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Visual Comparison of Networks in VR

Lucas Joos, Sabrina Jaeger-Honz, Falk Schreiber, Daniel A. Keim, and Karsten Klein

Fig. 1: A matrix representation (left) and a node-link diagram representation (right), both supporting the simultaneous visual
comparison of two weighted networks in an immersive environment.

Abstract—Networks are an important means for the representation and analysis of data in a variety of research and application areas.
While there are many efficient methods to create layouts for networks to support their visual analysis, approaches for the comparison of
networks are still underexplored. Especially when it comes to the comparison of weighted networks, which is an important task in
several areas, such as biology and biomedicine, there is a lack of efficient visualization approaches. With the availability of affordable
high-quality virtual reality (VR) devices, such as head-mounted displays (HMDs), the research field of immersive analytics emerged
and showed great potential for using the new technology for visual data exploration. However, the use of immersive technology for
the comparison of networks is still underexplored. With this work, we explore how weighted networks can be visually compared
in an immersive VR environment and investigate how visual representations can benefit from the extended 3D design space. For
this purpose, we develop different encodings for 3D node-link diagrams supporting the visualization of two networks within a single
representation and evaluate them in a pilot user study. We incorporate the results into a more extensive user study comparing node-link
representations with matrix representations encoding two networks simultaneously. The data and tasks designed for our experiments
are similar to those occurring in real-world scenarios. Our evaluation shows significantly better results for the node-link representations,
which is contrary to comparable 2D experiments and indicates a high potential for using VR for the visual comparison of networks.

Index Terms—Network comparison, virtual reality, weighted graphs, immersive analytics

1 INTRODUCTION

Networks are used in a large variety of application areas, such as biol-
ogy, software engineering, and social science, to model, visualize, and
communicate information. Consequently, a large body of research has
been devoted to visual network analysis, see e.g. [11, 48, 54, 61]. An
important task in many use cases is the comparison of networks, e.g.
to compare brain activity networks of cohorts of healthy and diseased
individuals, protein interaction networks under different conditions,
financial networks, or friendship networks on social media platforms.
Networks can be compared in multiple ways, for instance by apply-

{ | | |
}

ing different network measures or reduction techniques, or by visual
comparison. Several approaches have been proposed so far to support
visual network comparison, but it still remains a grand challenge for
network visualization research that requires further experimental evi-
dence. Graph statistics and metrics can facilitate comparison [37, 44],
but cannot cover all aspects and use cases, and might fail to foster
insight into the network structures [15, 35, 37]. Combinations with
visual network representations might have the potential to exploit the
complementary strengths of both approaches, but require further design
efforts and might increase cognitive load as well as the potential for in-
terpretation, coordination, and interaction errors with multiple views or
representations. Node-link diagrams and matrix representations are the
two main idioms for the visual depiction of networks. While node-link
diagrams are dominating both in practical use and as a research topic,
several studies have shown that matrices, despite a trade-off in space
usage, can have advantages for certain tasks and settings, including
comparison [1,25]. A particular strength of the matrix representation is
the use case of dense networks [22], also using combined representa-
tions [9, 31], as well as the depiction of connectivity patterns [12].

Immersive environments (IE) are gaining popularity for data analy-
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sis [39,40], with increasing quality and availability of hardware devices
and software tools, but the fundamentals of visual network analysis
in IE are not yet investigated systematically. Mixed reality technolo-
gies such as virtual reality (VR) and augmented reality (AR) headsets
have been recently investigated for visual network analysis, and have
shown promising potential [14, 17, 38, 42, 60]. However, there is still
very restricted experimental evidence on effective and efficient network
comparison in such environments. In addition, while from a concep-
tual perspective 3D node-link representations are a straightforward
extension of their 2D counterpart, the extension of static adjacency
matrix representations to 3D is less obvious. In particular, the issue of
occlusion, due to the more compact representation, needs to be handled,
e.g. by introducing additional interaction operations [6].

In this work, we present an experimental investigation into network
representations for comparison tasks in VR, which was conceived in
the context of brain activity network analysis [20, 33]. Our aim is to
assess the usefulness of different comparative network representations
in VR to support visual analysis of networks similar to such real-world
networks. To this end, our contributions are as follows: We present
multiple encodings for the visual comparison of two weighted networks
in an immersive environment and evaluate them experimentally with
data and tasks comparable to real-world applications. Based on the
evaluation, we retrieve a clear favorite and thus support researchers con-
sidering immersive environments for the comparison of their network
data with their design decisions. Moreover, the difference between our
results and the results of a comparable 2D evaluation demonstrates how
the use of immersive technology in combination with visual encodings
making use of the extended 3D design space can mitigate issues with
traditional 2D visualizations. Therefore, our work also contributes to
the field of immersive analytics.

2 RELATED WORK

Our research touches several relevant aspects, including network vi-
sualization in general, visual network comparison, as well as data
visualization in immersive environments, in particular in VR.

Network comparison and visualization metaphors. Research
on visual network comparison has mainly focused on the development
of practical approaches, e.g. for specific types of networks [33, 53, 55,
57, 66], and for structural overviews by abstraction or aggregation, see
e.g. [10, 35, 67]. In an attempt to advance the methodology, Gleicher et
al. [27] proposed a taxonomy of visual designs for comparison, which
groups designs into three categories: juxtaposition, superposition, and
explicit encodings. Gleicher [26] also provided a framework facilitating
the design of visual comparison solutions, based on four considerations
that help characterizing tasks, challenges, and potential solutions for
a given scenario. Javed et al. [34] proposed a model of composite
visualization views and presented corresponding strategies.

The visualization of dynamic networks can be considered a special
case due to the specific interrelation and temporal order of the network
states under comparison. Initial results indicate that difference maps
might outperform the presentation of the network evolution as time
slices for certain settings [4], and that mental map preservation can
improve task performance [2, 3]. Graphdiaries [7] introduced animated
transitions that help the user to focus on changes between consecutive
time steps. Cui et al. [18] proposed a static flow visualization approach
for the analysis of dynamic graph changes.

While there is a variety of proposed concepts for the comparison
of networks in 2D or 2.5D such as small multiples [2] or 2.5D stack-
ing [13], there is no commonly accepted method that fits a larger range
of use cases. Most approaches are limited to a small number of net-
works and make assumptions on the structural features of the networks
or the differences, such as sparsity. Notable results have in particu-
lar been achieved for the comparison of different metaphors: Alper
et al. [1] investigated the use of adjacency matrices for the compari-
son of two weighted networks in the context of brain activity. They
found that certain representations using adjacency matrices can outper-
form node-link representations for tasks related to brain connectivity
analysis, however, limited to pairs of networks and a small range of
network characteristics, in particular regarding scale. Okoe et al. [49]

compared node-link and adjacency matrix representations in 2D in a
crowd-sourced study, and report advantages of both representations
depending on the task. Ren et al. [51] conducted a crowd-sourced study
to compare differences in human understanding of node-link and ma-
trix representations, finding better accuracy and task time for node-link
diagrams and also differences in learning during the study.

Networks in VR and AR. The use of VR and AR technologies
for network analysis has received increased attention recently in the
context of immersive analytics [24, 45, 58]. Immersive analytics (IA) is
concerned with the design and evaluation of immersive environments
for data analysis and aims at supporting smooth workflows where
analysts are immersed in their data throughout the analysis process.
Recent work includes both application-oriented research, e.g. in the
context of connectome and brain activity analysis [50, 66], and more
fundamental investigations, e.g. on navigation [23, 60], the influence of
encodings [14], or the difference between immersive environments [17].
Perceptual aspects and also the influence of interaction operations might
play a bigger role in IE for network comparison, in particular in 3D,
but this has not been in the focus of research yet. For example, one
issue in the transfer of existing results for dynamic data is the use of the
third dimension in approaches like the space-time cube [6, 29]. When
comparing for example node-link and adjacency matrix representations
across 2D and 3D, the node-link representations can naturally be ex-
tended to make use of 3D (where the effect of this extension still needs
to be investigated), while adjacency matrices cannot be extended in
the same way. Thus, the advantage of the latter that was measured
in 2D might vanish when switching from 2D to 3D. There is a lim-
ited amount of work on perception of networks, in particular for IE.
Several works investigated the impact of motion and depth cues and
found benefits of stereoscopic 3D (S3D) visualizations [28, 63, 64].
Büschel et al. investigated the influence of the edge encoding in AR
on task performance, concluding that in general different styles can
be used [14]. Vogogias et al. [62] investigated designs for encoding
multiple types of edges in matrices and found task-dependent perfor-
mance differences. Soni et al. and Kypridemou et al. investigated
the influence of different layout methods on the perception of graph
properties in 2D [43, 59]. Soni et al. [59] investigated the smallest
noticeable difference in density and local clustering coefficients. They
concluded that density perception did not differ significantly across
algorithms. This might differ strongly in S3D, due to the influence of
the viewing perspective and depth distribution. There is substantial
work for general perception in IE, including a review reporting benefits
and shortcomings [46], a classification of issues in AR [41], and an
investigation of graphical perception for immersive analytics of point
clouds [65]. Several of the identified issues are also of significance
for network analysis, such as the difficulty in estimation of depth and
distances [5, 52], and interindividual differences [21]. The former is
important when distance is related to structural properties, e.g. for
distance-based layouts, and the latter might be emphasized in IE, e.g.
deficiencies in 3D perception [32].

3 COMPARATIVE NETWORK REPRESENTATIONS IN VR
As the discussion of existing approaches for the visualization of net-
works in the previous sections shows, the two most common network
visualization metaphors, i.e. matrices and node-link diagrams, both
come with advantages and disadvantages depending on the use case.
These representations are also used to compare networks, but existing
approaches mainly rely on juxtapositional comparison as it is easy
to implement. However, juxtapositional comparison methods come
with disadvantages, including the mental matching effort and that more
visualizations are required. Thus, more space is required and users are
forced to constantly move their focus between the representations to
compare. Both of these issues do not apply to superpositional com-
parison methods and explicit encodings. However, in contrast to side-
by-side comparison strategies, superpositional representations require
techniques to ensure that they are perceivable and understandable. For
the comparison of networks, especially if they are weighted, the use of
adequate comparison techniques beyond juxtaposition is in our opinion
still underexplored. The few approaches, such as [1, 36, 47], rely on



3653

Fig. 2: Matrix representation of two networks in the 3D environment.
A cell corresponds to an edge between two nodes and their weights
mapped on the inner and outer part of the scale using a grayscale.

two-dimensional visualizations only making use of a less rich design
space compared to visualizations in IE and can suffer from overplotting
for complex data. A design space that comes with enough opportunities
to map relevant attributes in an adequate way and the readability of
these representations are both crucial for the successful comparison
of networks. As immersive visualizations have the potential to over-
come some of the perceptual issues and design space limitations, but
might have further effects that counteract these benefits, we explore
how immersive visualizations could be used to facilitate the visual
comparison of weighted networks. Our aim is to investigate how com-
parative 3D network representations have to be designed to support
common network comparison tasks and to determine for which tasks
a certain representation is beneficial. For this purpose, we came up
with different approaches of 3D node-link diagrams supporting the
comparison of two networks at the same time using explicit encodings.
We evaluated these representations and their applicability for visual 3D
network comparison in two consecutive user studies.

3.1 Matrix Model

Classical 2D matrix visualizations of networks most often consist of
a two-dimensional grid, where each cell represents an edge between
two nodes [11]. To present more information than the mere existence
of edges, color scales or individual visual encodings like glyphs are
commonly used. Transforming 2D matrices into the 3D space is not
trivial and there has not been much research concerning this issue, with
few exceptions, such as the MatrixCube approach by Bach et al. [8],
for instance. The authors replace fields by cubes and stack them on top
of each other. The cube size or color could be used to map additional
attributes like edge weights. The approach has been developed to find
the main tendencies of many different network states. However, for the
comparison of only two networks, the approach introduces occlusion
while barely making use of the opportunities of the third dimension,
which makes it hard to retrieve details. Therefore, we did not follow
the MatrixCube method but tried to develop less complex 3D represen-
tations suiting the use case of simultaneously comparing two weighted
networks. We created different 3D matrix models where 2D fields were
replaced by stacked cubes combined with different designs for weight
encodings. However, we could not observe any advantages of these
models compared to classical 2D matrices. Moreover, using the third
dimension introduced occlusion and hampered the readability of the
representation, as the observer must be more careful to find the desired
cube corresponding to a matrix field within the 3D space without con-
fusing it with other cubes. As we could not find any indications that 2D
matrices profit from a transformation into the three-dimensional space,
we decided not to focus on 3D encodings for matrices. Furthermore,
not using actual 3D matrices preserves comparability to the study of
Alper et al. [1], which found the matrix representation to outperform
node-link diagrams. A study favoring 3D node-link diagrams over

3D matrices would have issues to explain that the outcome is not the
result of a less readable and less understandable encoding compared to
standard 2D matrices. For these reasons, we decided to use a baseline
2D matrix representation placed on a three-dimensional board, so that
the visualization could be moved and rotated in the three-dimensional
space (see Fig. 2). While not optimized for 3D, this representation
allows to investigate if the advantages observed in the literature for the
matrix compared to the node-link representation still hold when the
latter one is lifted to 3D. The matrix representation should encode the
edge weights of two networks and allow their comparison as well as
identifying details from the original networks. Alper et al. [1] compared
different 2D matrix representations encoding two weighted networks
at the same time and allowing comparison. The representation which
turned out to be the best, made use of the structure of a regular 2D
matrix but each field was split into an inner part and an outer part. The
weights of the corresponding edges in the two networks to compare
were mapped on these two parts of each matrix cell using grayscale
values. We could not observe any disadvantages of using these matrices
in our 3D environment. The actual environment made use of a different
wall color compared to the one shown in the images, where it is ad-
justed for printing. Thus, the matrix representation could be perceived
without interference with the background.

3.2 Node-Link Diagram Models

Networks represented as node-link diagrams in the three-dimensional
space are most commonly visualized by three-dimensional node objects
like spheres or cubes that are linked by lines or tubes as edges. As
the focus of our investigation is the impact of encodings for differ-
ences in the edge weights, we simply use black cubes for nodes. The
node placement in the three-dimensional space is done using a stress
minimization graph layouting algorithm implemented in the OGDF
graph drawing library [16]. For the edge representations, we generate
straight tube objects. We only consider straight edge representations, as
suggested by the experimental results of Bueschel et al. [14]. Similar
to the matrix representation, the design objective for the node-link dia-
gram representation is to visualize two weighted networks within one
node-link diagram. Therefore, each edge should encode two weights
while preserving the ability to retrieve absolute values, differences, and
the corresponding networks. We present seven different edge represen-
tations matching those requirements:

Parallel Edge Model The approach by Alper et al. [1] for non-
juxtapositional node-link diagrams relied on two parallel lines for every
edge and a color scale encoding the weights of two networks. We
adopted this idea for our three-dimensional node-link diagram and
created the Parallel Edge Model (see Fig. 3a and Fig. 4a) consisting of
two 3D tubes drawn next to each other. We use the color hue (green
and blue) to visualize the network affiliations and map the absolute
edge weight on the tube radius.

Split Edge Model Instead of drawing parallel tubes, one could
also split the edge in half and use one half per network to visualize the
edge weights. We called this approach Split Edge Model (see Fig. 3b
and Fig. 4b). As before, the color hue determines the network that is
represented by the edge half. Furthermore, the absolute edge weights
are mapped to tube radius and color saturation, as this combination
appeared to be most promising in internal tests. For small edge weights,
a small green or blue ring is placed at the beginning of an edge half to
ensure identification of network affiliation.

Chunk Edge Model Simply drawing two tubes per edge to map
two network weights would hide one of the tubes within the other one.
To solve this issue, our Chunk Edge Model (see Fig. 3c) consists of
one long tube mapping the lower edge and one short tube mapping
the higher value. For this model, we use the color hue for the network
identification and the tube radius for the weight value mapping. The
combination of a long and a short tube avoids the issue of occlusion
while giving users the opportunity to estimate relative differences and
absolute values.
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(a) Parallel Edge Model

(b) Split Edge Model

(c) Chunk Edge Model

(d) Inner Outer Edge Model

(e) Cylinder Glyph Model

(f) Cube Glyph Model

(g) Sphere Glyph Model

Fig. 3: Our node-link diagram edge models designed to encode two
edge weights at the same time.

Inner Outer Edge Model Similar to the Chunk Edge Model, the
objective of our Inner Outer Edge Model (see Fig. 3d) is to solve the
issue of occlusion when there are two tubes per edge. Instead of modify-
ing the tube length, this approach is based on opacity modification. The
lower weight value is mapped to an opaque tube which is surrounded by
a translucent tube representing the higher value. The weight is mapped
on the tube radius and the color hue of the inner tube is used to identify
the network affiliation.

Cylinder Glyph Model Instead of visualizing only absolute values,
we also pursued an approach called Cylinder Glyph Model (see Fig. 3e
and Fig. 4c), which visualizes one absolute value and the difference to
the other edge weight. For that purpose, the edge with the higher weight
is drawn as a radius-mapped tube connecting two vertices, but with
a gap in the middle containing a translucent cylinder. The difference
between both edge weights is indicated by the filling of the cylinder.
A difference of 0 leads to an empty cylinder, a difference of 1 to an
entirely filled cylinder. The color hue of the tube and cylinder visualize
the network affiliation.

Cube Glyph Model For the Cube Glyph Model (see Fig. 3f), we
rely on the same concept as for the Cylinder Glyph Model with the
adaption that a cube glyph is used instead of a cylinder. The weight
difference is now depicted by a colored cube within a translucent cube,
where the volume of the inner cube is used to map the difference.

Sphere Glyph Model The Sphere Glyph Model (see Fig. 3g) is
based on the same approach as the Cube Glyph Model. But instead
of a cube glyph, this method makes use of a sphere glyph consisting
of a translucent sphere and a colored sphere in the center of the outer
sphere with a mapping of weight difference to volume.

After conceiving and implementing the above representation models,
we performed a first informal test to get some impression of similarities
and potential issues of the models. We used this initial judgment to
select suitable candidates for a pilot study, as comparing seven different

models with different tasks and different complexities would overcharge
the participants. Our preselection proceeded as follows: Firstly, we
sorted out the Inner Outer Edge Model, since the translucent tube and
its radius could not be perceived well in the VR environment, as well
as the Chunk Edge Model, which was similar to the Split Edge Model,
but less understandable and biased with regard to the perception of the
different network weights. Our glyph models were very similar, so
we decided for the one that could be perceived most accurately in VR,
which was the Cylinder Glyph Model. This preselection led to three
remaining edge models to compare, namely the Parallel Edge Model,
the Split Edge Model, and the Cylinder Glyph Model.

4 PILOT USER STUDY

We designed and conducted a pilot user study to compare and evaluate
the different node-link diagram encodings that have been previously
described. Examples of these three models applied to an entire node-
link diagram are shown in Fig. 4. The first objective of this study was
to determine how suitable the developed models were to solve tasks
related to the comparison of two weighted networks. This includes
several questions that we wanted to investigate:

Were the participants able to solve a certain task correctly with a
given model?

How fast were the participants when solving a certain task with a
given model?

What is the preference of participants, when they could decide
for a certain model to solve a given task?

To investigate these questions, we designed five different tasks re-
lated to the comparison of networks derived from functional magnetic
resonance imaging (fMRI) but abstracted to weighted graphs. That way,
participants without a medical background could solve the tasks. We
furthermore generated data with different complexities that are similar
to real-world data derived from fMRI scans, as described in Section 4.2.
For all tasks and users, we measured the correctness of answers and the
answer time. Furthermore, a questionnaire has been provided to gather
qualitative feedback on individual preferences and general comments.

The second objective of the pilot user study was to evaluate our study
setup and to find out, where the tasks, data, comparison models, and
study procedure required adaptions for the main user study.

4.1 Tasks
Research related to fMRI data comes with certain challenges and de-
mands that can be mainly abstracted to different comparison tasks
regarding weighted graphs [1, 18, 33, 66]. Alper et al. made use of a
literature survey and individual expert interviews with seven experts to
determine the main challenges that neuroscientists have to solve when
dealing with fMRI comparison [1]. Based on these main challenges,
they derived three abstract tasks that can be summarized as follows:

1. Evaluating the dominance of a network at a given node in terms
of higher weight accumulated over all incident edges.

2. Assessing topology differences regarding the common neighbors
of two given nodes.

3. Finding the region containing the edges with the highest accumu-
lated weight differences between both networks.

We incorporated the first task introduced by Alper et al. in a similar
way into our user study as T4. We simplified their third task and
incorporated it as T2, asking participants to find the edge with the
highest weight difference between both networks. Instead of covering
connectivity differences by comparing topological differences, as Alper
et al. do with their second task, we cover connectivity differences by
examining weight differences, since higher connectivity is represented
by higher edge weights in a weighted graph and vice versa. We included
a task (T3), in which participants had to evaluate the weight difference
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(a) (b) (c)

Fig. 4: Examples for the node-link diagram representations as used for the pilot user study with the Parallel Edge Model (a), the Split Edge model
(b), and the Cylinder Glyph Model (c).

of the edges connecting two given nodes, which inherently corresponds
to comparing the connectivity between two nodes. Furthermore, we
included a task (T1) for estimating weight differences (or connectivity
differences) on a whole-network level, i.e. estimating which of the
two networks is the one with more edges with weights higher than
the weights of the other network. The last task added to the pilot
user study (T0) examines how suitable the different models are to
get an impression of how similar or dissimilar the different networks
are. In this context, similarity is defined as a threshold on the sum
of differences in the weight as outlined below in the description of
Task T0. The tasks are summarized in Table 1 and explained in more
detail in the following:

T0: Global Similarity Task For this task, participants examined a
node-link diagram with one of the edge models representing weights of
two networks and had to estimate whether the networks were similar or
dissimilar. For the similar network pairs, a weight change of |E| ·0.05
(where |E| is the number of edges in the network) has been arbitrarily
applied to the second network while for dissimilar networks the weight
change was |E| ·0.15 to create a sufficient gap between the differences
in the similar and dissimilar pairs. The answer options were Similar,
Dissimilar and Don’t know. We added the last option to prevent par-
ticipants from choosing any option if they could not figure out the
answer. The goal of this task was to measure how well similarity of
two networks could be identified with the given representations, which
is relevant, for instance, when analyzing two consecutive scans or dif-
ferences in cohorts. Demo examples prior to the actual study made sure
that participants have seen examples for networks that are similar or
dissimilar according to our definition.

T1: Overall Dominance Task Before describing this task, we
start by defining the term dominance. In this context, we use the term
dominance for edges to describe that one network NA has a higher
weight compared to the other network NB at a certain edge ek, or in
other words: NA dominates NB at edge ek. On the level of networks,
dominance means that a network NA contains more dominant edges
than the other network NB or in other words: NA dominates NB. For this
task, participants examined a node-link diagram with one of the edge
models representing weights of two networks and had to estimate which
network was the dominant one. We ensured that one randomly chosen
network in each pair of networks to compare contained 20% more
dominant edges than the other one. To answer this task the participants
had to choose the color of the dominant network, namely Blue Network
or Green Network. As for T0 we also included a Don’t know option to
prevent guessing. With regard to the evaluation of differences between
cohorts, for instance, it is beneficial for users to get an impression of
whether edge weights are in general higher for a certain network and
which network it is. Therefore, we included this task in the user study.

T2: Highest Difference Task For this task, participants examined
a node-link diagram with one of the edge models representing weights

of two networks and had to find the edge, where the weights of the two
networks differed the most. The networks used in this task have been
designed in such a way that there was always exactly one edge with
the maximum weight difference leading to only one correct answer.
To answer the task the participants had to enter the 3-digit number
of the edge having the highest weight difference. The edge numbers
could be displayed by clicking a controller button. Getting an impres-
sion of regions, where two networks highly differ can be beneficial in
neuroscience, for instance, as a starting point for further explorations
investigating reasons for major connectivity differences. With this task,
we aim at testing the ability to find such a starting point for further
exploration using the different edge models.

T3: Single Edge Difference Task For this task, participants ex-
amined a node-link diagram with one of the edge models representing
weights of two networks, where one edge was highlighted. To solve
the task, participants had to estimate the weight difference between
the two networks at the highlighted edge. The task could be answered
by choosing an estimated weight difference between 0 and 1 with a
step size of 0.1, which leads to 11 answer options. This task mea-
sured how precisely differences could be perceived with the different
representations.

T4: Local Dominance Task For this task, participants examined
a node-link diagram with one of the edge models representing weights
of two networks, where one node was highlighted. The participants
had to assess whether the blue or green network dominated at the given
node based on the edge weights of the incident edges. Thus, all the
edges connected to the given node and their weights had to be examined
and summed up. The network with the higher accumulated weight had
to be selected. It was ensured that there was always exactly one correct
answer. To answer this task, the participants had to choose the color of
the dominant network at the given node, namely Blue Network, Green
Network or Don’t know. This task measured how well local differences
and trends could be assessed with the examined representations.

4.2 Data
For the user study, we generated synthetic weighted networks, which
were inspired by networks derived from actual fMRI data. This allowed
us to conduct the study under controlled and equal conditions without
decoupling the study from the actual use case. The generated networks
contained 40 nodes with edge densities of 8 and 16 percent. Edge
weights varied between 0 and 1 with a step size of 0.1. In order to focus
on weight differences and not to introduce potentially confounding
factors, we generated connected networks only, i.e. with only a single
connected component. This generation concept corresponds to a thresh-
old filtering approach as used for brain activity analysis, where some
of the edges (in our case pairs of edges) are either of weight zero or
below the threshold and are thus not part of the analysis [19]. For each
of the generated networks, we created a further network to compare to.
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Table 1: Study tasks and their characteristics.

Task Name Description Answer Network Properties

T0 Global Similarity Task Estimate similarity between two

networks

Similar / Dissimilar / Don’t know Same networks with random total

weight change of |E| · {0.05 | 0.15}
T1 Overall Dominance Task Assess which network is the

dominant one (number based)

Network identifier / Don’t know 20% more dominant edges in one

network

T2 Highest Difference Task Find the edge with the highest

difference between the networks

3-digit edge number Existence of only one unambiguous

edge with the highest difference

T3 Single Edge Difference Task Estimate the edge weight difference

at a given edge

Decimal number from 0 to 1, 0.1 steps No network adaption required

T4 Local Dominance Task Assess which network is the

dominant one (weight based) at the

highlighted node

Network identifier / Don’t know Unambiguous weight-based

dominance

Similar to Alper et al. [1], the comparison network has been created
by copying the original one and perturbing 70% of the edge weights.
Thus, we ensured that there were enough edges of the same weight in
both networks, as it occurs in fMRI networks, too. The networks were
generated in advance and the same for all subjects.

4.3 Apparatus
Our VR environment consisted of a Unity3D application running on
a standard VR-capable setup. Users perceived the application using
an Oculus Rift CV1 HMD allowing stereoscopic 3D vision. For the
interaction, the Oculus Touch controllers where used along with the
headset position and rotation. The user study was conducted in a
laboratory at the University of Konstanz.

4.4 Interaction
The virtual environment allowed interaction by using two controllers,
one per hand. The controller positions, rotations, and the recog-
nized gestures were visualized in the virtual environment using semi-
translucent virtual hands (see Fig. 2). By collapsing all fingers of a
hand (i.e. forming the hand into a fist), the participants could perform
the grab gesture. It could be used to rotate and move grabbed objects,
namely node-link diagrams for the pilot user study. Moreover, the
study setup allowed to point at virtual objects with a virtual laser ray
directed by one of the controllers. The virtual ray could be activated
by performing the pointing gesture (index finger is stretched, all other
fingers are collapsed) and triggered actions when a further controller
button was clicked. Hence, participants could start tasks, press keys
on virtual keypads, and confirm their answers. Besides the controller
interaction, participants could walk around and rotate their heads to
change their perspectives.

4.5 Procedure
For the pilot user study, the participants were invited for individual
sessions. All participants signed a consent form before the actual
study procedure began. Since the experiment was conducted prior
to the COVID-19 pandemic the study did not require special safety
measures. The study procedure started with a detailed explanation of
the visualizations, the tasks, and the study setup. Questions could be
posed at any time. After the explanation, the participants mounted the
HMD and solved training examples for each task. Then, the actual
study started. By using the controllers the participants were able to
move and rotate the node-link representations in the VR environment.
Before a sub-task could be solved, a virtual start button had to be
clicked by using the virtual ray and pressing a controller button, which
made the visualization visible and started a timer. After figuring out the
solution, the answers could be given directly in the application using
task-dependent answer boards and the pointing gesture to activate an
answer option. For each of the five tasks, all three edge representations
were tested with networks of 8% and 16% density. We tested every
condition three times leading to 5 ·3 ·2 ·3 = 90 sub-tasks in total that
had to be solved. While the order of the tasks was fixed, we randomized

the order of the conditions within each task. For this purpose, the order
of the network representation models (i.e. the three different edge
encodings) and the order of the networks used to test the conditions
were randomized. However, the networks with low density always
appeared before the higher density networks to ensure that the difficulty
increases within each task. Together with the training session in the
beginning, this approach minimized training effects. After solving all
tasks the participants were asked to fill out a questionnaire regarding
personal questions like their age as well as questions concerning their
experience with the application and the representations. The study took
approximately one and a half hours and breaks could be done anytime.

4.6 Participants

We invited five unpaid participants associated with the Computer Sci-
ence department of our institution. Three of them were male and two
female. Their age varied between 16 and 27, the mean age was 23.6, the
median 25, and the standard deviation 4.4. Participants younger than
the country’s legal age were allowed to take part in the user study and
all required measures were taken. Four persons indicated the right hand
as their dominant hand, one person the left hand. The participants had
normal or corrected-to-normal vision and did not declare any perceptual
issues with the application. A majority of four participants stated that
they had prior knowledge concerning network analysis. Three of the
participants indicated that they had prior experience with VR hardware
and applications.

4.7 Results

With a sample size of five participants, statistical tests are not mean-
ingful for the pilot user study. Therefore, we use the mean accuracies,
completion times, and the user feedback to get an impression of the
different models and to evaluate the overall study setup. The pilot
study results are shown in Table 2. The combined accuracies for all
tasks as well as the single task accuracies show that the Cylinder Glyph
Edge Model led to the best results consistently for both densities. Only
for T0, the other representations led to better results. The completion
time results do not show a clear favorite across the tasks and the time
differences do not exceed a few seconds.

The analysis of the questionnaires filled out by the participants did
not indicate problems with the application or study setup, except for
a too small edge label size. All participants preferred the Glyph Edge
representation for the given tasks. A majority of three participants
considered the Parallel Edge representation at least for one task to be
not suitable and criticized the high level of occlusion. With regard to
physical discomfort, a few users reported headache (n = 1), motion
sickness (n = 1), or tiredness due to standing for a long time (n = 1).
For this reason, more breaks were incorporated in the second study
and the study duration has been decreased. Although all participants
preferred the Glyph Edge Model, there were comments criticizing the
coloring of cylinders leading to visual interference. We incorporated
this feedback into the main user study.
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Table 2: The mean accuracy and mean answer time results of the pilot
user study for tasks 0 to 4 and their aggregation (=). The conditions
were Parallel Edge Model (P), Split Edge Model (S), and Cylinder
Glyph Model (G) with network edge densities of 8% and 16%. For
each condition, the best result is marked.

Accuracy Answer Time (s)
8% 16% 8% 16%

T P S G P S G P S G P S G

0 0.73 0.80 0.73 0.73 0.53 0.67 17.9 22.3 19.9 16.3 18.7 16.9

1 0.87 0.67 0.93 0.67 0.53 0.93 18.2 14.1 18.4 16.9 14.4 18.8

2 0.13 0.07 0.67 0.07 0.13 0.33 30.7 32.1 28.7 35.9 30.2 34.4

3 0.53 0.67 0.73 0.00 0.33 0.67 14.6 14.0 14.6 14.8 11.1 10.4
4 0.73 0.80 0.93 0.53 0.60 0.93 13.0 12.9 12.3 16.8 11.0 11.8

= 0.60 0.60 0.80 0.40 0.43 0.71 18.9 19.1 18.8 20.1 17.1 18.4

4.8 Discussion
In our pilot user study the Glyph Edge representation led to the best
results regarding the accuracy and user preference. The answer time
analysis did not show a clear favorite. Therefore, we stick to the Glyph
Edge representation for the main user study.

Besides these findings, the initial study also revealed some weak-
nesses of the setup. Firstly, the performance of the participants as
well as their comments during and after the study suggest that T0 did
not work as intended. Users had difficulties getting a feeling for our
similarity definition. A more intuitive similarity metric and a more
exhaustive training session could have led to better results. However,
the task remains much more abstract and difficult to communicate com-
pared to the other tasks leading to more reasonable results. Besides
task-related findings, the pilot user study revealed issues with the length
of the study. The participant feedback on the study length and physical
comfort indicated that the study was too long and contained too many
sub-tasks. Especially participants without experience in VR reported
discomfort after wearing the headset for the entire study duration. Al-
though participants could always ask for a break, obligatory breaks
and a shorter study duration should be considered to avoid physical
discomfort and to increase the comparability of the individual results.

5 MAIN USER STUDY

The objective of the main user study was to compare 3D node-link
diagrams with matrix representations, which both used a certain en-
coding to support the visual comparison of two networks within the
same representation. Analogously to the pilot study, the main questions
this study investigated were whether participants were able to solve a
certain task with a given model correctly, how much time users need
for that and which model they preferred considering a certain task.

For the matrix representation, the model favored and used by Alper et
al. has been chosen (see Section 3.1). For the 3D node-link diagrams we
made use of our Glyph Edge representations, since this representation
was preferred by the participants and led to the best accuracy results.
However, there were participant comments on the visual interference
of the cylinder filling with other tubes, since the same colors were used.
We reconsidered our Glyph Edge design and agreed with the criticism.
Thus, we changed the cylinder filling color to black for the main user
study (see Fig. 1). An internal test suggested that the color change
reduced the color interference without introducing further issues.

5.1 Tasks
For the main user study, we included the same tasks as before except for
T0. By omitting T0, we aimed for a study time reduction and reacted
to the unclear results for this task. Tasks requiring a network identifier
as answer had the same answer options for the node-link diagrams
as in the pilot study. For matrix representations, the answer options
were Outer Network, Inner Network, and Don’t know. These answer
options correspond to our matrix drawing strategy, which maps all edge
weights of one network to the outer part of each matrix cell and the
edge weights of the other network to the inner part of the matrix cells.

5.2 Data & Apparatus
For the pilot user study, we generated and used artificial network data
inspired by real-world fMRI data. As we could not observe any issues
with the data itself or the different data complexities, we made use of
the same complexities and network generation techniques to create data
for the main user study. The pilot user study did not reveal any issues
with the study apparatus. Hence, we relied on the same apparatus for
the main study as for the pilot study.

5.3 Interaction
The study environment used for the main user study supported the same
interaction opportunities as the pilot study. Thus, the participants were
able to trigger actions using the pointing gesture as well as moving and
rotating the data representations, namely the node-link diagram and the
3D board visualizing the 2D matrix.

5.4 Procedure
The main user study had a similar structure compared to the pilot user
study. The study also started with an explanation phase followed by
a training session with demo tasks. Then, the actual study started,
where participants solved four tasks. Each task had to be done using
the matrix model and the node-link representation. Moreover, we
tested two different network complexities and repeated each of the
resulting conditions four times leading to 4 ·2 ·2 ·4 = 64 sub-tasks in
total. While the order of the tasks was fixed, the order of conditions
and networks was arranged analogously to the pilot study in order to
counterbalance training effects. Whenever the task or representation
changed, the participants were asked to unmount the headset and to
fill out a NASA TLX test [30] for the previous condition. The NASA
TLX was explained in the explanation phase preliminary to the study.
In total, each participant was asked to fill out eight NASA TLX tests
leading to eight planned breaks during the study. That way, we gathered
additional quantitative data and solved the issue of physical discomfort
due to long phases of headset-wearing. After the actual study phase,
the participants filled out a questionnaire similar to the one of the pilot
user study. The average study duration was one hour.

5.5 Participants
For the main study, we invited students and employees of the Computer
Science and Mathematics department of our institution, of which 18
persons volunteered to take part. 15 participants were male and three
participants were female. The gender imbalance occurred by chance
and is similar to the male-female proportion of the Computer Science
and Mathematics students. The participants were compensated with
10e for the user study. Their age varied between 18 and 26 with a
mean of 22.2, a median of 22, and a standard deviation of 2.6. All of
them were right-handed and had normal or corrected-to-normal vision.
One person reported a weakness in perceiving red color (protanomaly),
but the training did not indicate issues with perceiving the application
elements and the performance of the user was very similar compared
to the other participants. Five participants already had experience
with VR and all participants had at least some fundamental knowledge
about (weighted) networks, node-link diagrams, adjacency matrices,
and network analysis. All participants received the same explanation
and had the ability to pose questions at any time. We made sure that
the participants had enough knowledge about networks, our custom
representations, and the tasks to complete the study.

5.6 Results
In the following, we present the study results regarding the accuracy,
mean answer time, task load, and qualitative feedback. Significant
results are divided into three categories: ∗ ∗ ∗ for p < 0.001, ∗∗ for
p < 0.01 and ∗ for p < 0.05.

Accuracy The accuracy results for both tested data complexities
are shown in Table 3 and visualized in Fig. 5. We made use of Fisher’s
exact test to evaluate the significance of differences between the condi-
tions. For the networks of 8% density, the node-link diagram representa-
tion led to significantly better results for each task except for T4, where
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(a) Edge density: 8% (b) Edge density: 16%

Fig. 5: The mean accuracy results of the main user study.

almost no wrong answers occurred regardless of the representation.
Considering all answers independently of the task, the node-link repre-
sentation outperformed the matrix representation significantly. For the
higher edge density, the node-link representation also outperformed the
matrix representation significantly regarding all answers. For the single
tasks, there are only significant differences for T3, where the node-link
diagram representation outperformed the matrix representation.

Answer Time The results for the mean answer time are shown in
Table 3 and visualized in Fig. 6. We applied a Shapiro-Wilk test [56],
which indicated that the answer time results differ significantly from a
normal distribution. Since the t-test may only be applied to normally
distributed data, we evaluated the significance of answer time differ-
ences with the Wilcoxon signed-rank test. For networks with an edge
density of 8%, the significance test showed that the node-link diagrams
significantly outperformed the matrix representation for every task with
regard to answer time. For the networks with 16% edge density, we
could not find significant answer time differences for any of the tasks.

NASA TLX Test The task load results for all tasks combined are
shown in Table 4 and visualized in Fig. 7. We applied a Shapiro-
Wilk test [56] on the task load results, which indicated that the result
distributions significantly differ from normal distributions. Therefore,
Wilcoxon signed-rank tests were applied to evaluate the significance of
differences between the results. Regarding the results aggregated for all
tasks, the node-link diagram led to significantly better results for effort,
frustration, mental demand, and performance. The physical demand
ratings were significantly higher for the node-link diagrams compared
to the matrix results, while there was no significant difference for the
temporal demand. We do not discuss the task-individual results in
detail, since they are very similar to the aggregated results across all
tasks without relevant differences.

Qualitative Results The user study ended with a questionnaire
similar to the one used for the pilot user study. Besides person-related

Table 3: The mean accuracy and mean answer time results of the main
user study for tasks 1 to 4 and their aggregation (=). The conditions
were Matrix (M) and Node-Link Diagram (NL) with network edge
densities of 8% and 16%. Significant pairwise differences between
the conditions are indicated with asterisks. The bold value indicates a
significantly better result for a certain condition.

Accuracy Answer Time (s)
8% 16% 8% 16%

T M NL M NL M NL M NL

1 0.60 0.83 ** 0.76 0.71 17.9 14.7 ** 19.8 18.1

2 0.47 0.81 ** 0.72 0.79 31.9 24.4 ** 23.9 20.6

3 0.49 0.83 ** 0.61 0.91 ** 13.4 9.3 ** 8.9 9.0

4 0.99 0.99 0.83 0.89 9.4 7.1 ** 11.0 13.0

= 0.64 0.86 ** 0.74 0.82 * 18.2 13.9 ** 16.0 15.3

(a) Edge Density: 8% (b) Edge Density: 16%

Fig. 6: The mean answer time results of the main user study.

questions, the participants were asked to comment on the different rep-
resentations, the tasks, and their experiences with the study procedure.
The large majority of the participants did not encounter any issues with
the application or study setup. There were only a few comments by
individuals concerning discomfort wearing glasses under the HMD
(n = 2), the frequency of NASA TLX tests requiring to unmount and
mount the VR headset (n = 2), or dizziness after the user study (n = 1).
However, we do not consider these complaints to be general problems,
since they did not apply to most of the participants. Furthermore, all
participants were able to perceive the application as desired and could
solve the tasks without issues. Except for the two participants criticiz-
ing the frequency of NASA TLX tests, there were no comments against
the planned breaks (8 in total) and no participant indicated that the
study duration was too long. Regarding the network representations,
all participants preferred the node-link diagram visualization over the
matrix representation. User comments on the matrix representation
suggest that looking at the visualization for a long time can be exhaust-
ing for the eyes and that it produces too much input (n = 2). Further
comments indicated that users had issues with the difference estimation
using a grayscale as implemented in the matrix representation. One of
the participants had the impression that the outer part of matrix cells
was perceived stronger by the eyes than the inner part. Some partici-
pants (n = 3) expressed that the matrix representation was helpful to
get an overview, but for the investigation of detailed information, the
node-link diagram representation was advantageous.

5.7 Discussion
The objective of the main user study was to evaluate how suitable the
matrix representation and the node-link diagram are for the visual com-
parison of two weighted networks. With regard to the accuracy, the
node-link encoding clearly outperformed the matrix representation for
the lower edge density. For the higher density, the node-link diagram
still outperformed the matrix visualization, but the accuracy differences
are remarkably smaller. One would assume that the accuracy results
decrease with the higher density. However, this is not the case for our

Table 4: Mean results of the NASA TLX test accumulated over all tasks
of the main study. The lower the value on the 0-100 scale the better
the result. Significant pairwise differences between the conditions are
indicated with asterisks. The bold value indicates a significantly better
result for a certain condition.

Matrix Node-Link
Nasa TLX Domain mean (sd) mean (sd)
Effort (EF) 46.2 (21.8) 35.1 (20.1) **
Frustration (FR) 35.0 (22.5) 21.1 (16.1) **
Mental Demand (MD) 46.5 (21.2) 30.6 (19.4) **
Performance (PF) 47.4 (20.5) 36.4 (23.1) **
Physical Demand (PD) 21.1 (16.2) ** 28.3 (20.6)
Temporal Demand (TD) 38.2 (21.6) 34.3 (22.6)
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Fig. 7: The aggregated NASA TLX results of the main user study.

study, where the node-link accuracy results stay relatively similar across
the different densities and the matrix accuracy results even increase
with a higher edge density. A possible explanation for the latter finding
is that training effects led to a higher accuracy for the matrices even
though the edge density increased. It is also surprising that the accuracy
result for the node-link diagrams did not decrease with an increasing
edge density. Other user studies dealing with 2D node-link diagrams
experienced significantly worse results with an increasing network
complexity [1, 25]. Therefore, a possible explanation–besides training
effects–for our complexity-stable results is that the additional dimen-
sion and interaction opportunities provided by our setup counteracted
the issues coming with a higher network complexity.

With regard to the answer time, the node-link representation outper-
formed the matrix visualization across all tasks for the networks with
8% edge density while there were no significant differences between
the models for the networks with 16% edge density. Analogously to the
accuracy results, the answer time results for the more complex networks
surprise since the matrix model answer times mainly decrease with
an increasing edge density and the node-link diagram results remain
similar or increase slightly. These results are in accordance with our
explanations for the accuracy results.

The NASA TLX results show that the participants experienced a sig-
nificantly lower task load for the node-link representation considering
effort, frustration, mental demand, and performance. These findings
match with the accuracy and answer time results, which indicate at
least for the lower-complexity networks that users were more successful
and faster when using the node-link variant. However, the participants
did not experience significant differences with regard to the temporal
demand. One explanation could be that the node-link diagram represen-
tation required rotation and movement to see the entire network without
occlusion but presented relevant information in a direct way, while the
matrix visualization presented information in a more abstract way but
could be examined without movement or rotation to counter occlusion.
This might have led to the impression that both effects counterbalanced
each other leading to a similar temporal demand for the representations
when used for solving tasks. For the physical demand, the matrix led
to a significantly better result. This is not surprising, as the node-link
representation benefits from rotation and translation leading to different
perspectives, which is not the case for the flat matrix model.

In addition to the quantitative results, the qualitative user feedback
shows a clear preference for the node-link diagram representation. The
setup of our user study is comparable to the study of Alper et al. [1],
since we compared similar network representations, tasks, and data
sets. However, the results of our 3D study are very different compared
to their results with a 2D setup. In their study, the matrix representation
outperformed the node-link diagram for all tasks considering accuracy,
answer time, and user preference. Furthermore, the node-link diagram
performance dropped heavily with an increasing graph complexity
while the matrix representation results were less affected by the net-
work complexity. The authors explained this behavior with increasing
occlusion for the node-link diagrams. Since our results concerning the
comparison of matrix representations and node-link diagrams are very
different, one could argue that our approach for a 3D node-link diagram

comparing two networks at the same time was successful and could
benefit from the opportunities offered by the immersive environment.
Especially the issue with occlusion and perceptual problems could
be mitigated by allowing interaction and stereoscopic vision. These
advantages may also explain why our node-link representation did not
lead to a performance drop for more complex networks.

6 CONCLUSION & FUTURE WORK

Approaches for visual comparison of weighted graphs are still under-
explored, although this is a relevant topic in many application areas,
such as biology, sociology, and medicine. The most common visual
representations for such networks are matrices and node-link diagrams.
Although node-link diagrams give a good impression of network topolo-
gies and have the ability to preserve spatial properties like the placement
of brain regions, they come with issues such as occlusion, especially
with an increasing network complexity and in two-dimensional se-
tups. Therefore, existing research on visual comparison of weighted
networks considered matrix representations to be advantageous com-
pared to node-link representations. In this work, we investigated how
weighted networks could be visually compared in an immersive 3D VR
environment and how existing representation techniques could benefit
from the additional capabilities. For this purpose, we developed seven
different approaches for node-link diagrams encoding two networks at
the same time using the extended design space of an immersive setup.
A pilot user study compared the performance of three preselected node-
link diagram models using tasks and data related to use cases from
fMRI research. The node-link diagram representation that performed
best in the pilot study was used in our main study to compare it against
a comparative matrix representation. We found significant differences
for these models regarding accuracy, answer time, task load, and user
preference, which were in favor of the node-link diagram representation.
These results are contrary to the results in a similar two-dimensional
setup and promising considering the use of immersive technology joint
together with 3D-adapted visual representations. Therefore, we show
how the visual comparison of networks can benefit from the capabil-
ities provided by an immersive setup. Our results should encourage
researchers working with network data to consider immersive environ-
ments for exploring their data and support their design decisions when
creating an immersive setting by suggesting the use of certain node-link
encodings to support common comparison tasks. Furthermore, our
work generally encourages to make use of immersive technology in
combination with visual representations exploiting the extended de-
sign space of S3D to facilitate the exploration of data. We hope that
our approaches and evaluation results shed some light on the underex-
plored research area considering the comparison of weighted networks,
especially in the context of IA and with regard to real-world use cases.

Overall there are still some limitations in our work. In the main user
study, there is a gender imbalance between participants. This imbal-
ance occurs since most participants are students with a background in
Computer Science or Mathematics where there is a similar proportion
of gender as in the main user study which should be improved in future
studies. Since this work only considered undirected, weighted graphs
with a common topology, we plan to expand our research by investigat-
ing how the exploration of other kinds of networks relevant for further
use cases could also profit from immersive settings and the broadened
design space. In addition, the synthetic data which was used in this
study to increase comparability and reproducibility of the results should
be supplemented by real-world data and additional network densities
to draw direct conclusions for the application areas. Especially for the
matrix representation, which can be helpful for getting an overview and
does not introduce occlusion with an increasing network complexity,
there is still a lack of adequate 3D representations exploiting the S3D
design space without introducing new perceptual drawbacks. Thus,
representations like the matrix visualization should be also included in
future work dealing with network comparison in a 3D environment.
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[5] C. Armbrüster, M. Wolter, T. Kuhlen, W. Spijkers, and B. Fimm. Depth

Perception in Virtual Reality: Distance Estimations in Peri- and Extraper-

sonal Space. CyberPsychology & Behavior, 11:9–15, 03 2008. doi: 10.

1089/cpb.2007.9935

[6] B. Bach, P. Dragicevic, D. Archambault, C. Hurter, and S. Carpendale.

A Review of Temporal Data Visualizations Based on Space-Time Cube

Operations. In R. Borgo, R. Maciejewski, and I. Viola, eds., EuroVis -
STARs. The Eurographics Association, 2014. doi: 10.2312/eurovisstar.

20141171

[7] B. Bach, E. Pietriga, and J. Fekete. GraphDiaries: Animated Transitions

and Temporal Navigation for Dynamic Networks. IEEE Transactions
on Visualization and Computer Graphics, 20(5):740–754, 2014. doi: 10.

1109/TVCG.2013.254

[8] B. Bach, E. Pietriga, and J.-D. Fekete. Visualizing Dynamic Networks

with Matrix Cubes. In Proceedings of the SIGCHI conference on Human
Factors in Computing Systems, pp. 877–886, 2014. doi: 10.1145/2556288.

2557010

[9] V. Batagelj, F. J. Brandenburg, W. Didimo, G. Liotta, P. Palladino, and

M. Patrignani. Visual Analysis of Large Graphs Using (X,Y)-Clustering

and Hybrid Visualizations. IEEE Transactions on Visualization and Com-
puter Graphics, 17(11):1587–1598, 2011. doi: 10.1109/TVCG.2010.265

[10] G. D. Battista, F. Frati, M. Patrignani, and M. Tais. Schematic Representa-

tion of Large Biconnected Graphs. In Proceedings Graph Drawing and
Network Visualization 2020. Springer, 2020. doi: 10.7155/jgaa.00560

[11] F. Beck, M. Burch, S. Diehl, and D. Weiskopf. A Taxonomy and Survey of

Dynamic Graph Visualization. Computer Graphics Forum, 36(1):133–159,

2017. doi: 10.1111/cgf.12791

[12] M. Behrisch, B. Bach, N. Henry Riche, T. Schreck, and J.-D. Fekete. Ma-

trix Reordering Methods for Table and Network Visualization. Computer
Graphics Forum, 35(3):693–716, 2016. doi: 10.1111/cgf.12935

[13] U. Brandes, T. Dwyer, and F. Schreiber. Visual Understanding of

Metabolic Pathways Across Organisms Using Layout in Two and a Half

Dimensions. Journal of Integrative Bioinformatics, 1(1):11–26, 2004. doi:

10.1515/jib-2004-2
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P. Mutzel. The Open Graph Drawing Framework (OGDF). Handbook of
graph drawing and visualization, 2011:543–569, 2013.

[17] M. Cordeil, T. Dwyer, K. Klein, B. Laha, K. Marriott, and B. H. Thomas.

Immersive Collaborative Analysis of Network Connectivity: CAVE-style

or Head-Mounted Display? IEEE Transactions on Visualization and
Computer Graphics, 23(1):441–450, 2017. doi: 10.1109/TVCG.2016.

2599107

[18] W. Cui, X. Wang, and N. H. Riche. Let It Flow: A Static Method for

Exploring Dynamic Graphs. IEEE Pacific Visualization Symposium, pp.

121–128, 2014. doi: 10.1109/PacificVis.2014.48

[19] F. De Vico Fallani, V. Latora, and M. Chavez. A Topological Criterion for

Filtering Information in Complex Brain Networks. PLOS Computational
Biology, 13(1):1–18, 01 2017. doi: 10.1371/journal.pcbi.1005305

[20] F. De Vico Fallani, J. Richiardi, M. Chavez, and S. Achard. Graph analysis

of functional brain networks: practical issues in translational neuroscience.

Philosophical Transactions of the Royal Society of London B: Biological
Sciences, 369(1653), 2014. doi: 10.1098/rstb.2013.0521

[21] N. Diersch and T. Wolbers. The potential of virtual reality for spatial

navigation research across the adult lifespan. Journal of Experimental
Biology, 222(Suppl 1), 2019. doi: 10.1242/jeb.187252

[22] K. Dinkla, M. A. Westenberg, and J. J. van Wijk. Compressed Adjacency

Matrices: Untangling Gene Regulatory Networks. IEEE Transactions on
Visualization and Computer Graphics, 18(12):2457–2466, 2012. doi: 10.

1109/TVCG.2012.208

[23] A. Drogemuller, A. Cunningham, J. Walsh, B. H. Thomas, M. Cordeil, and

W. Ross. Examining virtual reality navigation techniques for 3D network

visualisations. Journal of Visual Languages & Computing, 56:100937,

2020. doi: 10.1016/j.cola.2019.100937
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