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ABSTRACT

In many important applications, the search for non-standard data
types is essential. E.g., digital libraries and multimedia database
systems offer content-based search functionality for images and 3D
documents. Contrary to the annotation-based approach, where in-
formation manually attached to the data objects if used for retrieval,
in content-based retrieval, automatically derived meta-data is used.
However, the quality of the meta data is crucial, and often, it a priori
is not clear which meta data is best suited to execute a user-issued
query. Owing to the multi-meta data problem, two crucial ques-
tions arise: (a) how can different meta data (feature vector) schemas
be benchmarked to assess their suitability for solving the retrieval
problem effectively, and (b) how to support the user with issuing
queries to the retrieval system, considering different choices for the
type of meta data to engage in the search.

In this paper, we address these questions in a two-fold contribu-
tion. Based on the DARE visualization system, we first introduce an
approach for the visual benchmarking of multiple meta data formats
on a ground truth benchmark, supporting the optimization stage of
the multimedia database design. We secondly propose a simple, yet
effective visual interface to multiple, long lists (rankings) of answer
objects for the user. The latter, based on relevance feedback infor-
mation supplied by the user, allows the effective identification of the
meta data schema best suited for executing the similarity queries at
hand.

Index Terms: H.3.3 [Information Systems]: Information Search
and Retrieval—Selection Process; I.3.3 [Computing Methodolo-
gies]: Computer Graphics—Picture/Image Generation

1 INTRODUCTION

Digital libraries and multimedia database systems offer content-
based search functionality for non-standard data types such as im-
ages, video, 3D documents, audio recordings, among others. Con-
trary to the annotation-based approach, where information manu-
ally attached to the data objects if used for retrieval, in content-
based retrieval, automatically derived meta data is used. This meta
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data can arise in the form of so-called feature vectors (FVs), or other
forms such as graphs or symbolic representations. However, due to
the inherent fuzziness of the concept of similarity, for most data
collections it is a priori not clear which features of the objects are
best suited to conduct a user-issued query. Moreover, the user of-
ten is not a meta-data expert who is capable or willing to manually
specify the type and configuration of meta data to use for retrieval.

The availability of multiple meta data types for executing a sim-
ilarity search query can be accommodated in two ways. First, in
an off line approach, it is possible to determine which of the po-
tential meta data types offers best expected retrieval quality. To
this end, benchmarks are used to evaluate the discrimination power
based on supervised benchmark information. While from informa-
tion retrieval, different statistical methods are known for rating the
quality of a meta data standard under a benchmark, it is desirable
to complement this statistical analysis by visual representations of
the discrimination power. To this end, in this paper we develop a
methodology for visual benchmarking using the DARE visualiza-
tion system.

The online approach lets the user decide at query time which of
the meta data types or which combination thereof should be used to
execute the query. Relevance feedback is a technique for capturing
user feedback on the relevance and/or irrelevance of seen answer,
and adjusting the meta data selection in an appropriate way to re-
flect the relevance feedback. However, most of these approaches
work in form of a black box, meaning that the user does not have
an understanding of the outcome of her or his relevance selections.
To address this shortcoming, we develop a simple, yet powerful
visual interface for analyzing the positions of marked relevant an-
swers, in several meta data spaces simultaneously. This interface
visualizes the ranks of selected objects in the ranking that would
result by the user choosing each of the available meta data formats.
It is proposed as a powerful means of interaction, letting the user
navigate different feature spaces in an effective and intuitive way,
and support her or him in identifying promising retrieval paths to
follow.

The remainder of this paper is structured as follows. Section 2
presents background and related work on multimedia retrieval, vi-
sual benchmarking, and visual user interfaces. Section 3 describes
the DARE system based on which a visualization will be designed
for the visual benchmarking of multi feature vector described data
sets in Section 4. Also in Section 4, we will introduce a simple
but powerful user interface for the visualization of relevance feed-
back information in context of sets of feature vectors. In Section
5, we will apply both approaches and demonstrate their usefulness
for visual benchmarking and as a visual user interface. Section 6
concludes and outlines future work in the area.



Figure 1: Top: Under the Feature Vector approach, multimedia ob-
jects are described by vectors in high-dimensional feature space,
generated by certain media analysis algorithms. The vector repre-
sentations of the objects in conjunction with a vector space metric
then allow the calculation of distances which in turn are associated
with the degree of (dis)similarity between the objects. Usually, it is
difficult to define features that work well most of the time, due to in-
herent fuzziness of the concept similarity. The bottom image shows
several 3D models, which may be considered similar or non similar
to each other, based on the understanding of the concept.

2 BACKGROUND AND RELATED WORK

2.1 Multimedia Similarity Search

Many modern applications rely on calculating similarity scores be-
tween non-standard data types such as multimedia objects, or mul-
tidimensional data from business, scientific, or engineering appli-
cations. E.g., content-based retrieval uses similarity scores to pro-
duce lists of answer objects given a query, and data mining algo-
rithms such as clustering and classification rely on similarity scores
to find clusters of similar objects, or to assign class labels. Extract-
ing so-called feature vectors is a standard approach to map complex
objects into vector space, where a suitable metric can be employed
to calculate distances between vectors that are associated with dis-
tances in object space [11, 13, 15]. However, for a given type of
data, there does not exists a single scheme for extracting features,
but usually, many different schemes are possible, and whether a
given feature representation is optimal depends on the application
and data set at hand. E.g., for the 3D model data type, to date
many different feature vector extractors have been proposed, still
the search for efficient and effective 3D feature vector extractors
continues [4, 5, 18]. Figure 1 shows a model of 3D feature vector
extraction, and illustrates the inherent fuzziness of 3D similarity by
an example.

Benchmarking of competing feature vector extractors is usually
done by statistical benchmarking methods, e.g. known from Infor-
mation Retrieval [3]. Visual benchmarking [25] applies visualiza-
tion to communicate and help explore the statistical benchmarking
results, and to interactively compare the discrimination power of
competing feature spaces for different data sets. For many impor-
tant data types, benchmark data sets (benchmarks) have been pro-
posed to date. E.g., in 3D model retrieval, the Princeton Shape
Benchmark [26], or the Purdue Engineering Shape Benchmark
[20], are popular benchmarks consisting of object data and care-
fully compiled similarity classification information (ground truth).

An alternative to benchmark-based pre-selection of a single fea-
ture vector for use in a multimedia application is to allow multi-
ple feature vectors, dynamically composing ensembles of feature
vectors. Recent research addressed the automatic combination of

different feature representations in retrieval and data mining appli-
cations [22, 2]. Also, methods have been proposed that interactively
capture relevance feedback information from the user. This infor-
mation in turn is leveraged to select and combine different feature
vectors by solving an optimization problem, based on the supplied
input. E.g., in [19], a multi feature image retrieval system is en-
hanced by relevance feedback. Specifically, the user is allowed to
continuously rearrange retrieved answers in 2D space, effectively
supplying relevance judgments.

Figure 2 finally illustrates a query-by-example for a 3D model.
The query is executed on a database of 3D models, using 3 different
feature vector representations of the database. Each feature vector
space yields a different ranking, with relevant and irrelevant answer
objects at different positions in the ranking. Relevant objects have
been identified and marked by the user.

2.2 Visual User Interfaces
In order to effectively access a large information system it is manda-
tory to design a friendly interface that allows the end user to easily
access the data of interest. Most of the available proposals exploit
the power of visualization and direct manipulation mechanisms [8]
and a widely diffused solution is to represent the data on a 3D scat-
ter plot allowing the user to restrict the final result by changing
the value of the attributes through suitable widgets. However, the
choice of the visualization is not trivial [9], [17], [27], [28], [6]
and it is not sufficient to associate “any” visual representation to a
database but the visual representation should be carefully chosen
to effectively convey all and only the database information con-
tent. To reach these goals most of the available proposals have been
manually tailored for specific applications and it is very difficult to
generalize them.

There is a large amount of literature on this topic, starting from
Mackinlay’s pioneering work on automatic design of graphical pre-
sentations [23], to a variety of other projects including the ZOO
project of the University of Wisconsin [14]), AI-based propos-
als [1, 24], the EU funded FADIVA project [12], and many others.
Basically, all these proposals share two limitations:

1. they try to automatically build complete representations,
while correctness, even if it is considered a very relevant prop-
erty, cannot be formally checked;

2. they concentrate on the visualization of either the schema or
the instances of the database (not on both). Moreover, some
proposals restrict to specific domain and/or applications in-
stead of providing a general solution.

Our proposal try to overcome the above drawbacks by 1) defin-
ing a general theory for establishing the adequacy of a visual repre-
sentation, once specified the database characteristics, and 2) devel-
oping a system, called DARE: Drawing Adequate REpresentations
that implements such a theory and is able to automatically associate
with any database the most effective visual representation. Such
a visual representation has to be not only adequate (as mentioned
above), but it has also to convey some database features specified
by the designer (e.g., that some concepts are the most relevant).

3 THE DARE SYSTEM

The DARE system is based on a general theory [7] , and relies on a
knowledge base containing different kinds of rules, namely:

1. Visual rules. Visual rules characterize the different kinds of
visual symbols (e.g., they list the visual attributes, which are
associated with the different kinds of visual symbols).

2. Data rules. Data rules specify the characteristics of the data
model, the database schema, and the database instances (e.g.,



Figure 2: Query-by-example for a Formula-1 racing car model in a 3D repository. Each row shows the nearest neighbors to the query, according
to a specific low-level feature space selected by the user. Relevant answer objects are marked. The different feature space representations yield
different result sets, and additional relevant answer objects can be expected to appear beyond the limited number of thumbnails displayed. In
this paper, we develop methods for the visual evaluation of different retrieval algorithms on possibly very large result sets.

if the designer is using the Entity-Relationship model, s/he
will use a data rule to say that, for instance, Person is an
Entity, as well as that John is a Person).

3. Mapping rules. Mapping rules specify the link between data
and visual elements (e.g., entities are represented as rectan-
gles, Person is a red rectangle, John is a small red rectan-
gle). Note that special kinds of data objects which are nat-
urally visual, such as images, charts, forms, force the visual
representation to adhere to their natural representation.

4. Perceptual rules. Perceptual rules tell us how the user per-
ceives a visual symbol (i.e. a line, a geometric figure, an icon,
etc.), relationships between symbols (i.e. the mutual place-
ments of two figures on the plane), and which is the percep-
tual effect of relevant visual attributes such as color, texture,
etc.

In the prototype a suitable set of rules, covering a subset of the
overall DARE theory, has been implemented, namely:

• visual rules, characterizing points and simple 2D/3D figures;

• data rules, associated with the concepts of relation, tuple, at-
tribute, and domain; mapping rules, specifying the association
among the relational attributes and the visual attributes; and

• perceptual rules, concerning the best representation of rela-
tional attributes.

Using such rules and based on the query result cardinality, the sys-
tem is able to automatically choose the suitable visual elements to
adopt to represent the tuples and the best visual representation for
the attributes involved in the query. The result representation can
be further manipulated by the user. It is possible to pick up with the
mouse a single point and use sliders to restrict the result. Moreover,
several “visual data mining” primitives are available and it is possi-
ble to project data on the three planes or to cluster them in order to
visually capture data distribution and data relationships.

Dare has been used to display data in medical applications [10]
and to display metadata in visual data mining system [21]. The ef-
fectiveness of such approaches pushed us to exploit the Dare system
to evaluate metadata about feature vectors effectiveness.

4 RANK- AND DISTANCE-BASED VISUALIZATION

4.1 Visual Exploration of Retrieval Data Using the DARE
System

4.1.1 Cut-off value
A relevant parameter to take into account in the analysis is the cut-
off value (COV in what follows). Analyzing the distribution of dis-
tances from the query and its result list, a ”minimum point” can

be found in the distribution. Objects with a distance less then the
cut value are presented to the user and considered relevant, with
a distance greater than the cut value are hidden from the user and
considered non relevant.

It is out of the scope of this paper to discuss in detail the adopted
techniques for computing the cut-off values; we sketch here the
main strategies:

• cut-off= a value that has 95% relevant objects on the left;

• cut-off= a value that has 10% nonrelevant objects on the left;

• cut-off= optimum of a weighted function (relevant-
nonrelevant) objects;

• cut-off= manual setting through visual inspection of rele-
vant/nontrelevant percentages (see, e.g., Figure 3)

Figure 3: Relevant and non relevant percentages for 3DDFT feature
vector

Considering whether an answer object comes from the same
class of the query object (relevance=1) or not (relevance=0) and
the cut-off value, it is possible to classify the objects in four main
categories:

• True-positive (TP): relevance = 1 and distance ≤ COV

• False-positive (FP): relevance = 0 and distance ≤ COV

• True-negative (TN): relevance = 0 and distance > COV

• False-negative (FN): relevance = 1 and distance > COV

Note that this classification can be used also for R-Precision: we
consider the cardinality of the class as a sort of cut-off value obtain-
ing the following categories:



• True-positive (TP): relevance = 1 and distance ≤ class cardi-
nality

• False-positive (FP): relevance = 0 and distance ≤ class cardi-
nality

• True-negative (TN): relevance = 0 and distance > class cardi-
nality

• False-negative (FN): relevance = 1 and distance > class car-
dinality

4.1.2 Visualization design
In our work we have first analyzed the data to import in the system
and then we have found an appropriate representation for it. DARE
allows for mapping data values to several visual variables: three
database attributes can be mapped to three orthogonal axes (x, y,
z). Colour, size and shape can also be used to map three additional
database attributes to distinct visual features.

The main idea is to perform different queries using the differ-
ent available feature vectors and visually compare the result sets
through Dare. We used 906 different 3D objects, classified in 90
distinct classes. The classification depends on the nature of the ob-
jects, and is based on human-based classification of object. As an
example, the objects are classified as being animals, plants, vehi-
cles, etc. For each benchmark object and feature space, a query
was run, ranking all the returning objects by increasing distance.

In the following we describe three different visualization
designs that classify the query results comparing the distances
of the retrieved objects with their relevance, estimated through
R-Precision and cut-off values.

R-Precision based visualizations

The idea is to focus on one classe(es) computing a query for each
element in the class(es) using a specific feature vector. Queries can
range on the whole dataset or on a set of specific classes and the ob-
ject in the result are ranked and associated with a four values cate-
gory, true-positive, false-positive, true-negative, and false-negative.
Elements IDs correspond to a categorical attribute and are assigned
to X axes, ranks values corresponds to integers and are mapped on
the Y axisis, and category values correspond to a categorical at-
tributes and are mapped on four high distinguishable colors:

• GREEN (TP): rank ≤ class cardinality ∧ relevance = 1

• YELLOW (FP): rank ≤ class cardinality ∧ relevance = 0

• RED (TN): rank > class cardinality ∧ relevance = 0

• ORANGE (FN): rank > class cardinality ∧ relevance = 1

In this way the user can easily perceive how relevant objects
(green and orange) are characterized by the actual feature vector in
terms of true-positive and false-negative. As an example, Figure 4
is obtained considering the Princeton class 53 (arms), ranking the
first 200 closest object in the database using the 3DDFT feature
vector and assigning to each result the corresponding category
comparing the rank with the class size (19), i.e., considering the
R-precision. The x axis contains the 19 identifiers of class 53
objects; the y axis the ranks. Objects are coloured according to
their relevance and rank.

Cut-off based visualizations

Using cut-off instead of r-precision leads to a quite similar
design. The only difference is that here we consider distances (still
mapped on the y axes) instead of ranks, giving the end user the

Figure 4: R-Precision for class 59: all ranks

perception of the results distribution. As an example, Figure 8 is
obtained considering the Princeton classes 63 (pianofortes) and
77(see-saws) and using the 3DDFT feature vector. In this case
objects are coloured according to their relevance and their distance
w.r.t. the overall cut-off value and we added two lines, the vertical
one separating the two classes (63 on the left) and the horizontal
one representing the actual COV value. It is quite evident that
3DDFT performs poorly on class 77. Moreover the image does not
contains yellow values: no irrelevant objects are below the cut-off
value.

3D visualizations

In order to compare several FVs at the same time we explored
different 3D visualizations, e.g., the one depicted in Figure 6. The
images refers to the FVs COR, H3D, and SIL. We realized that the
more the compared feature vectors the more the occlusion problems
and we decided to represent 3D images as a set of 2D projections,
as described in Section 5.2.1.

4.2 Rank-Based User Interface

In online retrieval in a system with multiple feature vector repre-
sentations available, the user can principally chose which feature
vector to use for executing a given query. Usually, different fea-
ture vectors yield different results, and it is not clear which feature
vectors best suit the user need. The standard retrieval paradigm
suggests to present a list of top-n matches to the user for inspec-
tion. E.g., most Internet and multimedia search engines present
the user with a short list, e.g., the first ten answers. However, in
multimedia retrieval, due to the fuzziness of the similarity notion,
relevant objects may be located much farther behind in the answer
list. Another observation often made is that within the neighbor-
hood of relevant objects, we find additional relevant objects. Based
on this reasoning, we develop a simple, yet powerful user interface
to handle multiple feature spaces for on line retrieval.

The user interface should support two key feature. Firstly, it
should let the user effectively access not only a short prefix, but the
whole (potentially, very long) list of answers. Secondly, it should
let the user access not only the singe ranking of a currently selected
feature space, but visualize the results of the query in all the fea-
ture spaces in parallel. This in turn requires scalability of the vi-



Figure 5: Cut-off value for classes 63 and 77

sualization w.r.t. data size, as the standard thumbnail-preview ap-
proach will not work in this case. We therefore resort to the pixel-
based visualization paradigm, as this scales much better with the
data set size as other, more object-centered result visualization ap-
proaches. Specifically, we adapt the multi resolution pixel/rectangle
approach introduced in [16]. That work suggested to represent long
sequences of values by rectangular cells of varying resolution which
get eventually scaled down to the pixel level. Together with an ap-
propriate color mapping, this approach supports the visualization
of long (real-valued) time-series data, but may as well be employed
for visualization of categorical (boolean) data. Usage of a multi res-
olution approach to scaling the rectangles was proposed in [16] to
improve the scalability with data size, and at the same time, allow
easy perception of the most important data sections (e.g., the most
current parts of the data).

We configure the display as follows. We represent the full list of
answer objects under a given feature vector as a sequence of rect-
angular cells. We assume a currently selected (main) feature vector
space is given, and that the user has already browsed the respective
list of answer objects, marking answer objects of interest. For each
available feature vector space, we draw a multi resolution position
grid in a row-by-row manner. In each row, we highlight the cell po-
sitions corresponding to the occurrence of the selected answers in
the respective feature vector spaces. Given the user has marked sev-
eral objects as relevant, this visualization gives a compact, concise
overview over the positions of the marked objects in the available
feature spaces. The visualization at the same time serves as an inter-
face to switch the different feature spaces for querying, and navigate
in the respective feature spaces. Specifically, clicking into the rank
display brings up the answers in the surrounding positions of the
respective feature space and answer position the user has clicked
on. This is proposed as an effective interface to (a) quickly identify
candidate feature spaces and rank positions to explore answer ob-
jects, and (b) navigate the respective results list. Figure 7 illustrates
the concept using a single resolution grid for each feature space.

5 APPLICATION AND EVALUATION

In this Section, we apply the rank-based visualization methods on
a data set from the multimedia retrieval domain. We first briefly
describe the data set, and then demonstrate the application of visual
benchmarking and the relevance-based query interface for multiple

Figure 6: Comparing three FVs capabilities

feature vectors.

5.1 Used Data

We use the Princeton Shape Benchmark [26] (PSB) train partition
to demonstrate our visualization techniques. The PSB train parti-
tion comes from the 3D model retrieval domain and consists of 907
3D meshes representing real-world objects like animals, humans,
vehicles, and so on. The models were carefully classified into 90
equivalence classes according to geometric shape. We extracted 12
different types of feature vectors of different discrimination power,
for each of the models. The feature vectors were obtained by first
normalizing the mesh models for scale, position, and orientation,
and then, various feature vector descriptors were extracted from
surface, volumetric, and image-based mesh properties. The feature
vectors describe the geometry of complete models and can each be
used for content-based retrieval of 3D models based on global ge-
ometric characteristics. The feature vectors are described in more
detail in [5], where also detailed retrieval precision results for each
of the 3D feature extractors are given.

We used the feature vector representations of the models and
engaged the L1 norm (Manhattan distance) to produce exhaustive
object rankings for each of the 3D models (simulating a query) and
each feature vector. We evaluate the PSB ground truth classifica-
tion to flag each answer object as being relevant to the query ob-
ject, or not. We capture the wealth of rankings in a large table with
the following schema: RANKINGS(INT : f vID, INT : qID, INT :
aID,REAL : distance,BOOL : relevant), where fvID refers to the
key of the used feature vector, qID and aID refer to the keys iden-
tifying the query an answer objects, distance gives the L1 distance
between the query qID and the answer aID under feature vector
fvID, and relevant indictes whether qID and aID come from the
same benchmark class. This table can conveniently be loaded into
the DARE system, where the data for individual queries under dif-
ferent feature vectors is retrieved by selection of respective table
tuples.

5.2 DARE application

5.2.1 Explorative Visual Benchmarking

We performed in batch way all the possible queries with all avail-
able feature vectors, ranking all results; after that we assigned to



Figure 7: Usage of the rank visualization as an efficient UI tool. Ob-
jects marked in the preview/thumbnail answer set are also marked
in the rank visualization, which in parallel gives the rankings of the
same query object, but within different feature vector spaces. Our
technique is an efficient extension of the standard preview interface,
which itself does not scale well with the number of elements shown.
This UI supports the user in interactive feature selection - she can
see which feature spaces contain promising object clusters, explore
the respective rankings, and possibly find additional relevant objects.

each result item a r-precision based category and a COV based cat-
egory. Using this set of data we performed several visual analysis,
observing the effectiveness of a specific feature vector on different
classes and/or the effectiveness of different feature vectors on the
same class(es). In the following we report some of the interesting
clues the system designers got using the Dare system.

A first example is on Figure 4 exploring the effectiveness of the
feature vector 3DDFT on class 53 with respect to r-precision. It
is quite evident that the actual FV performs poorly on class 53:
few green items are in the first 19 ranks, while orange items (false-
negative) exhibit very high ranks. In order to better understand the
FV performance on the class the user zooms on the first 19 ranks
(see Figure 8).

The designer discovers a quite odd behavior: the first 19 ranks
for objects 566, 570, 571, 572, 574, and 580 do not contain relevant
objects (only yellow dots) while objects 577, 578, and 581 have
three relevant objects in the closest rank. A possible explanation is
that class 53 contains non homogeneous objects and we removed it
from our experiments.

In order to better understand the 3DDFT behavior the designer
compares it against COR and XVT features vectors using the cut-
off value (see Figure 9). 3DDFT performs better than CPX and
worst than COR. Moreover, it is possible to understand that 3DDFT
better preserve the results ordering: in most cases we have a green-
orange-red sequence, while COR exhibits puzzled patterns. That
implies that in application in which the right ordering is a strong
requisite is better to use 3DDFT, even if produces less accurate
results (w.r.t. COR). Moreover, it is worth noting the interesting
perceptions that the visual representation provides for, e.g., the dis-
tance gaps among red items and the green/yellow/orange ones pro-
vided by 3DDFT.

Finally, we show a comparison of all 12 feature vectors against
two classes, 63 (pianofortes) and 77(see-saws), and using the cut-of
value (see Figure 10. Inspecting the image it is possible to get the
following interesting clues:

Figure 8: R-Precision for class 59: first 19 ranks

• All the FVs have a better behavior for the class 63 respect to
the class 77;

• H3D, DSR, and GRAY have a good behavior for both classes;

• CPX and DBF have a bad behavior in general;

• 3DDFT, RIN , DSR and SD2 have a good behavior for the
class 63;

• PMOM and H3D have a good behavior for the class 77;

• 3DDFT, RIN, SD2, and SIL have a bad behavior for the class
77;

• DSR outperforms the other FVs, but has a very bad behavior
for object 806.

Figure 9: Comparing three FVs capabilities

5.3 Application of the Rank-Based User Interface
We implemented the rank-based interface for querying in systems
providing multiple feature vectors, as described in Section 4.2.
Specifically, we set the multi resolution display to three different
levels of resolution: The first column contains the first 50 positions
in a 1× 50 grid layout. The second and third columns contain the
next 200 and 800 ranks, in grids of size 4× 50 and 16× 50, re-
spectively. This layout implies that from one level to the other, the
number of ranks visualized increases by a factor of 4. The display



Figure 10: Comparing 12 FVs capabilities

thereby focuses user attention on the first ranks, while keeping the
remaining positions in context.

Figure 11 shows the results for two different queries. The rows
are arranged by average benchmarking results of the feature vec-
tors, placing the best benchmarked single feature vector on top.
That feature vector is usually the one which is initially used for
conducting a query. As the user browses the top-n list returned and
marks objects as relevant or of interest, the positions of the marked
objects are simultaneously highlighted in the multi resolution dis-
play. The user is able to effectively search for clusters of the marked
objects in different feature spaces in parallel. The user is able to
switch to rank intervals of other feature vectors by a simple mouse
click. We observe that this condensed rank-based interface is an
effective way for spark the users interest for exploration of diverse
ranking intervals within the different feature spaces, as guided by
the recognition of interesting occurrence patterns.

We point out that the multi resolution display, in addition to
showing the occurrence of marked answer objects, may also be
used to encode other information available from the query execu-
tion. E.g., we may use it to display the distribution of distances in
feature space, screening the answer rankings for outlier distances,
possibly indicating abrupt changes in the sequence of answer ob-
jects. Figure 12 shows a distance image obtained by calculating the
difference of distances between the query objects and answer ob-
jects adjacent to each other in the ranking. The visualization was
obtained by linearly mapping the sequence of distance differences
to a bright-dark color scale. In the shown example, the ranking
in the 4th row from the bottom exhibits several outlier distances

among the first 50 positions, which suggests closer inspection by
the (expert) user.

6 CONCLUSION

In this paper, we have proposed visualizations for visual bench-
marking of competing feature vector spaces, and for supporting the
interactive feature selection by the user in on line retrieval mode.
We applied the techniques on a retrieval benchmark data set from
the field of 3D model retrieval.

Future work includes testing the methods on additional data sets
and improving the techniques. Regarding the multi feature query
interface, we like to integrate it with additional relevance feedback
interaction techniques. Combining efficient methods for capturing
relevance feedback and advanced rank visualization is expected to
lead to retrieval systems of increased retrieval effectiveness.
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