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ABSTRACT

Modern Digital Library applications store and process mas-
sive amounts of information. Usually, this data is not limited
to raw textual or numeric data — typical applications also
deal with multimedia data such as images, audio, video,
or 3D geometric models. For providing effective retrieval
functionality, appropriate meta data descriptors that allow
calculation of similarity scores between data instances are
requires. Feature vectors are a generic way for describing
multimedia data by vectors formed from numerically cap-
tured object features. They are used in similarity search,
but also, can be used for clustering and wider multimedia
analysis applications.

Extracting effective feature vectors for a given data type is
a challenging task. Determining good feature vector extrac-
tors usually involves experimentation and application of su-
pervised information. However, such experimentation usu-
ally is expensive, and supervised information often is data
dependent. We address the feature selection problem by a
novel approach based on analysis of certain feature space
images. We develop two image-based analysis techniques
for the automatic discrimination power analysis of feature
spaces. We evaluate the techniques on a comprehensive fea-
ture selection benchmark, demonstrating the effectiveness of
our analysis and its potential toward automatically address-
ing the feature selection problem.
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1. INTRODUCTION

Modern Digital Library and multimedia analysis applica-
tions store and process massive amounts of non-standard
data. This data, not limited to raw textual or numeric
records, may include complex data types from the field of
multimedia (e.g., images, audio, video, geometric objects),
or time related data streams (e.g., financial pricing streams,
network monitoring streams). Methods for analysis and re-
trieval in such complex data typically rely on the feature vec-
tor (FV) paradigm [5], which describes the instances of any
complex data type by vectors of characteristic numeric prop-
erties (features) extracted from the instances, allowing the
calculation of distances between FV representations of the
data objects [8]. The similarity between two data objects is
then associated with the distance between their respective
FV representations.

FVs are required by many important automatic data analy-
sis algorithms like clustering, similarity search, or classifica-
tion. We can informally define the effectiveness (or quality)
of a FV extractor as the degree of resemblance between dis-
tances in FV space, and similarity relationships in object
space. Extracting effective FVs for a given data type, i.e.,
features that describe relevant properties of the object in-
stances and allow their meaningful discrimination, however,
is a challenging task. It usually requires a lot of experimen-
tation and supervised information, e.g., a human expert, or
labeled training data for benchmarking and optimization of
candidate FVs. However, in many data analysis scenarios,
the data is neither fully labeled, nor has the analyst a—priori
knowledge how to classify the data.

We propose a novel approach to measure the quality of a
given FV space. We rely on the image-based analysis of cer-
tain views on the components of compressed versions of the
candidate F'V spaces. The key assumption underlying our
analysis is that the degree of heterogeneity of features in a
candidate FV space is an indicator for the discrimination
power (effectiveness) in that FV space. Based on this hy-
pothesis, we develop two image analysis functions allowing
visual or automatic benchmarking of candidate FV spaces.
The analysis aims at identifying the most effective F'V space
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Figure 1: Supervised visual benchmarking of a given FV space using simple hulls formed around PCA-
projected point clouds. Depending on the fidelity of the projection, important inter-class discrimination

characteristics may be visually analyzed.

from a set of candidate FV spaces for a given data set. A
key property of our analysis is that by relying on the Self-
Organizing Map algorithm for clustering (cf. Section 3), it
operates in a largely unsupervised way. Specifically, it does
not require supervised training data.

2. BACKGROUND

In this Section, we review the feature vector approach for
data analysis applications.

2.1 Feature Vector Approach

Similarity measures between complex data objects are usu-
ally implemented by two main approaches. The transform
approach considers suitably defined costs of efficiently trans-
forming one object into the other. E.g., the Edit or Leven-
shtein distance [5] is a distance measure for text based on
insert, update, and delete operations. The second main ap-
proach for calculating object distances is the feature vector
(FV) approach [5]. It extracts characteristic numeric values
from the objects, forming vectors in high-dimensional FV
space. E.g., text documents can be described by so-called
tf x idf vectors based on term occurrence histograms [2].
Another example are 3D geometric models, which can be
described by histograms of curvature, by volumetric prop-
erties, or by features derived from 2D projections, among
others [3]. The similarity between objects is associated with
the distance between their FV representations (e.g., using
the Euclidean norm). FV-based applications rely on a rep-
resentation of the input data in a discriminating FV space
to produce meaningful results. These include content-based
similarity search, where distances between a query object
and candidate elements are used to produce answer lists.
FV-based distances are also heavily used in Clustering and
Classification applications [8, 5].

Unfortunately, for most data types to be supported, there is
no absolute or optimal set of features known which should
be used, but often, different features are equally promising
candidates a-priori. Therefore, in practice a F'V selection
and optimization stage is engaged, which based on experi-
mentation, identifies a set of features which work sufficiently
well for a given application at hand. However, this stage is
also usually very costly, as it relies heavily on the usage of
supervised information, and on intensive experimentation
and manual tuning of the feature vectors.

2.2 Measuring FV Space Quality

The FV selection problem is usually addressed by the bench-
marking approach. A set of candidate feature vectors are
calculated for a reference data set. Based on predefined clas-
sification information (a benchmark data set) or the judg-
ment of a human expert, the quality of the candidate FV
extractors is assessed by precision-recall statistics, or ex-
pert judgment regarding the degree of resemblance between
distances in FV space and similarity relationships in ob-
ject space. In a number of domains, reference benchmarks
have been defined. E.g., in similarity search of 3D geo-
metric models, the Princeton Shape Benchmark [15] con-
sists of a database of 3D models with associated class la-
bels. Using the benchmark, candidate 3D FV extractors can
be compared in terms of precision-recall measurements ob-
served when executing reference queries on the benchmark.
While precision-recall statistics are the predominant way of
performing feature vector benchmarking, also visual bench-
marking is possible. Supervised visual benchmarking relies
on classification information, using visual representations of
the discrimination between object classes under different fea-
ture vector representations. E.g., in [14], a scheme relying
on PCA-based projection of high-dimensional feature vec-
tor data to 2D display space was proposed. Together with
simple shapes formed around the obtained point clouds, it
was shown how inter-class object discrimination can be esti-
mated from such plots, depending on the faithfulness of the
projection. Figure 1 illustrates the idea.

Problematic is that the supervised approach is expensive,
as it requires either a large labeled object collection, or
a human expert to manually evaluate the quality of FV-
based distances. Also, it is data-dependent: Whenever the
underlying data changes, the benchmark needs to be up-
dated to reflect the target data characteristics. Therefore,
unsupervised benchmarking is very desirable, but to data a
difficult problem. Certain statistical approaches were pro-
posed for unsupervised FV space quality estimation [9, 1].
These works are of rather theoretical nature and to the best
of our knowledge have not been practically leveraged yet.
Therefore, approaches towards unsupervised benchmarking
of competing feature vector spaces are desirable. In [12, 13],
the distribution of distances between clusters found in FV
space was used for FV quality estimation. In this work, we
consider the distribution of individual components of cluster
centers found in F'V space.



3. FEATURE SPACE IMAGING

We next recall the Self-Organizing Map algorithm, a well-
known data compression and projection algorithm. It is the
basis for our FV space imaging technique developed in Sec-
tion 4.

3.1 Self-Organizing Map Algorithm

The Self-Organizing Map (SOM) algorithm [10] is a com-
bined vector quantization and projection algorithm well suited
for data analysis and visualization purposes [16]. By means
of a competitive learning algorithm, a network of reference
(prototype) vectors is obtained from a set of input data vec-
tors. The reference vectors represent clusters in the input
data set and are localized on a low-dimensional (usually,
2D), regular grid. An important property of the algorithm
is that the arrangement of prototype vectors on the grid ap-
proximately resembles the topology of data vectors in input
space. The SOM is a compressed F'V space representation
obtained in an unsupervised way. Figure 2 illustrates two
steps in the training of a SOM, during which data vectors
are used to update the network of reference vectors..
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Figure 2: The Self-Organizing Map algorithm calcu-
lates a network of prototype vectors representing a
set of input data vectors.

3.2 SOM Component Plane Images

Under the FV approach to similarity calculation, distances
in object space are estimated by distances between FV space
representations of the ob jects E.g., the Fuclidean distance,
defined as d(z,y) = />, (i — y:)? for two vectors z,y €
R™ in n- dlmenslonal vector space is widely used. It are ul-
timately the characteristics of the components (dimensions)
in F'V space which contribute to the calculated distances. To
analyze the characteristics of the F'V space components, we
can visualize the individual dimensions by means of Com-
ponent Planes (CPs) [16] obtained from the SOM represen-
tation. A CP visualizes the distribution of a given vector
component over the calculated SOM. Recall that each SOM
reference vector is located at a unique position on a regular
grid. We can visualize the Component Plane image for com-
ponent ¢ by simply drawing a matrix of dimensionality corre-
sponding to the SOM grid, color-coding each cell according
to the normalized component value of the SOM reference
vector at the respective SOM grid position. The values are
normalized and color-coded such that the full component
Span [Cmin, Cmaz| 18 visualized.

Figure 3 illustrates three CPs from a FV space further dis-
cussed in Section 5. The images allow the efficient visual
analysis of the distribution of component values. While the
localization of component values on the SOM is not of pri-
mary concern here, their overall distribution is. As will be
demonstrated, the heterogeneity of the component distri-
bution may be used as an indicator for the discrimination

;. ol
#j..: “u all I':IE.:

Figure 3: Three Component Plane (CP) images
for a Self-Organizing Map of size 32 x 24 calculated
from the VOX FV space (cf. Section 5). Applying
[min, maz] normalization and applying the color scale
shown below, each image visualizes the distribution
of a given vector component on the SOM grid.

power contained in a given FV space. This in turn is valu-
able for analyzing and evaluating a given FV space. Note
that this analysis is unsupervised up to the setting of the
SOM training parameters, for which in turn data-dependent
heuristics and rules of thumb are known [11].

The characteristics of all components of a d-dimensional F'V
space may be visualized by laying out all d CP images ob-
tained from the respective FV space’s SOM in a matrix lay-
out. This visualization (Component Plane Array, CPA),
gives a compact image of the distribution of FV compo-
nents. We can use the CPA (a) to visually assess overall
component distribution characteristics, and (b) to identify
the correlation structure of the respective FV space. Figure
4 shows the CPA of the CP images from the 343-dimensional
VOX FV space (cf. Section 5).
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Figure 4: Component Plane Array (CPA) image of
the 343-dimensional VOX FV space (cf. Section 5).

4. COMPONENT IMAGE ANALYSIS

In [13], it was proposed to use Component Plane Array im-
ages for the comparative visual analysis of discrimination
power in different FV spaces. It was argued that the dis-
crimination power contained in a given FV space can be
estimated from the degree of heterogeneity of the individual
FV space components in the respective SOM representation.
The key hypothesis was that the more uniformly distributed
the individual FV components are in the [min, max] compo-
nent intervals, the better the chances are that the given FV
space meaningfully discriminates object clusters. In [13], ev-



Figure 5: The dtb score is calculated over the dif-
ference image (right column) between an original
Component Plane image (left column) and a blurred
version of it (middle column). The top row shows
a CP image of low heterogeneity, while the bottom
row shows one containing more heterogeneity (the
dtb scores amount to 17.84 and 81.14, respectively, in
this example).

idence for this hypothesis was presented by visually relating
the distribution of F'V components with supervised ground-
truth benchmark information. Here, we develop two image
analysis functions capturing the described heterogeneity no-
tion that was previously evaluated only informally by the
user.

4.1 Function Based on Difference Image

The first function for measuring the degree of heterogeneity
in a Component Plane image is based on the unsharp im-
age filter, a standard digital image processing technique [7].
It measures the degree of CP image heterogeneity by the
amount of image information lost when blurring the image.
We implement the measure by considering a given Com-
ponent Plane image as a gray-value image CP(z,y) in the
domain [0,1]. We blur the image by moving an averaging
kernel k over the image, replacing each gray value by the av-
erage over all pixels within the neighborhood k around that
pixel. We then compare the original image with its blurred
version C'P* (z,y) by summing the absolute differences of
the original and the blurred image pixels. Intuitively, in re-
gions with low image heterogeneity, the values of the blurred
pixels will be similar to the original values, yielding low dif-
ferences. Conversely, in image regions with much hetero-
geneity, the blurring process will smooth out much of the
image heterogeneity, resulting in higher differences.

We call this function dtb (difference to blurred) score, and
parameterize it with the blurring kernel size k. It is defined
as:

dtb(CPi, k) =Y > |CPi(z,y) — CPF(z,y)l, (1)

where CP;(z,y) is the gray value Component Plane image
for FV component i, and CP} (z,y) is a blurred version ob-
tained by applying the blurring kernel £ on C'P;. Figure
5 illustrates the calculation of the dtb score for two CP im-
ages. The dtb score is easily extended to work on Component
Plane Arrays of n CP images by averaging the dtb scores for

Figure 6: The Entropy score F measures Component
Plane image heterogeneity by averaging the Entropy
values calculated for all sub-images of a CP image.
The top row shows a CP image of little heterogene-
ity, while the bottom row shows one containing more
heterogeneity. The right column visualizes normal-
ized entropy scores evaluated on 16 x 12 sub-images
as a gray-value image. The F scores amount to 0.97
and 1.37, respectively, in this example.

all individual CPs:

dtb(CPA, k) = % > dtb(CP;, k). (2)
1=1

4.2 Function Based on Image Entropy

Again we consider each Component Plane image CP as a
gray value image in the domain [0,1]. Since we are inter-
ested to assess the distribution of gray values H in the image,
we are computing histograms over the gray levels. The his-
togram over gray values in a 2D image can be regarded as
a 1D function H(g) where the independent variable is the
(appropriately quantized) gray value g, and the dependent
variable is the number of pixels H(g) with that gray value.
Since all pixels in the image show a distinct gray value, the
sum of the histogram bins must be equal to the number of
image pixels N = x*xy = ZQG;"C‘;;M H(g), and g corresponds
to the index of quantized gray values, e.g., Gymin = Go =0
and Gmaez = G255 = 255 for a 8-bit quantization to 256
unique gray values. The histogram function is equal to the
scaled probability distribution function p(g) of gray levels in
that image: p(g) = + H(g) where Z?;”G":Lm p(g) = 1. Based
on the probability distribution we compute a measure for the
information contained in the image. In general, any function
o() can be used , but a common way of doing so is applying
Shannon‘s Entropy E [6], which in theory is a measure for
the number of bits required to efficiently encode an image
[7]. If the probability of gray level g in a given image is
represented as p(g), the amount of information E contained
is B = — chgé‘im p(g)log,(p(g)). Maximum information
content results if each gray level has the same probability (a
uniform histogram corresponds to maximum information).
Minimum Entropy results if the image contains only one
single gray level.

Since the task is not only to analyze the whole image, but
also analyze local patterns in the image, we use a regular
grid gc of size s = |gc| to partition the input image CP
into s grid cells gc;(CP),j = 1,...,s, and then apply the
method described above to compute the Entropy values for
each grid cell as E(gc;(CP)). We average over the local



Entropy scores to arrive at the global image Entropy score
for a Component Plane image CP:

B(CP) = =Y Blge;(CP)) 3)

Figure 6 visualizes the Entropy-based analysis on two Com-
ponent Plane images. To obtain the overall entropy score
E(CPA) for a Component Plane Array CPA, we finally av-
erage the Component Plane Entropy scores E(CP;), for all
n Component Plane images C'P; contained in CPA:

n

BE(CPA) = % S E(CP) (4)

i=1

The higher the ranking score E(CPA) of the Component
Plane Array, the higher the heterogeneity we associate with
the underlying F'V space.

S. EVALUATION

Next we evaluate our analysis methods in terms of how good
they resemble supervised analysis methods relying on hu-
man expert benchmarking. We base our evaluation on a FV
vector benchmarking data set from the field of 3D similar-
ity search, where the task is to define the most discrimi-
nating FVs for 3D geometric models, which in turn should
allow the most effective similarity search using FV space
distances. Equipped with a number of 3D FV spaces of sig-
nificantly varying discrimination power, we generate Com-
ponent Plane Array images, and compare their unsupervised
image analysis scores with respective supervised benchmark
scores.

5.1 Benchmark Dataset

The dataset used is the train partition of the Princeton
Shape Benchmark (PSB-T) [15], popular for evaluating 3D
similarity search algorithms. The PSB-T consists of 907 3D
meshes modeling objects like animals, humans, vehicles, and
so on. The models were manually grouped into 90 equiva-
lence classes by shape similarity [15]. This constitutes the
ground truth for evaluation of the retrieval precision of a
given candidate FV space. Briefly, evaluation is done by us-
ing each object as a query against the benchmark. The list
of answers obtained is evaluated by precision—recall statis-
tics over the relevance of the answers [15, 2]. These statistics
in turn are used to rank the effectiveness of the different FV
extractors.

From a variety of F'V extractors studied in previous 3D re-
trieval work [4, 3], we use a subset of 12 of the most ro-
bust methods to extract 3D FVs from the PSB-T bench-
mark. The individual methods consider geometric model
properties such as curvature, volumetric- and image-based
features and vary in dimensionality (tens to hundreds of di-
mensions). The individual FV spaces possess varying av-
erage discrimination power - some FV spaces work well for
similarity searching, others perform poorer. Table 1 gives
the used FV space names (FV name), along with respective
FV dimensionalities (dim.) and R-precision (R-prec.) as the
supervised discrimination precision score [4], relying on the
PSB reference classification. Larger R-precision scores indi-
cate better discrimination. Note that unlike in other data

analysis domains (e.g., classifier analysis), in multimedia re-
trieval precision scores below 50% are not uncommon [15,
4], depending on the benchmark considered.

5.2 Analysis Score Calculation

For each of the 12 PSB-T FV spaces, we generated Compo-
nent Plane Array images by first calculating Self-Organizing
Maps for the FV spaces, using rectangular SOM grids of size
32 x 24. We iterated 150 times over all database elements
during SOM calculation, stabilizing the SOM results. For
each calculated SOM and vector component, we then gen-
erated a Component Plane image by scaling the respective
component values linearly to the interval [0, 1] and applying
the color scale included in Figure 3. The actual Compo-
nent Plane images were rendered as 320 x 240 checkboard-
like raster images, where each component value was used to
color-code the respective cell on the SOM grid.

We then apply our visual analysis functions introduced in
Sections 4.1 and 4.2 on the generated images. We obtain
an aggregate analysis score for each F'V space by averaging
the analysis values for each of the respective components.
The dtb scores were calculated by applying Equation 2 from
Section 4.1 using a rectangular kernel of 5 x 5 pixels for
blurring. The Entropy scores were calculated by evaluating
Equation 4 from Section 4.2 on the CPA images. 8 bit gray
value quantization was used, and the sub-image grid gc for
analyzing each Component Plane image was set to 16 x 12,
yielding grid cell sizes of 20 x 20 pixels.

5.3 Results and Comparison

Table 1 lists the dtb and the E scores for each of the 12 FV
space representations of the PSB-T benchmark. By their
definition, increasing score values indicate increasing com-
ponent heterogeneity. Comparing the scores with the R-
precision values, we observe a high degree of resemblance
of the R-precision scores by our analysis scores. This is
an interesting result, as our analysis scores are based on
purely unsupervised (i.e., automatically extracted informa-
tion), while the R-precision scores rely on expert-generated
supervised information (the PSB classification).

Table 1: FV spaces with supervised discrimination
benchmark scores (R-precision) and unsupervised
image-analysis scores.

FV name | dim. | R-prec. | dtb E comb.
DSR 472 | 42.61% | 28.33 | 20.73 | 587.23
DBF 259 | 31.16% | 27.15 | 21.46 | 582.30
VOX 343 | 31.13% | 25.29 | 15.38 | 388.94
SIL 375 | 28.15% | 31.94 | 21.30 | 680.26
CPX 169 | 27.08% | 26.01 | 18.93 | 492.50

3DDFT 173 | 25.08% | 20.41 | 18.31 | 373.76
GRAY 120 | 22.54% | 28.66 | 19.41 | 556.22
RIN 155 | 22.52% | 15.53 | 14.68 | 228.07
H3D 128 | 20.20% | 25.07 | 18.19 | 456.06
SD2 130 18.36% | 11.74 | 15.18 | 178.24
COR 30 15.75% | 17.83 | 18.97 | 338.24
PMOM 52 14.82% | 12.22 | 5.80 70.89

We take a closer look at the resemblance between the un-
supervised and the supervised benchmark scores. Table 2



Table 2: Errors of the unsupervised ranking, mea-
sured against the supervised ranking.

FV name | R-prec. | dtb | E | comb.
DSR 1 +2 | +2 +1
DBF 2 +2 | -1 +1
VOX 3 +3 | +6 +4

SIL 4 -3 -2 -3
CPX 5 0 +1 0
3DDFT 6 +2 | +1 +2
GRAY 7 -5 -3 -3

RIN 8 +2 | +3 +2
H3D 9 -2 -1 -3
SD2 10 +2 0 +1
COR 11 -2 -6 -2
PMOM 12 -1 0 0

presents the discrimination power ranks assigned to the in-
dividual FV spaces, for the R-precision evaluation, as well
as the unsupervised CPA-based analysis. We use the R-
precision ranking as the base line, and compare the deviation
of the ranks assigned to the F'V spaces by the image analysis
functions. Again, the image-based analysis functions closely
resemble the supervised ranking, deviating just one or two
ranks positively or negatively from the supervised ranking,
for most of the candidate FV spaces. Specifically, the best
and the worst performing FV spaces, according to super-
vised benchmarking, are clearly identified by the automatic
analysis. This avoids the risk of erroneously choosing one
of the bad performing FV spaces when relying purely on
the automatic discrimination power analysis for FV space
selection.

While both analysis functions come close to the baseline su-
pervised ranking, there are certain differences in the rank-
ings. Considering the functions implement different hetero-
geneity definitions, a natural idea is to combine both scores
into an ensemble score, unifying both “opinions” on FV space
discrimination. Building ensembles by combining classifiers
of different types is a well-known approach for improving
classification accuracy. As both measures indicate increas-
ing component heterogeneity by increasing scores, we are
able to combine them simply by multiplication. The last
columns in Tables 1 and 2 list the combined score results.
The FV ranking based on the combined unsupervised score
closely resembles the ranking based on the supervised bench-
mark, over- or undershooting only a few ranks for most of
the F'V spaces.

The correlation of the individual and the combined scores
with the supervised rankings can be analytically compared
by Spearman‘s Rank Correlation Coefficient, a normalized
measure for the degree of correlation between sorted lists.
According to this measure, dtb and Entropy achieve 74.8%
and 64.3% rank correlation, respectively. The combined
score improves over the individual scores, achieving a cor-
relation of 79.8%. We also evaluated the correlation of the
supervised and the unsupervised scores by means of regres-
sion analysis. Figure 7 gives the regression analysis of the
R-precision and the combined scores using the logarithmic
regression model. The correlation is confirmed at squared
correlation coefficient R? = 51%.

Supervised vs. Unsupervised Benchmarking

~
<)
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y =431.61Ln(x) + 1029
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Figure 7: Regression analysis.

5.4 Discussion

Summarizing the experimental results, our image-based FV
analysis closely resembles the supervised benchmarking of
the PSB-T benchmark described in 12 candidate F'V spaces.
A combination of both individual analysis functions was
found to yield the best correlation. The evaluation supports
the idea that unsupervised F'V space benchmarking is possi-
ble using image-based analysis of certain (SOM-)compressed
FV space views. We state that we also performed extensive
experiments on synthetically generated data sets that sim-
ulate F'V spaces of varying discrimination power, validating
our results. We propose to use the unsupervised estimator as
a tool to complement or replace the supervised FV selection
approach. An advantage of our method is that it is data-
independent. Contrary to benchmark-based FV selection,
which requires to define a new ground truth whenever the
database content changes substantially, our method works
automatically.

The presented discrimination power estimation is based on
measuring heterogeneity among the components of cluster
prototypes in the considered feature vector space. In [12,
13], we performed a similar estimation based on analysis
of the heterogeneity of distances between the cluster cen-
ters. Noting that both estimators consider different char-
acteristics of the same FV space representation, it seems
promising to unify both discrimination power estimates into
a combined component and distance-based estimator. Pre-
liminary experiments indicate that the combination of both
component-based and the distance based estimator further
increase the estimation accuracy over the individual estima-
tors. Future work will study how to best combine all three
aspects into in a single estimation function, and quantify the
additional improvements achievable.

6. CONCLUSIONS

FV space discrimination analysis is an important problem
in many application domains relying on F'V representations
for similarity calculation. We introduced an approach for
automatic, unsupervised FV space discrimination analysis
based on analysis of certain component-based image repre-
sentations of compressed FV spaces. The method allows
unsupervised benchmarking of F'V spaces. It is useful when
there is no ground truth available on the data for which
FVs need to be extracted. In case where supervised infor-



mation is available, our approach is recommended as an ad-
ditional unsupervised “opinion” on the discrimination power
to expect in a given FV space. Experiments performed on
a comprehensive data set showed that the FV ranking pro-
duced by the proposed method highly correlates with that of
a corresponding supervised discrimination benchmark. An
additional advantage of the method is that it has an intuitive
visual representation (heterogeneity of the CPA images) that
can be well understood and interpreted by the user.

We consider these results promising for future work. We like
to refine the image-based analysis functions, and test them
on additional benchmark datasets for other data types, e.g.,
benchmarks from image similarity search and classification.
We here applied our analysis functions to the problem of
automatically benchmarking a number of FV extractors of
given vector dimensionality. The analysis is expected to be
also applicable for the dimensionality selection problem, a
task for which we like to test our method on.
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