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Abstract
Time series are a data type of utmost importance in many domains such as business management and service 
monitoring. We address the problem of visualizing large time-related data sets which are difficult to visualize 
effectively with standard techniques given the limitations of current display devices. We propose a framework for 
intelligent time- and data-dependent visual aggregation of data along multiple resolution levels. This idea leads to 
effective visualization support for long time-series data providing both focus and context. The basic idea of the 
technique is that either data-dependent or application-dependent, display space is allocated in proportion to the 
degree of interest of data subintervals, thereby (a) guiding the user in perceiving important information, and (b) 
freeing required display space to visualize all the data. The automatic part of the framework can accommodate any 
time series analysis algorithm yielding a numeric degree of interest scale. We apply our techniques on real-world data 
sets, compare it with the standard visualization approach, and conclude the usefulness and scalability of the approach.
CR Categories and Subject Descriptors: I.3.3 [Computer Graphics]: Picture/Image Generation – Display 
Algorithms; H.5.0 [Information Systems]: Information Interfaces and Presentation – General.

1.  Introduction

Large amounts of time-series data and data streams occur in 
many important application domains such as Finance (e.g., 
feeds of asset prices) or Network Monitoring (feeds of 
automatically probed network performance metrics). 
Regarding the discrepancy between acquisition and analytical 
processing of large time-related data sets, Eamonn Keogh et
al. [WKL*05] noted:

“Recent advancements in sensor technology have 
made it possible to collect enormous amounts of data in real-
time. However, because of the sheer volume of data most of it 
will never be inspected by an algorithm, much less a human 
being.”
Appropriate visualization of time-series data is a valuable 
tool for exploring previously unknown data and searching for 
interesting patterns. The standard approach using bar- and 
line-charts without support for the large data set problem is 
ineffective for visual analysis of time-series data: Given the 
limits of current display devices, we either have to accept 
overplotting (occlusion) effects in the display, or we have to 
integrate scrolling interaction. Both effects are not optimal 
regarding usability effectiveness. Basically, there are two 
options for addressing the large time-series visualization 
problem: (1) Numerically reduce the data size by sampling or 
aggregation, and (2) improve the drawing method used to be 
more space efficient than standard techniques. Potential 
drawbacks include that (1) introduces a loss in information, 
while (2) may lead to visualization metaphors not 
immediately familiar to the user.

In this paper, we propose to apply data- or time-dependent
nonlinear distortion techniques, generating visually 
aggregated layouts suited to effectively represent long time 
series in an easy to understand metaphor: Multiresolution 
grid layouts. Our work is novel in that we propose a non-
linear rescaling of the time axis, where the rescaling is based 
on either a predefined or an automatically obtained distortion 
profile. The approach is useful in many interesting 
applications in Network Monitoring, in Business and 
Finance, and in Science and Engineering. It can be used for 
online monitoring of data streams with high update rates, and 
for off-line analysis of large volumes of historic data.

2. Related Work In Time Series Visualization

Visualization for time series data involves a number of 
interesting research problems. An overview of the topic can 
be found in [MS03]. Considering the large time series 
visualization problem, we differentiate methods supporting 
many time series, or long time series, or both. In our own 
previous work, in [HDKS05] we addressed the problem of 
space-filling visualization of many time series of moderate 
length. Long time series have been previously supported by 
methods relying on data aggregation or efficient rendering 
methods. We next recall work from that area.

2.1. Data Aggregation for Time Series Visualization

In [Mun04] the author introduces a system where the user 
sets the number of bins to aggregate time-series values into 
prior to rendering. The user is allowed to zoom into any 
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region of the time-series on the fly. The system provides a 
time scale legend linked to the chart, indicating the level of 
aggregation. In [Chu98], the author proposes to lay out time-
related data in a circular histogram, mapping the time axis to 
the circumference of a circle. Mapping of multiple values to a
same pixel line may occur, which is then resolved by 
aggregation. In [SSJ05], the authors discuss visualizing sets 
of non-equal spaced time series arising e.g., in auction bid 
series. The time scale is transformed to an ordinal index, and 
each consecutive value is plotted in an equally spaced time-
line chart.

2.2. Space-Efficient Time Series Drawing 

A number of techniques focus on space-efficient rendering 
solutions. In [Chu02], time-series values are represented by
width and color in bar chart plots of uniform height. The slim 
chart profile allows many charts to be displayed in parallel. In 
[WAM01], time-series values are drawn by color and shape 
attributes along a spiral. The technique is especially 
recommended for periodic data. Spirals for time-series have 
also been explored in [CK98]. The scalability of time series 
displays may be maximized by resorting to the pixel level. In 
[KKA95] a recursive scheme mapping sets of time series to 
color-coded raster pixel displays is introduced. In [SK00], a 
qualitative and quantitative discussion on the limiting factors 
of certain time-related visualization techniques regarding 
scalability with data size can be found.

2.3. Our Contribution

 Common to the previously noted approaches is that they 
apply a uniform resolution level for aggregating and drawing, 
not allowing for locally varying degrees of aggregation. In 
this work, we introduce the notion of degree of interest (DOI)
defined over time series, and use it to generate multi-
resolution layouts of long time series. The layouts display 
data portions considered interesting at high resolution levels, 
enabling the analyst to quickly perceive important data 
interval characteristics in the time series. At the same time, 
the layout displays less interesting data portions at lower 
resolution levels, providing the context of the full time-series.
Please note that the basic idea of this work has been sketched 
previously in a poster paper [HDKS06].

3. Background

Central to our approach to multi-resolution time-series 
visualization is the degree of interest (DOI) concept [Fur86]. 
It defines the notion of interest over a dataset by 
distinguishing between areas of focus (high interest) and 
context (low interest). DOI was introduced to model certain 
naturally occurring distortions like fisheye views [Fur86]. 
DOI aims at visualization of large data spaces by representing 
certain data subsets which are in the focus of a user at high
level of detail, while keeping the remaining data in context at 
lower levels of detail (a smaller fraction of the display real 
estate). DOI defines the interest of any data element x as its a-
priori (data-dependent, constant) interest level API(x), minus 
its distance to the current point of focus, y. Given a data set 

with DOI function, a transfer function is then used to map the 
data set to the display space. The transfer function relies on 
the DOI function and controls the level of detail allocated.

In [Fur86], the DOI concept was instantiated for tree-
structured data. A distance function on trees was defined, and 
by thresholding the DOI function the most interesting tree 
portions were displayed. In the Table Lens system [RC95], a 
two-dimensional DOI function was defined on the rows and 
columns of a spreadsheet. The DOI for each dimension was 
assumed to be a pulse function, with the pulse at a number of 
consecutive rows and columns in user focus. A linear transfer 
function was used to scale rows and columns in the tables, 
and data was shown at the highest aggregation levels 
permitted after the scaling of the spreadsheet cells. Figure 1 
illustrates the Table Lens DOI concept.

In [Fur86] and [RC95], it was assumed that the focus was 
interactively set by the user. Here we are concerned with 
layouts where the focus is automatically determined by the 
system. We use DOI profiles that are either preconfigured to 
fit the given application domain, or which are automatically 
derived from the data by a suitable analysis algorithm. The 
DOI profile is then applied to display large time-series data 
by visual aggregation. Guided by preliminary 
experimentation preformed, we believe that the number of 
distinct resolution levels in a multi-resolution time-series 
display should not be too high; a limited number of distinct 
resolution levels support the user in visually discriminating 
the different levels. A clear perception is necessary because 
the resolution level has to communicate (1) the amount of 
data per display unit (data density), and (2) the relative 
interest of the data partitions in context to the whole series. 
(1) is especially critical because it influences the perception 
of time in terms of duration of periods and localization of 
values along the time axis. Perception of time is important for 
visually finding recurring patterns in the time series data, and 
for comparative analysis in general.

We next describe a static (Section 4) and a dynamic
(Section 5) approach for deriving DOI functions from time-
series data, map these to appropriate multi-resolution time 
series displays.

4. Time-Dependent Multi-Resolution Layout Generation

 In many application domains there exists a stable time-to-
interest relationship. We call this case time-dependent, as the 
DOI profile is depending only on the time axis and not on 
local characteristics of the data. In other words, only the age 

Figure 1: A single-peaked DOI profile applied on a
spreadsheet (taken from RC95).
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Figure 3: CPU utilization values for 288, 864, 7.776, and 25.920 values (top-left to bottom-right) taken from one target host 
on a network. The color map assigns shades of green (low) to red (high) CPU utilization measurements (cf. the color map 
illustrated in Figure 2). The display allows visually analyzing large time intervals, keeping the most recent data (leftmost 
partition in each image) at highest resolution. The cell sizes for the older data are decreased by increasing data size. 
Considering the full time frame in the last image, we learn that the server is currently idle, but before that it experienced 
medium CPU utilization for quite some time (orange-colored cells). The medium utilization phase was characterized by 
periods of high peak utilization (the red “hot spots”). The utilization peaks occurred in regular intervals since the hot spots are 
evenly distributed.

Figure 2: Example color scale.

of the data determines its interest. An important application 
where time-dependent layouts are useful is network 
monitoring. The data consists of series of regularly sampled 
performance measures regarding utilization of network 
communication, process workload, etc. The network 
monitoring expert’s task is to survey the performance of the 
network, to ensure that it meets predefined requirements, and 
to resolve problems as they occur. The main factor 
determining the interest of the network metrics can be 
assumed to be its age. The less current an observation is, the 
less important it is for the monitoring task. Conversely, the
newest data can be assumed to be of highest interest. We note 
that, apart from age, of course characteristics of the 
observations will determine the interest of data portions, at 
least to some degree. In general, the interest can be modeled 
as a combination of age and data characteristics.

In the time-dependent case, we need to specify the degree 
of interest as a function of data age. Then, we can generate 
corresponding multi-resolution layouts where the level of 
resolution for each data partition to be visualized is 
depending on the corresponding data age. The level of 
resolution of a given data interval consists of a visualization 
method and a subset of display space allocated. Considering 
the visualization method, any technique for time-related data, 
e.g., line-charts, pixel-based displays, and glyph 
representations are possible.

We go on to formalize the concept of a discrete time-series 
degree of interest profile as a set of triples called multi 
resolution indices, MRI. An MRI triple indicates the amount 
of data to show, the amount of display space to allocate, and 
a rendering method:

MRIi = (Di, Ri, Vi)

Data range Di specifies the data interval shown; display
space Ri specifies the fraction of display space that is 
allocated to Di. Rendering method Vi specifies the method for 
drawing Di within Ri. By specifying appropriate profiles and 
drawing methods, we accommodate many use cases.

4.1. Matrix-Based Drawing Method

The color-coded matrix technique [HDKS07] is a 
generalization of the pixel-oriented visualization given 
in [KKA95]. It displays each data value by a rectangular 
amount of screen space, where the layout of rectangles can be 
configured in a number of different ways. The rectangles are
color-coded to represent the magnitude of the value to be
shown. The color is obtained from an appropriate function 
mapping the values x of the given data range to a color value:

colorxcolormap →::

Figure 2 illustrates the color map used in this paper. The 
cells are found by partitioning the input display rectangle into 
rows and columns forming a grid of cells. The number of 
rows and columns is found such that at most one column is 
only partially occupied with values, and that the cell shapes 
approach squares as closely as possible. The cells are filled in
the order of the time series in a column-by-column manner 
from left to right. The display is efficient in visualizing large 
amounts of data. Compared to bar or line charts, color-coded 
matrix charts require much less minimum display space for 
lossless time-series display. Based on the amount of data and 
available screen space the matrix display scales down 
rectangle sizes, eventually utilizing the pixel level. Therefore, 
the matrix display is a compact and efficient approach for 
visualizing large time series. We note that the pixel-level is 
the ultimate limit for efficient lossless time series drawing. 
Accommodating even more data in a space-filling way, we 
need to apply numeric data aggregation methods. In our 
implementation, we resort to data sampling for drawing data 
partitions which sizes exceed the number of pixels in the 
allocated hosting display space.



 Multi-Resolution techniques for Visual Exploration of Large Time-Series Data

  

4.2. Application of the Time-Dependent MR Layout

We now apply the time-dependent multi-resolution 
technique on a large real-world data set from the network 
monitoring domain. We define a three-fold multiresolution 
profile which has been found useful in this domain. It is 
defined using weights for data and display as:

MRI =  { MRI1 , MRI2 , MRI3 }
  =  { (1, 1, c-matrix),

 (4, 1, c-matrix),
 (16, 1, c-matrix) }

 This means that the whole time series is divided into three 
intervals. Each interval is given the same amount of display 
space, as Ri = 1 for all MRI. The partitions contain
increasingly more data: D1 = 1, D2 = 4, D3 = 16 (a factor of 4
is used for expanding the data intervals). The display 
emphasizes perception of the most recent data interval D1 at 
high resolution (data-to-display relation is 1:1), while 
maintaining the intermediate (D2) and old data (D3) in context 
(data-to-display relations are 4:1 and 16:1, respectively). By 
putting increasingly more data into the same amount of 
display space, data density increases. Perception of data 
density is visually supported by drawing borders around each 
matrix cell in the display. For the first MRI matrix, we 
arrange the color-coded matrix cells in a fixed one-row 
layout. For the other data partitions, we find the cell grid 
dimensionality to approximate squares while minimizing 
empty cells. We have found using one-row matrices for the 
first data partition to be the best policy to underscore the 
interestingness of the first (and most recent) partition, while 
supporting discrimination of the time-interval durations in the 
consecutive data partitions.

Figure 3 illustrates the color-coded matrix display for an 
increasingly longer time series of a server’s CPU utilization 
metric, probed in 5 minute intervals. The full time series 

compounds observation data from 3 months, resulting in 
about 25,000 probes. The full data set is shown in the last 
row in Figure 3. We note that this number of observations 
could not be plotted properly and space-filling in a standard 
line or bar chart, and on a current workstation display device.

Another application is given in Figure 4, illustrating the 
color-coded matrix display for CPU utilization metrics of 
multiple hosts simultaneously. By plotting them in a tabular-
like layout below each other, one is able to visually correlate 
the performance of the hosts along the present, intermediate, 
and long-term scales.

4.3. Animating the Multi-Resolution Displays

The matrix technique can also support the monitoring of 
data streams in real time. We propose two modes of operation 
for the technique. One is to fix the grid sizes and allow a 
constant number of most recent values in the display at any 
time (incoming data flushes oldest data). The other mode is to 
allow any number of data values to accumulate in the display 
by distributing the set of values according to the multi-
resolution layout definition, as the data streams in. One nice 
aspect of the matrix technique is that it elegantly allows 
encoding the interestingness of any amount of data by simply 
setting the data density, which in turn determines the matrix 
cell size (resolution). If we reduce the given display space, 
the same number of observations will be drawn with smaller 
cell sizes, reflecting less interestingness of the data.

We note that an open problem of animating the display in 
the sketched ways is that of positional changes of values
occurring (positional discontinuities). Studying these effects 
more carefully, and developing improved visualizations 
which diminish these effects, are considered interesting 
future work.

5. Data-Dependent Multi-Resolution Layout Generation

In Section 4 we discussed the usage of fixed multi-
resolution layouts appropriate when a stable DOI function
over time exists. On the other hand, there exist scenarios 
where the user has no a-priori knowledge regarding the data, 
but expects the visualization to structure (guide) the data 
exploration and analysis process. In this paper, we propose to 
have an algorithm automatically analyze the data, and derive 
an appropriate data-dependent DOI function based on the 
outcome of the analysis. The design space for building such 
functions is large. We next give a basic binning-based 
algorithm that calculates a DOI function for time-series. The 
algorithm can accommodate any time series analysis function
yielding a scalar interest measure defined over the time 
series, as required by the application.

Like pointed out earlier, we assume that the layouts should 
consist of only a limited number of different resolution levels
in order to be effective. The aim of our data-dependent 
multiresolution display is to enable the user to quickly 
identify (focus on) the most interesting portions of the data, 
while keeping the complete time series in perspective. In 
particular, the display has to effectively communicate the 
following:

Figure 4: Comparison of multiple time series along three 
resolution levels. The chart shows the continuous CPU 
utilization history (3 days = 864 values) of 8 different 
computing hosts. The color map assigns shades of green 
(low) to red (high) CPU utilization. Overall, there is little 
correlation between the servers’ utilization profiles, 
leading us to conclude that these operate independently 
of each other (they are not pooled in a load-balancing 
configuration). The overall utilization level is rather low
(green), except for one high utilization period of medium 
duration for server pepsedeapp24 (2nd from below) and 
one high utilization period of long duration for server 
pepdpepdc03 (1st from above). 
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1. The interest levels of each portion with respect to 
the whole data set;

2. The interval covered by each partition, in terms of 
number of observations (duration on the time 
scale); and

3. The timestamps of start and end endpoints of the 
identified data interval.

We support these goals by abstracting the data set into a 
limited number of data partitions which are shown at 
discretized resolution levels corresponding to their degree of 
interest, as determined by the algorithm generating the DOI 
function.

5.1. Calculating the DOI Function

The basic idea of our DOI profile generator is to partition the 
time series into a number N of equal-width data bins, and 
determine the magnitude of a suitably defined real valued 
measure for the interest level for every bin. Depending on the 
application at hand, this measure might be anything from a 
simple averaging function to an advanced unsupervised time-
series analysis algorithm like given in [WKL*05]. 
Optionally, we then reduce the number of bins by merging 
each pair of adjacent bins if the respective interestingness 
scores have similar magnitudes (as determined by a threshold 
parameter t; cf. Section 5.3.2). The result is a piecewise 
constant DOI function with cardinality less than or equal to 
N, representing the degree of interest over the time series, as 
implemented by the time series analysis function. Figure 5 
illustrates the DOI calculation process.

5.2. Generating the Multi-Resolution Layout

The second step is to transfer the calculated DOI function to 
the multi-resolution display. We first note that the DOI 
profile we obtained already defines the display layout up to 
the resolution level: The piecewise constant DOI function 
breaks up (segments) the time series into a number of 
partitions each associated with a constant degree of interest. 
Naturally, these segments should be displayed in the same 
visual unit and at the same resolution level each. We can 

determine the resolution level for each partition by 
considering the area under the DOI function over the 
considered data partition in relation to the total area under the 
DOI curve. The resolution level RESi for a data segment Si in 
the interval [i0, in] of a time series can then be expressed as:
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where DOI(t) is the degree of interest function defined for 
each time index (time stamp) t between [T0, TN] of the time-
series domain, and s is a non-zero scaling factor. For s>1
(s<1), smaller resolution levels are emphasized 
(deemphasized).

As a result of calculating a discrete DOI function and 
transferring it to a corresponding multi-resolution layout, all 
we have to do is find the appropriate rendering methods 
parameterized by resolution level. One method is to predefine 
a number of rendering methods, order them by resolution 
level, and map the numeric resolution scales calculated for 
the data portions to the set of predefined rendering methods. 
Here we choose another way that relies directly on the matrix 
rendering method described in Section 4.1 by interpreting the 
resolution level RESi as a weight for allocating display space 
to data intervals. Recall that the matrix drawing method 
operates on a data range and a partition of display space. By 
increasing (decreasing) the amount of display space allocated 
to a given data partition, we increase (decrease) the amount 
of space available per value, thereby increasing (decreasing) 
the resolution of the display. As we recall from the 
application of the matrix technique, the grid resolution is 
reflected in the size of the cells. Thereby, the level of interest 
is readily perceivable when using the matrix technique in 
conjunction with automatic DOI generation. Figure 6 
illustrates the transfer of a DOI profile to the matrix drawing 
approach.

To summarize, the data-dependent multi-resolution layout 
automatically assigns display space to data partitions guided 
by the DOI clustered and merged by similarity of interest 
scores.

Figure 5: DOI extraction from raw time series by 
determining the interestingness score over the time series for 
a number of bins N, followed by (optional) merging of bins 
with similar interestingness scores.

Figure 6: Mapping the generated DOI profile to a 
corresponding multiresolution layout using the color-coded 
matrix display visualization. The DOI profile determines the 
data partitioning, while the transfer function maps the data 
intervals to screen partitions. Implicitly, this also reflects the 
level of resolution of the partitions via the matrix 
dimensionality (cell sizes).
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5.3. Instantiations

We discuss two instantiations for data-dependent multi-
resolution layout generation. The first fixes the basis time 
interval for the automatic resolution determination. The other 
instantiation also determines the interval size automatically.

5.3.1. Fixed Time-Slice Displays (FTS)

In this mode, we fix am atomic time slice which is used 
throughout the multi-resolution layout generation. This 
approach is motivated by the fact that in many applications, 
there is an atomic base time interval with which the users are 
familiar and which the analysts use to base their rankings on. 
E.g., in Finance, often developments are considered on a 
daily basis. The fixed time slice display is generated by fixing 
the number of bins for which the DOI is calculated, such that 
each bin represents the number of values corresponding to the 
fixed time unit. Let time series TS contain |TS| values, and 
the atomic unit contain u values. Then the number of bins is
set to b = |TS| / u. The fixed time slice instantiation results in 
multi-resolution layouts where each interval (data chunk) 
corresponds to the constant, atomic time interval predefined, 
and interestingness of the chunks is reflected by respective 
data density as allocated by the transfer function. Note that 
FTS is effectively produced by omitting the bin-merging step 
illustrated in Figure 5 (bottom).

5.3.2. Variable Time Slice Displays (VTS)

In this mode we make the determination of data partition
sizes dependent on the interestingness profile by merging 
partitions of only small interest differences, and showing 
them in the same visual unit. VTS results in MR layouts 
where each interval (data chunk) length is dependent on the 
outcome of the merging step (cf. Figure 5, bottom) in the 
analysis algorithm based on the scale of the interesting
function and the merging threshold parameter t. The length of 
a time slice is an integer multiple of the length of the initial 
bin partitioning according to parameter N. VTS is able to 
more compactly represent the interestingness profile by being 
allowed to merge individual bins, possibly forming less 
isolated data intervals in the display. On the other hand, VTS
is somewhat more difficult to visually process, as the 
distribution of individual time-series partition lengths is 
potentially heterogeneous. To compensate for this potential 
drawback, we next introduce special charting elements aimed 
to support the perception of the different individual time-slice 
lengths.

5.4. Multi Resolution Charting Elements

We propose including special charting elements for multi-
resolution displays. The multi-resolution legend is placed on 
top of a time-series chart layout. It textually gives the time 

Figure 7: Two series of CPU utilization measures in a fixed time-slice multi-resolution layout (FTS). The time slice was set to 
2 hours. The DOI profile was generated using the AVERAGE aggregation function analyzing both time series.

High variance (many time lines/resolution)

Cana Cana

Low variance (fewer time lines/resolution)

Figure 8: Showing four variable time-series results for exchange rate returns out of 12 International currencies 
measured against US-$ using the MAXIMUM aggregation function and independent DOI analysis for each of the 
time series.
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range as well as the number of values covered by each partition
(see bottom of Fig. 6). It contains a visual representation of the 
partition layout (grid or bar chart structure). Time lines then 
map from the reference linear time scale (top edge in the 
diagram) to the multi-resolution time scale (middle edge in the 
image) as defined by the partitions, providing explicit visual 
clues on the levels of resolution applied. Inter-series time-lines
map from partition boundaries in one series to the respective 
position in another series, providing time alignment 
information for displays consisting of multiple multi-resolution
time series. These connecting time-lines are specifically useful 
for array of time series where for each time series an individual 
layout is generated.

5.5. Application of the Data-Dependent MR Layout

In Section 4.2, we applied the CPU utilization data in time-
dependent multi-resolution layouts (cf. Figures 3 and 4). In 
this section, we apply the same CPU utilization data to 
demonstrate the FTS in Figure 7. We assume we are 
interested in identifying bottlenecks in the performance data. 
Opposed to the application in the last section (online 
monitoring), here we are concerned with analysis of historic 
(non-online) data. When generating layouts for multiple time 
series, basically there are two modes of operation. The first 
mode refers to obtaining the layout automatically from one 
specific time series in the set of time series, and then 
repeatedly applying this layout on all time series. This choice 
is most appropriate when there is one root (master) time 
series in the data set, which in some way exercises influence 
on the other time series, and for which we want to search for 
correlations. E.g., in network monitoring, we can cumulate 
several performance measures like response time, disk 
utilization, availability and so on into one master metric like 
service level compliance. Then, this master metric can be 
used to derive an aligned overall multi-resolution. The second 
mode of operation is to generate individual layouts for each 
time series in the set, and use the inter-series time-lines 
charting element.
Figure 7 shows the application of the FTS multi-resolution
layout of a data set of two time series representing CPU 
utilization probes during one day. We used the maximum
function on a number of bins to derive the DOI function. The 
top chart shows the FTS result, when using the first time 
series as the master for deriving the interestingness profile. 

The time slice was fixed to contain 2 hours. The first series 
gives the multi-resolution layout which is adopted for the 
second time-series. We quickly recognize two time slices 
with high maximum CPU utilization: These slices are 
allocated significantly more display space by the layout 
generator, while the intervals with low utilization get less
display space. Again we can perform detailed visual 
correlation analysis to see if the utilization profile of the first 
server corresponds with utilization patterns of the remaining 
servers.
Figure 8 shows the independent variable time slice analysis 
(VTS) approach. The image shows the result of the variable 
time slice layout generator applied on another data set: Time 
series of return rates of International currencies measured 
against the US-$ for roughly 10 years, corresponding to 2566
return rates per currency [Duk]. We set the profile generator 
to consider the maximum aggregation function for generating 
variable time slice layouts independently for each of the 
series, using time lines as visual clues to aligning the time 
periods. The DOI analyzer isolates time subintervals with 
sufficiently different maximum spot rate returns for the 
different currencies. We recognize that compared to the fixed 
(FTS) layout in Figure 7, it is somewhat harder for the user to 
align the different time period subintervals, because we now 
have different time slice sizes. Nevertheless, the time lines 
allow getting a rough alignment, and it is easy to support 
time-based alignment perception using standard interaction 
techniques. The main use-case and advantage of variable-
time slice and independent analysis is that it allows 
assumption-free and comparative visual analysis of the 
characteristics present in many and long time-series data. The 
tessellation into the different MR levels indicates the 
variability of the interestingness metric within and among the 
different time series. E.g., the Canadian $, as given in the 
bottom row of the low variance time-series in Figure 8, has 
the most homogenous return rates with little variance, and it 
is segmented into only 5 different subintervals by the DOI 
analyzer. The other currencies in the example show more 
dynamics in the return rates, as is obvious from the many 
different time slices in the top high variance time-series. 

6.  Comparison to Line Charts

 As discussed previously, over plotting and information 
loss may easily result when drawing large time-series using 

Figure 9: Visualization of 28 days worth of CPU utilization probes from one server resulting in 7776 observation values. From top-
left to bottom-right is given (1) the raw data showing overplotting artefacts, (2) sampled data, (3) averaged data (both loosing detail), 
and (4) the color-coded matrix display representing the whole information. Users can focus on an interesting area and zoom to a 
detailed line chart.
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standard line-chart displays. In Figure 9, we show a time 
series with 7776 values. Using no data reduction, we observe 
severe overplotting effects (top-left). We cannot see detailed 
developments anymore, but rather just the bandwidth in terms 
of minimum and maximum values for many time intervals. 
When using data reduction by equi-spaced sampling (top-
right), we may lose information, and based on the sampling 
intervals, aliasing artifacts may show characteristics which 
are not present in the original data. Averaging (left-bottom) 
introduces a smoothing effect which shows a somewhat more 
deterministic representation than sampling does, but extreme 
values are also smoothed, resulting in loose information 
which is important in many applications, like network 
monitoring where the peaks (extreme) are especially 
important. Given is also the color-coded matrix display in 
Figure 9 (bottom-right; a single data partition profile was 
chosen). The display is able to visualize the full data set 
without numeric data reduction, thereby not incurring any 
information loss. The overall time series pattern as well as 
local characteristics is well perceivable. The multi-resolution 
technique complements line charts without losing 
information. Users can zoom in on any interesting areas to 
detailed line charts for further analysis.

7. Conclusions

In this paper, we have introduced a family of multi-
resolution techniques for visualizing long time-series data 
using non-linear rescaling in conjunction with a space-
efficient rendering method. The rescaling was performed by 
generating either time-dependent or data-dependent DOI 
profiles. For the analysis, any appropriate time-series analysis 
algorithm which produces a numeric interest scale can be 
employed. We presented applications of the technique in the 
network monitoring and finance domains, and concluded its 
effectiveness for visual analysis of long time-series data. 
Resorting to multi resolution visualization is a useful
approach for (a) coping with increasingly larger data sets 
occurring in many application domains, and (b) guiding the 
user in distinguishing more and less important data types.

Future work involves visualizing stream data and 
researching additional drawing methods that continuously 
scale with the obtained DOI functions. We will integrate 
more complex time-series analysis algorithms and extend
them to further application domains. The usage of 
iconographic representations of patterns in time-series 
databases is another promising approach we will explore for 
scaling with very large data. Finding appropriate 
iconographic drawing methods that intuitively represent 
predefined patterns in time series data along with their 
interestingness at a given resolution level is expected to lead 
to semantically rich visualizations.
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