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Abstract. We present a novel framework for comprehensive exploration
of OLAP data by means of user-defined dynamic hierarchical visualiza-
tions. The multidimensional data model behind the OLAP architecture
is particularly suitable for sophisticated analysis of large data volumes.
However, the ultimate benefit of applying OLAP technology depends on
the ”intelligence” and usability of visual tools available to end-users.
The explorative framework of our proposed interface consists of the nav-
igation structure, a selection of hierarchical visualization techniques, and
a set of interaction features. The navigation interface allows users to pur-
sue arbitrary disaggregation paths within single data cubes and, more
importantly, across multiple cubes. In the course of interaction, the nav-
igation view adapts itself to display the chosen path and the options
valid in the current context. Special effort has been invested in handling
non-trivial relationships (e.g., mixed granularity) within hierarchical di-
mensions in a way transparent to the user.

We propose a visual structure called Enhanced Decomposition Tree to
use along with popular ”state-of-the-art” hierarchical visualization tech-
niques. Each level of the tree is produced by a disaggregation step,
whereas the nodes display the specified subset of measures, either as
plain numbers or as an embedded chart. The proposed technique enables
a stepwise descent towards the desired level of detail while preserving the
history of the interaction. Aesthetic hierarchical layout of the node-link
tree ensures clear structural separation between the analyzed values em-
bedded in the nodes and their dimensional characteristics which label
the links. Our framework provides an intuitive and powerful interface for
exploring complex multidimensional data sets.

1 Introduction

With rapid evolvement of data warehouse technology in the last decade huge
volumes of data have become available for analysis and exploration. Data ware-
houses integrate data from heterogeneous sources into a single repository for
comprehensive analytical processing. Apart from generating standard reports,
the users are able to gain deeper insights into the data by means of dynamically
formulating and verifying their hypotheses about it. Arranging the data into a
multidimensional space is especially beneficial for decision support due to the
potential of retrieving the data subsets of interest in the form exactly satisfying



the users’ information needs. Furthermore, multiple coordinated views of the
same data set help to dynamically explore it and uncover the "hidden gems”,
such as outliers, peculiar patterns, trends or clusters.

Data warehouses increasingly adopt the multidimensional data model which
was designed to meet the challenges of the online analytical processing (OLAP)
[5] by providing efficient execution of queries that aggregate over large amounts of
detailed data [14]. This model uses numerical measures as its analytical objects,
with each measure uniquely determined by its dimensions and therefore treated
as a point in a multidimensional space [3]. Depending on the expected type of
queries the data can be organized into hypercubes with a measure (or multiple
measures) as the value under analysis stored in the cube’s cells, the measure’s
determining dimensions as the cube’s axes and the dimensions’ values as the
coordinates of respective measure cells.

Desired data view can be retrieved from the cubes by applying OLAP op-
erations, such as slice-and-dice to reduce the cube, drill-down and roll-up to
perform aggregation and disaggregation, respectively, along a hierarchical dimen-
sion, drill-across to combine multiple cubes, ranking to find the outlier values,
and rotating to see the data grouped by other dimensions [14].

The standard interface for exploring OLAP data is a Pivot Table, or Cross
Tab [10], which is a 2-dimensional spreadsheet with associated totals and subto-
tals. Pivot Table allows to nest multiple dimensions within the same axis. This
technique is adequate for displaying the query results in a straightforward fash-
ion but it fails to show the selected values in a larger context and is thus a rather
poor option for complex data exploration. Advanced OLAP tools overcome the
limits of the cross tab interface by offering a multitude of powerful visual alterna-
tives for retrieving, displaying, and interactively exploring the data. Continuous
efforts are put into providing new approaches to visual exploration of the hyper-
cube data, such as hierarchical visualizations (decomposition trees, chart trees,
tree-maps etc.), multiscale views, interactive scatter-plots, etc. described in the
next section.

2 Related Work

The work related to ours in one way or another can be sub-divided into three
major groups, namely, multidimensional data modeling, visualization techniques,
and explorative interfaces.

2.1 Multidimensional Modeling and Data Warehouse Design

Modeling challenges arise whenever dimensional hierarchies contain irregular-
ities preventing their straightforward mapping to balanced dimensional trees
as required for OLAP operations. A proposal to transforming such data into
summarizable structures, transparently to the user, can be found in [15]. Im-
plications of unbalanced hierarchies on the logical data warehouse design are
explained in [12]. Most of the data warehouse research, however, is concerned
with performance issues and is orthogonal to the scope of this paper.



2.2 Visualizing OLAP Data

Besides the classical visualization techniques, such as Pivot Tables [10] and 2-
dimensional plots and charts, familiar to any OLAP analyst, a wide variety of
more comprehensive visual frameworks for incremental exploration and navi-
gation in large multidimensional data volumes have emerged. Hierarchy-aware
visualization techniques applicable in the OLAP context can be grouped into
the following categories:

— Geometric (Scatterplots, Landscapes, Hyperslice, Parallel Coordinates)

— Icon-based (Chernoff Faces, Stick Figures, Color Icons, TileBars)
Pizel-oriented (Recursive Pattern, Circle Segments)

Hierarchical (Dimensional Stacking, Worlds-within-Worlds, Treemap, Cone
Trees, InfoCube)

— Graph-Based (Straight-, Poly- and Curved-Line, DAG, Symmetric, Cluster)
Hybrid techniques which arbitrarily combine any of the above.

Applicability of any particular technique or their combination depends largely
on the analysis needs and the level of user expertise. An overview of the above
techniques with respect to OLAP data can be found in [13].

Conventional node-link trees in a classical aesthetical view [17] and in a va-
riety of more compact layouts (hyperbolic, balloon, radial, etc. presented in [8])
which are rather familiar and intuitive to interpret can be used to increase the
user’s awareness of the hierarchical relationships within the data or allow users
to define their own hierarchies. More comprehensive and specialized techniques
are appreciated for complex analysis, scientific visualization and data mining.
[18] presents some advances in hierarchy visualization and its use for exploring
user-defined hierarchies. A well structured classification of the ”state-of-the-art”
visualization and interaction techniques with respect to the type and the dimen-
sionality of the data is produced in [9].

2.3 Exploration Tools

There is an abundance of tools and interfaces for exploring multidimensional
data. We limit ourselves to naming a few products which offer distinguished
features relevant for our work. One developed system called Polaris [20] extends
the Pivot Table interface by offering a combination of a variety of displays and
tools for visual specification of analysis tasks. Polaris is a predecessor of a recently
released business intelligence product called Tableau Software [2]. ProClarity
was the first to enhance business intelligence with Decomposition Trees [16] for
visual node-by-node disaggregation of data cubes. XMLA enriches the idea of
hierarchical disaggregation by arranging the decomposed subtotals of each parent
value into a nested chart (Bar- and Pie-Chart Trees) in its Report Portal OLAP
client [21]. Visual Insights has developed a family of tools, called ADVIZOR,
with an intuitive framework for parallel exploration of multiple measures [7].

Our interface differs from the standard OLAP tools in the way data naviga-
tion is built (attribute hierarchies with data on-demand) and the way the data
is presented (hierarchical visualizations instead of spreadsheets and charts).



3 Handling Complex Multidimensional Data

OLAP architecture performs well on the facts that are summarizable along each
dimension, i.e. where all dimensions are balanced hierarchies, however, it fails to
adequately support irregular dimension hierarchies [14]. Our ambition is to tackle
some of the frequently observed irregularity patterns in complex dimensions.

Throughout the remainder of the paper we will refer to the following fragment
of a (simplified) university data warehouse consisting of two OLAP cubes:

1. Orders with the facts about the university’s expenditures.
Measure: total amount in €. Dimensions: Interval, Category, Institution,
Project, and Funds.

2. Students with the facts about the number of enrolled students.
Measures: number of cases and number of heads®. Dimensions: Semester,
Term, Nationality, TeachingUnit, Degree, Gender, Eligibility.

The logical design of the above database roughly corresponds to the snowflake
schema [3] which explicitly decomposes hierarchical dimensions into per-level
subdimensional tables. Fact tables contain measure attribute(s) and their di-
mensional characteristics. The latter are the foreign keys referencing the respec-
tive dimension table. In case of a hierarchical dimension, each subdimensional
table is connected to the next level table(s) by means of foreign keys. Thereby,
a snowflake shape is produced by the fact table in the center, surrounded by
the directly referenced bottom-level dimensions with all their referenced upper
levels at periphery. The data schema described above is depicted in Fig. 1.

We have deliberately chosen a rather complex data warehouse fragment in
order to examine various patterns in hierarchical dimensions as well as the ability
of our navigational framework to handle them in a way intuitive for the user.

3.1 Classification of Dimensional Hierarchies

The OLAP cube has a relation schema Dy U Dy U ...D,,, where each D; is a
dimensional attribute with its corresponding relation d; referred to as a dimen-
sion. Hierarchical dimensions consist of subdimensions, or nodes, for each of its
levels. The tuples in a relation are the members, or entities, of the respective
dimension, a tuple of d; is denoted t[d;].

We extend the notion of dimension to include abstract nodes, i.e. without
associated relations and entities. Abstract nodes are used simply as an upper
class for uniting multiple child categories or as a root node at the top of the entire
underlying hierarchy: D; is abstract if its d; = (). The next-level subdimension Dy,
of any D; is called its child, Dy = child(D;), and the set of all node’s children
is given by the function children(D;). The cardinality of node D; equals the
number of its children: |D;| = |children(D;)|.

! Head statistics counts physical persons, assigning each "head” to the supervising
faculty of his/her major. Case statistics splits single enrollment into separate cases,
one for each major/minor, to register a student as a ”case” at each involved faculty.
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Fig. 1: Logical schema of the university data warehouse fragment

The hierarchical behavior of a dimensional node can be described based on
1) its relation (or members), 2) cardinality, and 3) its relationship w.r.t. its
children. Notice, that the type characterizes solely the node itself, and not its
entire subtree (the descendants may be of various types). Based on the logical
schema in Fig. 1, one can identify at least the following five distinct behaviors:

- Simple: a non-hierarchical dimension (e.g., Gender, Project);
D; is simple — |D;| =0 A d; # 0.

- Single Hierarchy: a strict hierarchy (e.g., Interval, Category) has just a
single decomposition path; D; is single — |D;| =1 A d; # 0.

- Multiple Hierarchy: a dimension is subdivided in multiple ways. For in-
stance, Intervals can be aggregated along semester — academic year, or
along quarter — semi-annual — calendar year. Multiple paths are placed
into the same abstract parent node; D; is multiple — |D;| > 1 A d; = ().

- Composite Hierarchy: an "umbrella” dimension uniting heterogeneous
members from multiple relations in a single superclass (e.g., the members of

Institution may refer to StaffUnit, AdminUnit, or TeachingUnit):



D; is composite — |D;| > 1 Ad; # 0 AY Dy € children(D;) : dy, C d;. Since
InstituionID in Orders may point to the entry from any of the three tables,
a composite Institution dimension is built by extracting the primary keys of
original dimensional tables, along with the table’s name, into a new table.
- Mixed-Level Hierarchy: the entities from upper hierarchy levels do not
merely serve for aggregating (as in single hierarchy), but also participate as
end-entities in the fact table. Therefore, an additional relation is built on
the top of the respective hierarchy by denormalizing the latter into a single
table (as in AdminUnit or TeachingUnit). To separate its twofold role, the
dimension’s node has to contain its own level’s relation as a simple child
subdimension (see section 5 for further details);
D; is mized-level — |D;| > 1 Ad; # O A 3Dy, € children(D;) : dy, = d;

The two cubes do not have any directly shared dimensions within their schemata,
and, therefore, cannot be drilled-across for parallel exploration by means of a
natural join. However, a closer inspection reveals two linking options:

- Semester in Students and Intervals in Orders are summarizable by semester,
- TeachingUnit in Students is a subclass of Institution in Orders.

These linkages encourage the anticipation that both fact tables can be joined for
cross-cube exploration at their shared aggregation levels.

4 OLAP Cube as a Decomposition Tree

OLAP operations, such as drill-down, roll-up, and cube, transform the data from
a fact table into a hierarchy by aggregating or disaggregating the measure along
specified dimensions. A series of successive disaggregation steps can be presented
as a Decomposition Tree. Notice that decomposition is a process contrary to
aggregation. The measure’s total, aggregated along all selected attributes, forms
the root node of the tree. The next level emerges by computing the subtotals
of a disaggregation along any specified dimension. Each subsequent k-th level
will contain the subtotals disaggregated by k specified dimensions?. Back to our
example, the measures of cube Students may be decomposed along the following
sequence of dimensional attributes (see Fig. 2):

AcademY ear — Semester — Gender — Degree — ...

Unlike standard spreadsheet views, the hierarchical presentation in Fig. 2 by its
very nature has an advantage of supporting arbitrary number of split dimen-
sions in arbitrary order while preserving this order in its levels. All nodes at the
same level correspond to the same granularity whereas nested charts accelerate
identification of interesting values and directions for further expansion. Interac-
tive filtering can be applied to eliminate or temporarily hide irrelevant subtrees.

2 In terms of a SQL statement, decomposition adds the chosen dimension’s attribute
to the GROUP BY clause
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Fig. 2: A user-driven hierarchical decomposition of cube Students

Further perceptional improvement is achieved by clearly separating the struc-
tural information from the actual data: the split dimensions are used as titles
for their respective tree levels, the dimension entities label the edges and the
measure values are displayed within the nodes. The contents of the nodes can
be heterogeneous, such as text, numbers, charts or a combination thereof.

Since there are as many disaggregation operations possible within a cube as
the total number of its dimensions including all subdimensions, and since the
order of splitting can be arbitrary, OLAP cubes offer a huge exploration poten-
tial (n! disaggregation paths in case of n dimensions) by means of hierarchical
decompositions. However, it is rather challenging to incorporate the required
framework for interactive construction of user-defined hierarchical visualizations
into OLAP interfaces in a fast, intuitive and user-friendly way. In the remaining
sections we describe our proposed solution to empowering an OLAP tool with
the above exploration technique.

5 Designing the Navigational Framework

Probably the most popular paradigm underlying the OLAP navigation structure
is that of a file browser, with each cube as a folder containing the list of top-level
dimensions and the list of available measures, as found in Cognos PowerPlay [6],
BusinessObjects [1], CNS DataWarehouse Explorer [4], and many other com-
mercial OLAP tools. Each hierarchical dimension is itself a folder containing
its child entities. Hierarchical entities can be recursively expanded to show the
subtrees of their descendants. The entities of the highest granularity (i.e. the leaf
nodes) are represented as files and are non-expandable.



Standard OLAP interfaces allow users to navigate directly in the dimensional
data rather than in a dimensional hierarchy. Our approach, however, pursues a
clear distinction between the dimension’s structure and its instances. Therefore,
expansion of a dimension folder reveals solely the nested folders of its subdimen-
sions, contrary to the standard OLAP navigation displaying the child-level data.
The instances of any subdimension can be retrieved on-demand. Fig. 3 a and 3
b demonstrates the differences between the standard ”show-data” and our pro-
posed ”show-structure” interfaces, respectively, at the example of a hierarchical
dimension Nationality. Notice that expanding the top-level dimension National-

(] Nationality 3 Nationality] (3 Nationality Northern Europe ]
o~ (] Europe ¢ ] Continents(@, ¢ (=] Continents (@, Eastern Europe ®
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Fig. 3: Navigating in the hierarchical dimension Nationality
a) ”show-data”-approach b) ”show-structure”-approach
¢) on-demand preview in the ”show-structure”-approach

ity in Fig. 3 b reveals its entire descendant hierarchy, thus enabling the user to
”jump over” right to the desired granularity level. The data view is available on
explicit demand by clicking the preview button of the respective category. Fig.
3 ¢ shows the activated preview of Subcontinents with the option to drill-down
into any subcontinent’s descendant subtree. The advantages of our proposed
navigation structure for building hierarchies can be summarized as follows:

— clear distinction between the dimension’s structure and its contents

— immediate overview of all granularity levels in a hierarchical dimension

— the ability to drill-through directly to any descendant subdimension

— on-demand preview of the data as well as any data node’s descendant entities
— compactness on the display due to moderate expansion at most steps

— the entire navigation is built from a single meta table of the kind

title ‘ table ‘ parent root ‘hierarchy
Nationality NULL NULL NULL single
Subcontinents|dim_subcontinent| Continents |Nationality| single
Countries dim_country |Subcontinents|Nationality| simple




containing, for each dimension entry, its title and table, references to its
parent (NULL for top-level) and root?® dimensions, and its hierarchy type (as
classified in section 3)

— the actual data is retrieved only if explicitly requested

— it is easier to find the entries of interest even somewhere deep in the hier-
archy without knowing the data (e.g. any country can be accessed directly
through the preview of Countries without searching for and drilling through
its ancestors in Continents and Subcontinents).

As for various hierarchy types defined in sectipn 3, ¢ CfTeaching Unis]

our approach can handle each of them accordingly, 9 O by Faculty @,

using solely the above meta table*, as pseudo-coded [ Facurties (g,

in Algorithm 1. The basic rule is to discontinue re- ¢ (3 by Department (2

cursive expansion whenever mutually exclusive child [ Departments (@,
. . . . [ institutes &

paths arise since at those points the user is called 0 chairsQy

upon to stick to just one of them. The case of a .

mixed-level hierarchy deserves a closer inspection. Fig. 4: A mixed-level hier-
To reflect the twofold role of its subdimensions (i.e. archy navigation node
both as leaf nodes and as aggregation levels), each

of such subdimension contains, apart from its child level, its own self as a sim-
ple, i.e. non-hierarchical, subdimension, as can be seen in Fig. 4 at the example
of expanding TeachingUnit in the cube Orders. Decomposing along by Faculty
computes the subtotals for each faculty including all its subordinate institutions,
whereas choosing its child Faculties computes the subtotal only for the faculties
themselves as end-entities.

5.1 Parallel Exploration of Multiple Cubes

OLAP Join, or drill-across, allows linking multiple OLAP cubes to compare
their measures or derive new ones under the condition that the cubes share at
least one dimension. We define a dimension to be partially shared if the cubes
impose different hierarchies upon it which share at least one aggregation level.
Apparently, the cubes can also be joined on partially shared dimensions, as long
as each cube is pre-aggregated to the shared level. Let us extend the proposed
navigation framework to support parallel exploration of multiple cubes for each
shared subdimension. For any number of cubes, pre-selected for a drill-across,
the navigation structure can be built in the following steps:

1. Unnest the top-level dimensions and the measures from their respective fact
table folders into a common navigational hierarchy.

2. Identify all partially or fully shared dimensions and the actually shared sub-
dimensions therein (this phase is critical since sharing is not always obvious,
e.g. implied by foreign key or other constraints).

3 root reference helps to identify top-level nodes and to avoid recursive SQL queries
when retrieving descendant dimensions.
4 Implementation of the data display routines behind the Preview buttons involves

more complicated algorithms and is not considered at this stage.



Algorithm 1: Expanding a Dimension’s Navigation Node

input : dimension name D, nesting counter level, recursion propagate
result: the dimension’s sub-tree is displayed

procedure expandNode (Node D, int level)
begin
type «— SQL: SELECT type FROM meta WHERE title=’§D’;
if type = simple then return; // cannot be expanded, so no action
else
Array children <« SQL: SELECT title FROM meta WHERE parent='§D’;
switch type do
case single hierarchy
drawNode (children|0], ++level, TRUE);// expand recursively
| break;
case mixed-level hierarchy
foreach child in children do
L drawNode (child, ++level, TRUE);// expand recursively
| break;
case composite
case multiple hierarchy
foreach child in children do
L drawNode (child, ++level, FALSE);// no recursion
| break;

case ... // define further cases

end

procedure drawNode (Node D, int level, boolean propagate)
begin
Array info «— SQL: SELECT type, table FROM meta WHERE title='§D’;
icon «— getIcon ( info[typel);
indent according to level, display icon and D'’s title
if infoltable] is not NULL then
L display preview icon // there is data to preview

if propagate then
L expandNode (D, level); // propagate expansion

end

3. For each group of partially shared dimensions, create a new upper-level di-
mension to serve as their parent and place the former ones underneath the
new parent as a multiple hierarchy.

4. Single paths within the created multiple hierarchy might need to be adjusted
to contain newly enabled additional aggregation opportunities.

The process of merging the Interval dimension of Orders and the Semester
dimension of Students is shown in Fig. 5, with their shared levels highlighted.
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Fig. 5: Unifying partially shared dimensions

Visual distinction between shared and non-shared
navigation paths can be done by assigning each cube
a unique color. The same colors are then used for
marking each cube’s measures and dimensions. All
partially and fully shared top-level dimensions have
the color marks of all involved cubes thus giving user
a hint about the linking potential. Subdimensions,
on the contrary, carry the marks of exclusively those
cubes actually sharing that aggregation level. Fig. 6
demonstrates the above idea of using color marks.

6 Interactive Generation of
Visual Hierarchies

The purpose of the navigational framework is to
enable interactive retrieval of the data to be dis-
played in the visualization window according to the
specified layout (e.g., Pivot Table, Decomposition
Tree, etc.). In case of a hierarchical visualization
the only supported direction of retrieval is disag-
gregation: each level of the hierarchy is produced
by adding a new dimension or drilling down any al-
ready added hierarchical dimension. In what follows
we explain the basic steps of generating a tree-like
visualization at the example of a bar-chart tree built
from the Orders cube:

FACTS
@ Orders
@ Students
DIMENSIONS
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fle- 5 Funds
- 3 Projects
Il 3 Periods
o= by year (calendar)
Mg by year (academic)
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MEASURES
W Order amount, €
Il Student number (cases)
[ Student number (heads)
Define new measure

Fig. 6: Navigating in multi-
ple cubes

— Measure selection: Selecting / de-selecting measures in the navigation panel
causes them to be added to / removed from the visualization, whereas the

following modalities can be distinguished:

e Displaying multiple measures per node: when more than one measure is

dragged, a dialog window will pop up prompting the user to specify the
measures’ display options (plain numbers, nested charts, or both)
e Specifying no measure: with no measure chosen, one can display the
structure of a hierarchical dimension without associated subtotals
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a) initialization b) creating the root node c) adding a new level

Years

15,
Order amount (Mln’.2€)

13,9
Order amount (MIn’ €)

18,1
Order é}nount (mﬁ’_ze)

o Adjusting the measure’s format: via the Options menu, the measure’s
display options, such as rounding, range, units etc., can be specified

e Defining a new measure: advanced users can use this option (see bottom
of Fig. 6) to define a new measure by combining existing ones through

arithmetic operations or functions.

Back to our scenario, dragging the measure Order Amount, € into an empty
plane displays its total value as a root node, as shown in Fig. 7 a.

— Decomposition: Dragging any dimension into the visualization window is
interpreted as disaggregation along that dimension. The dragged dimension
along with all its ancestor hierarchy up to the root are added to the list of
split dimensions and are made undraggable in order to disable upward steps
(roll-up) invalid in this context. Decomposition causes the new level with
decomposed subtotals to be added to the visual hierarchy, except in the case
of a nested-chart-tree where the following options need to be distinguished:

o [nitializing: the first chosen dimension is used for decomposing the root
node value into a nested chart, thus defining the chart’s granularity
within the node, and is denoted Dim;pner. Fig. 7 b shows the results
of choosing Cost Category to be Dim;pner-

e Quter Decomposition: Splitting along any dimension which is not a de-
scendant of Dimpner produces a new level with unchanged entities in
the nested charts but with the respectively decomposed values in them,
as depicted in Fig. 7 ¢ where the root node was split along Year.

e Inner Decomposition / Drill-down: Drilling down into a descendant of
Dimypper turns the split dimension to be the new Dim e, changing the
nested chart’s granularity to the new level. The entities of the previous
Dimypner serve as the outer split dimension, as shown in Fig. 8 a.
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Fig. 8: Interacting with a bar-chart tree
a) Performing an inner decomposition b) Applying global filtering

— Global Filtering: Any dimension can be applied as a global filter if dragged
into the filter panel. Filtering results in the measure being aggregated only
for the explicitly selected entities of the filter dimension. Filtering along an
unsplit dimension does not reduce the number of nodes, but rather influences
the measure values in the nodes. For example, filtering the tree in Fig. 7 ¢
by Project would simply recompute the subtotals in the nested charts based
on the selected projects. Filtering along an already split dimension will not
only recompute the subtotals at each level, but will actually remove the
subtrees of deselected entities (or, in case of Dimyne, or its ancestor, the
entries within the charts) from the visualization. Fig. 8 b shows the effect of
eliminating two entities in the filter dimension Cost Categories.

- Local' le?femng: B}{ def'ault.7 dragging a di- O Projects @ W sooTs
mension into the visualization would create ¢ 7 Periods 2002
a child node for each of its entities. Alter- ¢ Clbyyear| | [C2003®
natively, the user can explicitly specify the 9 [ by se. |showselected
subset of entities in the current to-be-split ¢ [ by |[hide selected
dimension directly in the dimension’s pre- 3 by mom“hql

view. Such inline filtering is interpreted as
local, i.e. it affects only the current tree level Fig.9: Inline elimination of
leaving the upper levels unchanged. For ex- the nodes to display

ample, inline elimination of the entry 2001



when performing a decomposition shown in Fig. 9 would cause that year’s
node in Fig. 7 ¢ to be withdrawn. Local filtering is equivalent to simply
deleting uninteresting nodes from the visualization.

6.1 Interaction-Preserving Navigation

In the process of constructing complex hierarchies the user may lose the orien-
tation as more navigational nodes at various levels become expanded and used
as inline or global filters. Manageability of the navigation can be improved by
forcing the displayed navigational hierarchy to adapt to the course of interaction.
The core idea is to visually separate the expired paths (i.e. those already used
as decomposition axes) from the still available ones. This is achieved by parti-
tioning the background behind the list of dimensions vertically into the expired
(dark background) and the active areas. Initially, all dimensions are placed into
the active area. Two lists are managed in the course of interaction:

- ActiveList: contains the top-level nodes of all unsplit paths
- ExpiredList: contains the nodes of all dimensions already split

Each time a decomposition step is performed, the split dimension along with
all its ancestors are shifted into the expired area. The entire navigation gets
adjusted according to the rules described in Algorithm 2.

((JorDERS [[JJorDERS (] orDERS 1
] Perinds 1 Periods 3 ads
] Category (g, [ Category (&, o oy ear
3 Institution titution ? [ by semi-annual \&
Dkﬁ Staff Units (@, o= ] by quarter (2,
o= [ Admin. Units 3 Admin. Units
o= [ Teaching Units [ Teaching Units tegory
[ Projects(@, [y Projects (@, [ classig,
0 Funds (g [ Funds (@,
o= [ Admin. Units
—o- [ Teaching Units
R D Funds @ o
a) b) c) split order :—————‘——visib‘le area——--- )>

Fig. 10: Adaptive navigation structure
a) initial state b) after the first decomposition c) after multiple decompositions

Fig. 10 demonstrates the presented adaptation procedure at the example of
decomposing the Orders cube, with the navigation structure prior to the first
split operation, its adjustment after performing it, and its state after multiple
interactions, as subfigures a, b, and c, respectively. Furthermore, we suggest



Algorithm 2: Adjusting the Navigation after a Decomposition Step

input : Split dimension D
result: re-arranged display of the navigation hierarchy

procedure shiftDimension (Node D)
begin
of fsets =1; // offset = horizontal space between 2 adjacent nodes
if D in ActiveList then
L activeRoot < D // only this node must be re-displayed

else
activeRoot +— find D’s ancestor in ActiveList;

of fsets += number of D’s ancestors up to activeRoot; // the number
of shifts must correspond to the length of the expired path

foreach node in ExpiredList do

L // shift all previously expired entities

shift node’s segment backwards by 1 offset;

Redisplay the segment [ActiveRoot, D] moved backwards by of fsets shifts;
Change D’s icon to split, its ancestors to expired;
ExpiredList — add(D);
ActiveList — remove(active Root);
expandNode (D, 0); // replace the expired node with its subtree
Array children «— SQL: SELECT title FROM meta WHERE parent='§D’;
foreach child in children do

| ActiveList — add(child);

end

that the entire expired area should be hidden from the display by putting the
navigation structure into a horizontally scrollable window, as shown in Fig. 10
c. The advantages of the adaptive display can be summarized as follows:

— the expired segments are removed from the active area thus preventing the
user from erroneous attempts to access them

— all valid decomposition paths and their still available granularity levels are
clearly displayed in the active area

— the split dimensions in the expired area are horizontally ordered to preserve
the order of splitting, with more recent steps being closer to the active area

— any expired split step can be undone, causing the corresponding tree level
to be removed from the visualization. The navigation structure accounts for
the undone split by re-activating the respective path.

7 Enhanced Decomposition Trees

Any particular visualization technique has its pros and cons depending on the
type of task to be solved. In case of a dynamic disaggregation of OLAP cubes,
the most common tasks are to ”drill” into an aggregate in order to trace its be-
havior along certain dimensional axes and to compare the subtotals within the



same granularity level against each other. Standard decomposition tree patented
by Proclarity [16] are used to decompose an aggregate along multiple dimension
axes. The measure’s subtotals as numbers and percentage, as well as the cor-
responding split dimension’s entity are placed inside the nodes. Only one node
per interaction can be expandable. Our proposed enhancement of the standard
decomposition tree technique is multi-directional and comprises the categories
presented below.

Layout. Decomposition trees adopt the clas- — 23—
sical aesthetic layout due to its visual support of | s I T
both vertical (parent - children) and horizontal | T
(same level nodes) comparison: children are placed o o :fj-_

below their parent and each tree level is aligned.
Both the top-down and the left-to-right layouts Fig.11: Using arca-aware
are supported. Directing the nested bar-charts or- chart bars

thogonal to the tree layout (i.e., horizontal bars

in case of a top-down tree) puts the charts in each level onto the same axis and
is therefore optimal for perceiving the entire level as a single chart (as in Fig.
2). The inherent wastefulness in terms of display area (scarcely populated upper
levels consume as much area the bottom ones) can be minimized by adding space
awareness to its nodes, as exemplified in Fig. 11. Feasibility of distinct display
optimization measures depends on the type and behavior of the value(s) in the
nodes. For instance, when decomposing a single measure, the children of each
parent can be arranged into ”Slice&Sice” treemaps [19], as shown in Fig. 12.

Node contents. The node contents may be heteroge-
neous, such as a single value or a set of values with their
dimensional characteristics. Multiple values per node arise
whenever the user has chosen multiple measures to display
or a nested-chart technique for a single measure. Our in-
tention in this respect is to migrate from a plain value
display towards a value visualization within and across
the nodes. Nested bar-charts appear to be a rather suit-
able way of presenting nested decomposition or comparing
multiple measures by putting them onto the same scale
(see Fig. 2). Visual enhancements in part of parent-child Fig.12: ”Slice&Dice”
or child-child relationships are best achieved by applying treemaps as nodes
enclosure mechanisms, such as bounding boxes, subtree area division [11], or
recursive partitioning of the node region as in treemaps [19].

Visual elements. We suggest that the dimensional characteristics are used
for labeling the node’s links instead of putting them inside the nodes. This
approach contributes to display optimization by reducing the node’s inner area
and filling the sparsely filled link areas. Another benefit is an improved logical
structuring of the data: the aggregate is inside the node whereas its dimensional
coordinate is attached to the link, connecting the node to its parent.

Generating the visualization. Unlike with the standard node-by-node ex-
pansion approach, our navigational framework empowers fast generation of arbi-




trarily large trees. A single dragéddrop interaction is required for generating the
entire tree level. The navigational hierarchy adapts itself every time the visual-
ization is re-rendered to hide no longer valid navigation paths from the display
and thus leaving the user very little space to lose the orientation or attempt an
erroneous operation.

Interaction Features. Interaction serves for exploring the visual hierarchy
as well as for its dynamic modification. Dragging the nodes is straightforward
and is used to deliberately re-arrange the nodes on the dispay. Single nodes can
be minimized to icons (temporary elimination) by closing them to be reopened
later. Deleting marked nodes or regions is equivalent to local filtering. Zooming
is available in a form of a slider for resizing the entire visualization and as
a dynamic zoom cursor for zooming on a single node. Power options, such as
sorting, changing the display options, re-scaling the inner charts, etc. are accessed
via an ”Options” box placed next to each tree level.

8 Conclusion and Future Work

We have presented a navigation framework for advanced exploration and anal-
ysis of multidimensional data in a data warehouse context. The underlying
OLAP technology empowers the decision support by allowing users to intu-
itively retrieve the desired data in a layout and granularity exactly matching the
user’s needs. We enhanced a standard OLAP interface by enabling user-defined
dynamic decompositions of OLAP cubes using hierarchical visualization tech-
niques. Since explorative analysis is driven by the insights acquired in the course
of interaction, hierarchical visualization is especially appreciated for its natural
preservation of the interaction history and for enabling gradual ”descent” from
a heavily aggregated overview to the desired level of detail.

The core component of our interface is the introduced navigation structure
optimized for fast and easy generation of hierarchical visualizations from OLAP
cube data by exploiting the logical data warehouse design. Our framework en-
ables convenient navigation within a single OLAP cube as well as pursuing any
valid drill-across paths for joined exploration of multiple facts. The visualization
toolkit consists of the popular ”state-of-the-art” hierarchical layouts. We also
extended the classical node-link tree technique into an OLAP-aware Enhanced
Decomposition Tree. The displayed data can be clearly structured by placing the
aggregates inside the nodes, using their dimensional characteristics for labeling
the nodes and the dimension titles for naming the tree levels. The values within
the nodes can be arranged into nested charts to facilitate their visual perception.

The directions of our future activities are manifold: 1) to further explore
challenging data patterns and new application domains with respect to their
adequate mapping in the OLAP model, 2) to examine various visualization tech-
niques as to what extent they qualify or can be adjusted for exploring OLAP
data, 3) to refine our implementation to make it more generic and extendable
to incorporate new data patterns and visualization techniques, and, 4) to obtain
user feedback in order to evaluate and to revise our framework accordingly.
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