
Interactive Poster: Exploring Block Access Patterns of Native XML
Storage

Halldór Janetzko, Daniel A. Keim, Marc Kramis, Florian Mansmann, and Marcel Waldvogel

University of Konstanz, Germany
Email: {janetzko, keim, kramis, mansmann, waldvogel}@inf.uni-konstanz.de

ABSTRACT

Recent block-based native XML storage systems such as IDEFIX
touch blocks according to the XQuery engine’s execution plan.
The resulting access patterns are virtually unknown and potentially
cause many expensive disk seeks. Visualization comes to the rescue
when extensive log files must be analyzed – a tedious and difficult
task. The dynamic time-based block-touch animation as well as the
static block-type information of VISUAL IDEFIX foster the insight
into the performance-critical internals of the XML storage and help
to optimize both the block layout and the XQuery engine to speed
up queries.

Keywords: native XML storage, block layout, access patterns,
visualization

Index Terms: E.1 [Data]: Data Structures—; I.3.8 [Computing
Methodologies]: Computer Graphics—Applications

1 INTRODUCTION

Efficient storage and retrieval of XML data is a challenging research
area. IDEFIX [1] competes in this field by storing native XML data
in blocks of a random-access device. The XML data is organized in
three main data structures as shown in Fig. 1. The node list stores
the tree structure of the XML data. Each element, attribute, or text
node appears in the node list in pre order which corresponds to the
pre order (i. e. first-depth) traversal of the XML tree [2]. A prefix
tree locates each entry in the node list by its pre position. Tag
and attribute names as well as attribute and text values are stored in
the name and value map respectively. Both names and values are
accessible through so-called tries. All tries are stored in metadata
blocks while the node list, name, and value map entries are stored
in data blocks.

Node ListName Map Value Map

T TT

Figure 1: Three main data structures of IDEFIX consisting of the node
list (tightly packs all XML nodes) as well as the name and value maps
which source strings out of the node list. T denotes a trie.

During the evaluation of the XMark benchmark [4] we run differ-
ent queries against IDEFIX. The limiting performance factor, ran-
dom disk I/O, clearly asked for an optimized layout of the blocks

to efficiently support different access patterns. The analysis of the
block layout as well as the access patterns is effectively supported
by the visualization tool described in the next section.

Figure 2: VISUAL IDEFIX is a tool to explore block access patterns of
the native XML storage IDEFIX. The tool consists of four block ac-
cess diagrams (read disk, write disk, read cache, write cache) and
four jump distance histograms. The detailed view of the disk read
operations shows touches of both metadata and data blocks (gray
vs. black background) by highlighting them over time. The jump his-
togram (top right) reveals that the storage is already fairly optimized
for the shown query as the distribution of disk read operations is fo-
cused around the center, which indicates that data is read mostly
sequentially, avoiding expensive seek operations.

2 VISUAL IDEFIX

VISUAL IDEFIX is a visualization tool that supports the analysis of
block layout and access patterns of the native XML storage IDE-
FIX (see Fig. 2). The basic idea is to see where data and metadata
are stored on the disk to evaluate both the locality of block storage
as well as the correctness of block access of XML queries. Fur-
thermore, our tool animates the execution of queries by visualizing
block access operations on disk and cache to efficiently support the
system engineer in his task to verify hypotheses about the system’s
behaviour as well as to formulate novel hypotheses and search for
their causes.

The visualization is designed in a way that each storage block is
represented through a small rectangular icon on the screen. Color
depicts the type of block as illustrated in Fig. 3. We distinguish
between three states of a block (untouched, recently touched, and
touched), which are represented through distinct icons. Note that
there are variations of the icon for recently touched; the more a
block is touched, the more intense is the color of the bottom left
corner of the icon. Over time, icons of recently touched blocks con-
tinually fade out until they reach the state of touched. The strong



untouched

recently touched
(few touches)

Root 
Block

Trie
Block

Node 
Block

Value 
Block

recently touched
(many touches)

touched

Figure 3: Icons for metadata (gray) and data blocks (black). Varia-
tions of the base icon for each block type are utilized to show different
usage states.

contrast between “untouched icons” and “touched icons” enables
us to easily distinguish between used and unused areas of disk and
cache during query execution. Conceptually, we classify the blocks
into two groups: data (i.e., XML nodes and their values) and meta-
data (i.e., root and trie) blocks. Black (gray) is employed as back-
ground for the data (metadata) icons.

Current random-access devices with block-oriented interfaces
provide a logical block order from the 0th to the nth block. We
opted for a line-by-line arrangement of the blocks in our block ac-
cess diagrams, alternating in forward and backward direction to
better preserve visual clusters of subsequent blocks. It is possi-
ble to retrieve details (i.e., block number and number of touches)
about each block by clicking on it within the diagram. The actual
arrangement of the icons is based on a recursive pattern [3] im-
plementation. We abandoned more complicated parameter settings
of the recursive pattern due to the cognitive overhead required for
proper interpretation of the patterns.

The arrangement of data and metadata blocks already gives a
feeling for the effectiveness of the used allocation scheme. In Fig.
4, the upper part is dominated by value blocks (green) with rela-
tively few trie blocks (red), which store metadata of the index struc-
ture, whereas the middle part shows proportionally more trie and
node blocks (blue). Whether this partitioning is good or bad de-
pends largely on the characteristics of queries for which the storage
should be optimized.

In addition to the block access diagrams, VISUAL IDEFIX offers
linearly and logarithmically scaled histograms that are used to dis-
play counts of block jump distances (see Fig. 2). The value ranges
of the histogram bins increase from the middle bin to the outer bins.
We implemented a normal mode to investigate jumps for short time
spans as well as a cumulative mode enabling analysis of larger time
spans. The horizontal bar denotes the average bin size for each his-
togram.

3 CONCLUSION

The visualization of block layout and access patterns of the native
XML storage IDEFIX not only endows us with an excellent tool to
analyze different queries, but also gives many valuable hints how to
organize blocks more efficiently for various workloads. One benefit
of the visualization has been the identification of a query eagerly
touching unnecessary blocks.

Figure 4: Outlier blocks touched in the course of a query are directly
visible and reveal valuable insight to the system engineer for further
optimization.

VISUAL IDEFIX proofs to be very instructive for students to un-
derstand a block-based native XML storage system. Future work
will include visualization of the internal block fragmentation due
to updates, a faster visualization that allows for online observation
of IDEFIX as well as interaction possibilities to enlarge regions of
interest.

ACKNOWLEDGEMENT

This work was partially funded by the German Research Founda-
tion (DFG) under grant GK-1042, Explorative Analysis and Visu-
alization of Large Information Spaces, University of Konstanz.

REFERENCES

[1] C. Grün, A. Holupirek, M. Kramis, M. H. Scholl, and M. Waldvogel.
Pushing XPath Accelerator to its Limits. In Proceedings of EXPDB
2006, Chicago, IL, USA, 2006.

[2] T. Grust. Accelerating XPath Location Steps. In Proc. of ACM SIG-
MOD/PODS Int’l Conference on Management of Data/Principles of
Database Systems, pages 109–120, Madison, Wisconsin, USA, June
2002.

[3] D. A. Keim, M. Ankerst, and H.-P. Kriegel. Recursive pattern: A tech-
nique for visualizing very large amounts of data. In Proceedings of
Sixth IEEE Visualization 1995 (VIS’95), 1995.

[4] A. R. Schmidt, F. Waas, et al. XMark: A Benchmark for XML Data
Management. In Proc. of Int’l Conference on Very Large Data Bases
(VLDB), pages 974–985, Hong Kong, China, Aug. 2002.


