

Interactive Visual Analysis of Transcribed Multi-Party Discourse

VisArgue: The first web-based Visual Analytics framework for the analysis of multi-party discourse data using verbatim text transcripts.

- Broad range of server-based processing steps, ranging from data mining and statistical analysis to deep linguistic parsing of English and German.
- Browser-based Visual Analytics components enable **multiple perspectives** on the data.
- Interactive visualizations allow exploratory content analysis, argumentation pattern review and speaker interaction modeling.

Poster: Illustration of visualization components via transcripts of the 3 televised US presidential election debates from 2012 between Obama and Romney. Obama as 🐂 Democrat (blue); Romney as 🛱 Republican (red) and all moderators combined as 🖣 Moderator (green).

Lexical Episode Plots

High-level overview of the content of the transcripts, based on the concept of **lexical chaining**, i.e., word chains that appear with a **high density** in the text.

- The **lexical episodes** are visualized as **bars** on the left of the text.
- Each **utterance** is rendered by one **box** with each **sentence** as one **line**.
- This visualization supports a smooth **uniform zooming** from the text level to the high-level overview to support **close-reading** and **distant-reading**.

Valentin Gold, Christian Rohrdantz, and Mennatallah El-Assady. 2015. Exploratory Text Analysis using Lexical Episode Plots. Eurographics Conference on Visualization (EuroVis) - Short Papers, 85-89.

Mennatallah El-Assady, Rita Sevastjanova, Bela Gipp, Daniel Keim, and Christopher Collins, 2017. NEREx: Named-Entity Relationship Exploration in Multi-Party Conversations. Computer Graphics Forum, 36(3):213-225.

Named-Entity Relationship Explorer

Analysis of different concepts and their relation in the utterances. Concepts categorized into **10 classes**: **2** Persons, **3** Geo-Locations, **3** Organizations, Oate-Time, Measuring Units, Measures, Context-Keywords, Positiveand 🖲 Negative-Emotion Indicators, and 🖷 Politeness-Keywords.

- **Concept relations** extracted using a **distance-restricted** entity-relationship model to comply with the **ungrammatical structure** of verbatim transcriptions.
- Relations can be explored in the **Entity Graph**.
- All views support a rich set of interactions, e.g., linking, brushing, selection, querying and interactive parameter adjustment.

Argumentation Feature Fingerprinting

Glyph-based visualization shows the **deliberative quality** of debates. Glyph maps the four theoretic dimensions of deliberation in its four aches.

Valentin Gold, Annette Hautli-Janisz, Katharina Holzinger, and Mennatallah El-Assady, 2016. VisArgue: Analysis and Visualization of Deliberative Political Communication. Political Communication Report, (26) 1-2.

- Four quadrants: NW (Accommodation), NE (Atmosphere & Respect), SE (Participation), SW (Argumentation & Justification).
- **Rows** group **features** that are thematically related, e.g., emotion or topic shift.
- Each **feature** is represented as a small rectangular **box**.
- Different **types of data** (binary, numerical, bipolar) are encoded using different color scales and icons.
- The glyphs can be **aggregated** for utterance, topics, speakers, or their parties.

Argumentation Feature Alignment

Feature alignments generated using sequential pattern mining on selected features. Allows users to verify their hypotheses about patterns across multiple conversations using discourse features.

- ARRANGEMEN
- Figures show an alignment on the following 3 features: **Speakers** (Obama, Romney, Moderator); Topic Shift (Progressive, Recurring); Arrangement (Agreement, Disagreement).
- A pattern found in all debates: Obama makes a statement, followed by a topic shift and a turn to Romney and the moderator, followed by an agreement.
- For further analysis, the user can switch to a **comparative close-reading view** to investigate two occurrences of the found pattern on the **text-level**.

Wolfgang Jentner, Mennatallah El-Assady, Bela Gipp, and Daniel Keim, 2017. Feature Alignment for the Analysis of Verbatim Text Transcripts. EuroVis Workshop on Visual Analytics (EuroVA), 13-17.

Topic-Space Views

Interactions between speakers modeled via the metaphor of a closed discussion floor. All discussed topics span the topic space, i.e., an animated radial plot showing interaction of speakers over the course of a discussion.

- The figure displays one time-frame of the **utterance sedimentation view** of the accumulated presidential debates.
- The **length** of the arch representing a topic is mapped to the **size of the topic**.
- All active **speakers** are displayed as **moving dots** with **motion chart trails**.
- A gradual visual decay function blends out non-active speakers over time.
- Using a **sedimentation** metaphor, all past **utterances** are pulled to their **top** topic by a radial gravitation.

alentin Gold, Carmela Acevedo, Christopher Collins, and Daniel Keim, 2016. ConToVi: Multi-Party Conversation Exploration using Topic-Space Views. Computer Graphics Forum, 35(3):431–440.

Mennatallah El-Assady¹, Annette Hautli-Janisz¹, Valentin Gold², Miriam Butt¹, Katharina Holzinger¹, and Daniel Keim¹

¹ University of Konstanz, Germany

² University of Göttingen, Germany

GEFÖRDERT VOM

für Bildung

und Forschung

Bundesministerium