation analysis
results based on the percentage change to the original prediction and the randomized
change. A larger value shows a better explanation.

We extend the assumptions to calculate a score for improved comparability of
the results by focusing on the percentage increase in relation to a random change
of the time series. Schlegel et al. [20] propose to take the 90th percentile value of
the attribution values of the sample as a threshold. However, we have to scale our
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TS-MULE values because we observed that depending on the segment count,
the distribution of the attribution changes. Such a distribution change leads to
either more or less highly relevant time points for the perturbation as, e.g., there
are more attribution values above the threshold value. Thus, we take the initial
prediction scores orig, the perturbed prediction scores pert, and the random
position change prediction score rand and calculate the increase of the perturbed:

pert, = %&”9 and random: rand, = m"jr,%. We set these in relation to get
t, .
our final score: score = ”f;; dL||' A score below one depicts a worse performance

than random guessing. Scores larger than one illustrate plausible explanations
better than guessing. Through this scaling, the segmentation algorithms can be
compared. Larger results demonstrate better segmentation. Table 1 presents such
a perturbation analysis on fidelity with our proposed segmentation approaches.

Our preliminary results for a zero perturbation, see Table 1, show that uni-
form is working well for short time series windows (Beijing Air Quality with 24)
while slopes generate better performances on long windows (Metro Interstate
Traffic with 72). However, also our proposed bins-min, bins-maz and SAX illus-
trate promising results for short windows and can be further tuned by adding
more parameters. Also, by further adding a minimum length for segments, these
algorithms can be improved. The DNN for the Metro Interstate Traffic dataset
is interesting as non of the proposed segmentation strategies seem to work. How-
ever, such an effect can be caused as the model’s performance is way worse than
the other two models. In general, the uniform segmentation works well as a
starting point, but exchanging it with our proposed algorithms enables more
diverse and improved attributions.

6 Conclusion

We present T'S-MULE, a local interpretable model-agnostic explanation extrac-
tion technique for time series. For TS-MULE, we extend the LIME approach
with novel time series segmentation techniques and replacement methods to
enforce a better non-informed values exchange. Thus, we contribute five novel
time series segmentation algorithms and the TS-MULE framework for time se-
ries forecasting. We show on three forecasting datasets that T'S-MULE performs
better than randomly perturbing data and thus reveals relevant input values for
the prediction of a model. Further, we demonstrate that our proposed segmenta-
tion algorithms lead to improved attributions in most cases. As future work, we
want to compare the performance of T'S-MULE against other XAI techniques
applied to time series in the framework of Schlegel et al. [20]. We also want to
identify shapelets to generate segments with more in-depth domain knowledge
and to investigate into similar attribution techniques like SHAP [22].
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