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Figure 1: We present and evaluate six interaction techniques for selecting network nodes in a VR environment.

ABSTRACT

The visual analysis of networks is crucial for domain experts to
understand their structure, investigate attributes, and formulate
new hypotheses. Effective visual exploration relies heavily on inter-
action, particularly the selection of individual nodes. While node
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selection in 2D environments is relatively straightforward, immer-
sive 3D environments like Virtual Reality (VR) introduce additional
challenges such as clutter, occlusion, and depth perception, compli-
cating node selection. State-of-the-art VR network analysis systems
predominantly utilize a ray-based selection method controlled via
VR controllers. Although effective for small and sparse graphs,
this method struggles with larger and denser network visualiza-
tions. To address this limitation and enhance node selection in
cluttered immersive environments, we present and compare six
distinct node selection techniques through a user study involving
18 participants. Our findings reveal significant differences in the
efficiency, physical effort, and user preference of these techniques,
particularly in relation to graph complexity. Notably, the filter plane

https://orcid.org/0000-0001-7049-5203
https://orcid.org/0009-0007-6423-7823
https://orcid.org/0000-0003-2555-6868
https://orcid.org/0000-0001-8528-8928
https://orcid.org/0000-0001-7966-9740
https://orcid.org/0000-0001-5474-4214
https://orcid.org/0000-0001-8076-1376
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3677386.3682102
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3677386.3682102&domain=pdf&date_stamp=2024-10-07


SUI ’24, October 07–08, 2024, Trier, Germany Joos et al.

metaphor emerged as the superior method for selecting nodes in
dense graphs. These insights advance the field of effective network
exploration in immersive environments, and our validations provide
a foundation for future research on general object manipulation in
virtual 3D spaces. Our work informs the design of more efficient
and user-friendly VR tools, ultimately enhancing the usability and
effectiveness of immersive network analysis systems.
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1 INTRODUCTION

Visualizing networks to gain insights into structure, node attributes,
connection strengths, and other factors has a long tradition and has
proven beneficial for various research and application domains [3,
11, 14, 39]. Moreover, the visual analysis of networks, in combi-
nation with the domain knowledge of experts, often leads to new
hypotheses that can be evaluated using mathematical concepts and
statistical tests. For this purpose, adjacency matrices and node-link
diagrams are the predominant visual representations expressing the
network structures and attributes [34]. These visualization types
are often created and explored using classical 2D setups, i.e., a 2D
monitor with mouse and keyboard interaction, for which multi-
ple popular tools and libraries, such as Cytoscape [40], Gephi [4],
or NetworkX [18] exist. However, with the rising field of Immer-
sive Analytics (IA), 3D network representations interactively ex-
plorable in immersive environments, such as Virtual Reality (VR),
Augmented Reality (AR), or CAVEs become increasingly popular,
showing benefits compared to 2D setups in multiple user evalua-
tions [16, 24, 29, 53]. Especially node-link diagrams tend to benefit
from the third dimension, stereoscopic vision, and the advanced
interaction capabilities of immersive setups [20].

The effective analysis of data visualizations requires multiple
interaction capabilities, for instance, navigation, filtering, annotat-
ing, and arranging visual elements [7]. These high-level interaction
concepts typically require the selection of elements as an initial,
low-level interaction [27]. This is also the case for the exploration
of node-link visualizations, where the selection of nodes plays a
central role, e.g., for retrieving attribute information, annotating
it, removing it, highlighting its neighbors, initiating calculations
based on the node, adding edges to other nodes, or revealing the
underlying structure if the node represents an aggregated sub-
network [5, 39, 49]. Layout algorithms for 2D node-link diagrams
optimize for multiple criteria and usually ensure that nodes are
drawn without overlap. Therefore, selecting individual nodes with

the mouse tends to be rather easy. In contrast, 3D node-link repre-
sentations typically lead to node occlusion and clutter, depending
on the user perspective [19]. Therefore, the selection of nodes in a
VR setting–often based on pointing a visual ray with a VR controller
at a desired node while pressing a button–can be cumbersome and
frustrating, especially for larger graphs and when overlap and clut-
ter prevent precise selections.

We highlight the threemajor contributions of our research:
• The implementation of six controller-based VR selection
concepts adapted to the use case of network structures.

• A detailed user study with 18 participants providing valu-
able insights and validation regarding the efficiency, physical
effort, user preference, and individual user feedback.

• A comprehensive analysis and discussion of the study results,
opening up new research questions and informing the design
of interaction concepts for similar use cases and applications.

Our research does not only contribute to improved visual network
analysis in VR but also validates the potential to enhance user in-
teraction and efficiency in a variety of fields that rely on immersive
data visualization and IA, including, but not limited to, bioinfor-
matics, social network analysis, and educational tools, providing
insights for data and object interaction in immersive environments.

2 RELATEDWORK

We review related research, focusing on object selection in virtual
3D environments, especially when the space is cluttered with a high
level of occlusion (Section 2.1), and research targeting the selection
of network nodes in existing 2D and 3D applications (Section 2.2).

2.1 Object Selection in 3D

Selecting objects in cluttered virtual 3D environments presents
significant challenges due to occlusion and limited accessibility.
Over the last years, VR applications started to incorporate head
gaze [2], eye gaze [37], or speech recognition [33] to address these
challenges. While the majority of environments still rely on hand-
held controllers or camera-tracked hands for interaction, modern
HMD technology allows the combination of gaze and hands [35].
Controllers or tracked hands are often represented virtually, aiding
users in understanding the mapping between physical and virtual
space, anticipating actions, and imitating a physical touch.

Ray-Based Interaction — One common technique is using a laser
ray controlled by hand-held devices to select objects through point-
ing [1]. Similarly, the users’ eye gaze can be incorporated as a
selection ray pointing at the first intersected or the closest item
(snapping) [35], a technique that is also used for hand-based point-
ing [28]. Ray-based selection is particularly useful for selecting
objects beyond the user’s physical reach and is usually combined
with pressing controller buttons or hand gestures to trigger actions.
However, in cluttered spaces, accurately targeting small and distant
objects with a ray (or direct touch) can be challenging [50].

Improving Selection Accuracy in Cluttered Spaces — Several meth-
ods have been presented to facilitate selection when clutter and
occlusion become a challenge [1]. One option is to rearrange ele-

ments in a grid or other non-occluding structures [8, 21, 41, 56].
In a second step, users apply ray-based interaction to select the
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target element. While effective and guaranteeing an occlusion-free
selection of the elements, this approach can disrupt the original
spatial relationships between elements. Another approach is to
filter out objects, for instance, based on the distance to the user,
incorporating a virtual cursor, or applying a filter volume to hide
contained objects [8, 9, 41, 56]. Moreover, diambiguating close ob-
jects by slightly changing the positions of elements around the laser
ray to avoid occlusion [17, 56] or applying a local force-directed
layout [21] can facilitate the selection. Furthermore, dynamic selec-
tion volumes that adjust in size can help to ensure that only one el-
ement is selected [48]. This approach has been extended to support
multiple elements, mapping them to individual fingers for selec-
tion [10]. Furthermore, Montano-Murillo et al. [31] proposed using
a 3D volume to select a slice and project the content to a 2D plane
for easier selection. Zhu et al. [58] incorporate a hand-controlled
volume and use a control-display gain, dampening the hand move-
ment to allow for a precise selection within the volume. Techniques
like sphere-casting and progressive refinement allow users to
progressively narrow down their selection until the target object is
selected [23]. Molina and Vázques [30] allow users to correct their
initial selection of atoms in a virtual molecule by hopping to the
neighboring objects using the controller touchpad. In addition, vari-
ous bimanual techniques have been proposed, such as controlling
aspects of the selection process with a user-controlled plane and
a ray intersection method. These methods involve steering each
component with different hands and determining the closest object
to the intersection of plane and ray [55, 57]. Wu et al. [54] compare
point- and volume-based interaction techniques together with (de-)
selection mechanisms, finding point-based selection advantageous
for unstructured data and volume-based beneficial for structured,
grid-like object alignments.

Besidesmethods targeting accuracy improvement for hand-based
selection, interesting approaches have been proposed for eye gaze
interaction. Sidenmark et al. [43] identify the object to select by
comparing the shapes of objects within the gaze cone with the
gaze path of a user and selecting the most similar object. Another
method by Sidenmark et al. [42] also uses a gaze cone to retrieve
candidate objects but applies movements to the candidate objects
and matches these with the vergence of the user’s eyes to detect
the target object. The Cone&Bubble approach is based on cone
selection to retrieve a candidate set from which the target node is
selected using a bubble cursor [45]. Instead of relying exclusively on
eye or hand tracking for selection, the weighted pointer approach
calculates the error rate of eye gaze and includes a fallback modality,
combining both signals to allow for a more precise selection [44].
Despite these advancements, most research has focused on select-
ing unstructured elements–mostly spheres or general objects–with
no specific application use case. Moreover, previous studies, such
as structure-based neighborhood refinement [30], only compared
variations rather than comparing the applicability of fundamentally
different methods against each other. In our work, we focus on node
selection in 3D networks, which come with specific characteris-
tics, such as the position of nodes and their topology, which are
essential for the understanding of users and their ability to select
desired nodes (e.g., the node with the highest degree). Therefore,
some previously presented techniques, such as grid alignment of
candidates, which incorrectly alter the structural representation

of the underlying data, are not applicable for our application. We
address this gap by designing multiple selection techniques tailored
to the specific requirements of 3D node-link representations and
comparing these fundamentally different selection concepts in a
comprehensive user study.

2.2 Network Node Selection in 2D and 3D

The selection of elements is a fundamental technique in visual ana-
lytics systems and common 2D visual network exploration frame-
works. These frameworks typically use two-dimensional graph
layout algorithms to avoid node occlusions or respect semantic
information encoded in the data. Therefore, common tools sup-
port the selection of nodes through multiple techniques, including
direct clicking, rectangular or lasso brush, textual search, or the
selection from a list panel [4, 40]. When node representations are
too small for selection, e.g., in a large network, users can typically
change the zoom level to interact with them accurately. Apart
from navigation-oriented interaction for effective node selection,
focus+context methods have been introduced. These approaches
typically distort the geometric space around the cursor in such a
way that nodes with a high distance to the focus move closer to-
gether and nodes around the focus move apart, allowing for easier
selection in the focus region [13, 32, 38]. To cope with geometric
distortions, ignoring the graph topology and changing the structure,
topology-preserving methods have been developed [15, 51, 52].

Existing applications for immersive network exploration sup-
port node selection by using ray-based pointing [12, 36, 46], di-
rectly touching them in the virtual space [6, 47], placing a three-
dimensional selection volume [26], or checking node names in

a list displayed within the virtual environment [36]. While im-
mersive 3D environments support standard techniques, such as
scaling or navigation, to facilitate the selection of nodes, more ad-
vanced concepts have not been investigated yet. Whereas multiple
approaches have been developed to facilitate the selection of net-
work nodes in 2D setups by adapting their positions based on the
focus point, none of them have been applied to 3D networks. Cur-
rently, node selection in immersive setups is mainly based on direct
ray- or hand-based interaction without additional support. We fill
this gap by presenting 3D node selection techniques incorporating
the graph structure and applying insights from general 3D object
selection research.

3 NODE SELECTION CONCEPTS

Many immersive network analysis environments currently rely on
generic interaction methods, mostly direct ray-casting, to allow
the selection of a node, as shown in Section 2. Advanced methods,
such as hiding elements, refining the initial selection, or changing
positions, have not yet been applied for this use case. In contrast to
generic objects, node-link network representations come with an
additional challenge: This type of data visualization is especially
used when the topological relation between data entities, i.e., nodes,
is crucial and must be perceivable. Therefore, approaches, such as
2D grid alignments, as used in some 3D selection concepts, are
not desirable for node-link representations as they would cause
users to lose track of the network topology. Moreover, the position
of nodes often has a semantic meaning, e.g., geospatial location,
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Figure 2: With the ■ Volume technique, users place a selec-

tion volume into the target node region (left). After confir-

mation, only the contained nodes remain visible and can be

moved apart using the joystick (right, faded nodes: original

positions), and the target node (orange) can be selected.

which would be lost in grid alignments. On the other hand side, the
structure of networks offers further opportunities for developing
selection techniques tailored to the specifics of this data type.

In the following, we present six interaction concepts for selecting
network nodes in a three-dimensional VR environment. Our goal is
to find techniques that help users to efficiently and intuitively select
intended nodes without requiring a high level of physical effort.

3.1 Ray

As a baseline, we included the ■ Ray technique (see Figure 1a).
This approach matches the most common selection technique in
current immersive network exploration tools (see Section 2.2). One
of the VR controllers is used to control a visual ray emanating
from the virtual hand. The ray ends at the first interactable object
that is intersected. A color change indicates the currently focused
element–in our case, only nodes–, which can be selected by pulling
the trigger of the controller. While this approach can be expected
to be intuitive and fast, increasing node density, causing occlusion
and clutter, may affect the accuracy and efficiency.

3.2 Touch

The 3D tracking and representation of the VR controllers also allow
for more direct interaction with the virtual elements through the
■ Touch technique (see Figure 1b). With this technique, users
directly touch a node with the virtual, controller-operated hand.
Similar to ■ Ray, a touched object is highlighted by color and can
be selected by pushing a controller button. While we expect this
approach to be intuitive and align well with the immersive nature
of the environment, it could require a high level of physical effort
and lead to sensitivity issues with closely spaced nodes.

3.3 Filter

As seen in Section 2.1, one technique to facilitate object selection
in occluded 3D spaces is to hide occluding elements through a filter
technique (see Figure 1c). For instance, a cursor is applied to the
visual ray (e.g., a sphere object) and the user moves it along the ray
(e.g., by using a joystick) [56]. Objects between the user and the cur-
sor are hidden, while objects behind the cursor remain visible. This

-1 1

1

-1

Figure 3: With ■ Neighborhood, a node of a graph (left)

is selected (orange), and the nodes within its neighborhood

in a fixed radius (green) can be selected using the joystick.

The joystick coordinate system (right) is mapped to the node

directions within the camera plane.

approach comes with the downside that moving the ray to focus the
intended node can change the visibility of objects. Moreover, there
is no clear visual indication of the boundary between visualized
and hidden objects. With the ■ Filter method, users can see a
transparent, glass-like plane object that can be moved within the
environment using the hand or ray. To use the ray to move the
plane, users target the gray stripe at the side of the plane, hold the
controller trigger, and use the joystick to adjust the depth while the
rotation matches the hand rotation. Objects between the user and
the plane are hidden, while elements behind stay visible. The blue
part of the filter plane allows the ray to pass so that objects behind
the plane can be selected. This approach enables users to select oc-
cluded objects, clearly visualizes the clipping boundary, and retains
node visibility when users move the ray toward the target node.
Moreover, it can be adapted to Augmented Reality setups incorpo-
rating a physical plane [25]. We expect this technique to provide an
intuitive opportunity to remove objects covering relevant elements
while placing the filter plane using hand or ray interaction should
be possible without taking much time. In addition, the option to
move the plane remotely using the ray should reduce the physical
demand required for this method.

3.4 Volume

Multiple existing 3D object selection approaches incorporate a
virtual selection volume that can often be resized and moved within
the virtual space [8, 23, 56]. Typically, the user places this selection
volume so that the target object is–among other objects–contained
in the volume. Then, an action like pressing a controller button
is triggered, and the contained elements are rearranged in a non-
occluding way (most commonly, a grid) before the target object can
be selected using ray-casting. However, this approach is difficult
for node-link structures, where the appearance of node objects is
typically highly similar, and the target object is usually determined
by its position and role in the topology. Hence, we included the
■ Volume technique (see Figure 1d). With this technique, a user
creates a scalable sphere that is attached to the visual ray. Bymoving
the ray, the position of the sphere can be adjusted while its depth
can be modified using the controller joystick (see Figure 2 (left)),
and users can position the selection volume around the target node
and press the controller trigger to fix the selection. All objects that
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Figure 4: With the ■ Fisheye technique, users select a node

(left, orange) close to the target node and continuously apply

the disambiguation algorithm by using the joystick. This

moves the other nodes closer to the boundary (depending

on the distance) and increases the space between the nodes,

allowing users to select the target node (right).

are not included in the volume are then rendered semi-transparent,
indicating the potential selection set. After fixing the selection, the
part of the network not contained within the sphere is hidden and
the ray is used for selection. To disambiguate the nodes within
the selection volume, users can move the joystick up (or down to
undo the effect), which initiates a continuous, force-based change
of the node positions (similar to [21]). Thus, nodes slowly drift
apart (while the joystick is held upwards), making it easier for
users to select the desired node while the network structure is
preserved (see Figure 2 (right)). While this method induces some
effort, as users need to scale and place a sphere, disambiguate the
initial selection, and then select the actual target nodes, we expect
it to provide comparably high accuracy, especially with increasing
density. The required physical interaction is limited to controlling
the ray in combination with button and joystick interaction. Hence,
we see potential for this technique, particularly when the degree of
occlusion is high and direct ray-casting is not accurate enough.

3.5 Neighborhood

Ray-based selection is often incorporated into VR applications, as
it allows direct object selection from a remote position without
any additional overhead. However, with increasing density and
distance to the objects, the number of undesired selections, where
neighbors of the target are selected, tends to increase. To cope
with this issue, we included the ■ Neighborhood technique
(see Figure 1e). The idea of this approach is to combine ray-based
selection with the option to correct the selection within the current
neighborhood (similar to [30]). Originally, we implemented this
method incorporating the network topology. After selecting a node
(i.e., a wrong node close to the target node), users could move
the controller joystick, highlighting the attached network edge
closest to the joystick angle, and press a button to follow this edge,
selecting the attached node. However, as there is no guarantee that
physically close nodes are connected with an edge, we changed
the approach, adding virtual edges between nodes within a certain
radius of the currently selected node and allowing users to follow
these edges with the joystick. For the mapping, all nodes within
the selection neighborhood are projected onto the camera plane

with the selection node as the center. Then, each node position
corresponds to an angle that can be represented with the joystick
(see Figure 3). We expect this technique to be a good compromise
for selecting nodes in sparse and dense networks. For sparse ones,
users can directly select the target node using the ray without
needing the neighborhood correction. For more dense networks,
users select the node closest to the target that they can reach and
use the joystick to move to the target node. Therefore, we estimate
that the■Neighborhood technique does not require a high level
of physical effort without issues regarding efficiency or accuracy.

3.6 Fisheye

Previous work has shown that applying focus+context visualization
methods to 2D graphs can help to disambiguate a region of inter-
est while still showing the rest of the network and preserving its
topology [15, 51, 52]. To evaluate the applicability of such distortion-
based disambiguation techniques, we included the ■ Fisheye tech-
nique (see Figure 1f and Figure 4). The main idea is that users can
select any object close to the target node (if the target is not di-
rectly selectable) as a focus point and apply the technique, which
increases the node distances around the focus and moves objects
to the boundary that are not close to the focus. After selecting a
focus node, users can move up the joystick to continuously apply
the technique and move it downwards to revert it. Selecting a new
focus point resets the graph to the original layout, making sure that
the original appearance can always be restored. We implemented
this approach analogously to the 2D graphical fisheye definition
by Wang et al. [52]. The set of positions of the graph nodes is de-
noted as 𝑃 = {𝑝1, ..., 𝑝𝑛}, where 𝑝𝑖 ∈ R3. In contrast to a 2D screen,
the virtual 3D environment has no natural boundaries. Thus, we
use the graph bounding box as a virtual boundary, resulting in six
boundary planes {𝐵1, ..., 𝐵6}. Given the current focus position 𝑝 𝑓 ,
the new position 𝑝′

𝑖
of node 𝑖 with the original position, 𝑝𝑖 can be

calculated by

𝑝′𝑖 = 𝑝 𝑓 + (𝑏𝑖 − 𝑝 𝑓 )𝛽′𝑖 , with 𝛽′𝑖 =
(𝑚 + 1)𝛽𝑖
𝑚𝛽𝑖 + 1

and 𝛽𝑖 =
| |𝑝𝑖 − 𝑝 𝑓 | |
| |𝑏𝑖 − 𝑝 𝑓 | |

The boundary position 𝑏𝑖 is determined by casting a ray from 𝑝 𝑓
through 𝑝𝑖 and calculating the intersection with the closest plane
in this direction. Hence, each node is moved away from the focus
point towards the boundary considering the ratio of the distances
to the focus and boundary point, and including a variable factor
𝑚, regulating the strength of the fisheye effect. We expect this
technique to be mostly beneficial when the target node can not be
directly reached by the ray but by nearby nodes. Moreover, it could
require some practice, as comparable techniques are rare in visual
representation for daily use. We further estimate that the effect
will be more helpful in cases where the boundary points for the
individual nodes are distributed across multiple different boundary
planes instead of a single one, as nodes are then moved apart from
each other and not only in a common direction. Nevertheless, we
included this technique as a straightforward modification of the 2D
version to evaluate the usefulness of fisheye distortion in general
for this use case and to determine factors that might be improved
in future versions (see Section 5).
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Figure 5: The answer time results with significant differences indicated for our six selection methods regarding low, medium,

and high data complexity (see Section 4.2). Error bars show the standard error.

4 EVALUATION

To evaluate the performance of the six presented node selection
techniques for immersive VR environments, we conducted a user
study with 18 participants. Our setup is comparable to common
visual network exploration toolkits, where a user aims to select an
individual node. The perfect selection technique lets users select a
desired node fast, without requiring much physical effort (as this
can become tiring and exhausting) and matches the user preference.
This should still be the case for increasingly complex networks.
Therefore, we investigate the following key questions:

• How efficient are the selection techniques and how is this
affected by the network complexity?

• Which degree of physical effort do the selection techniques
require and how is this affected by the network complexity?

• What are the preferences regarding the selection techniques?

While accuracy is typically an essential factor for comparison stud-
ies, we do not explicitly investigate this variable, as in our case,
users were allowed for multiple methods to also select close-by
nodes, to iteratively approach the target node, for instance, by hop-
ping to the desired node or disambiguating the region. Therefore,
the initial selection of nodes other than the target, theoretically
leading to lower accuracy, is not necessarily considered to nega-
tively influence the outcome, which is why the accuracy variable
itself would be misleading in our case. However, when users were
not able to select desired nodes, the indirect impact of this could
still be measured by increasing times required to solve a task and by
reduced user preference. Similarly, we do not investigate correctness,
as the correct solution was always clearly identifiable (due to the
color coding) to users, and they worked on a task until the desired
node was finally selected.

4.1 Apparatus

We implemented our techniques in a Unity application including
SteamVR, perceived by a Valve Index head-mounted display (HMD)
and operated by the original VR controllers. The VR environment
consisted of a virtual room in which three-dimensional graph struc-
tures were visualized in front of the participants. As in comparable
3D network analysis platforms, we use colored sphere primitives to
represent nodes and cylinder tubes to visualize edges. To ensure that
participants could see all nodes, the transparency of the individual

nodes was dynamically adjusted, such that nodes occluding other
nodes (based on the current perspective) were rendered slightly
transparent, ensuring that nodes behind it shine through. The con-
troller of the dominant hand was used to control a visual ray and
apply the different actions associated with interaction techniques,
as described in Section 3. Participants were seated during the user
study, therefore, the joystick of the other controller was used for
navigation. However, for all techniques, except for ■ Touch, we
incorporated an invisible boundary that could not be crossed, en-
suring that users could not move close to the graph. Without this
restriction, users could navigate into the graph and use the ray
to directly select the target node, ignoring the concepts we imple-
mented, which contradicts the use case of distant node selection
with occlusion factors we investigate. Aside from the network visu-
alization and the interaction concepts, we included a study system,
dynamically loading the data and configurations, and guiding users
through the study with text labels floating in the scene.

4.2 Data

To test the performance of our selection concepts in relation to
the network complexity, we created graphs of three different sizes,
matching common complexities in graph analysis [22]. Low graphs
contained 50 nodes, medium 120 nodes, and high graphs included
200 nodes. We randomly added edges, ensuring that each node
was connected to one to five nodes, leading to a connected graph
with the number of edges increasing together with the number of
nodes. For the node positions, we applied the spring layout from
NetworkX [18]. While we automatically selected a random node as
the target, a manual inspection was applied to check that all target
nodes could be seen from the initial perspective without unfair
differences between the networks.

4.3 Procedure

We invited participants for individual sessions taking up to one
hour. The study took place in a controlled environment at our uni-
versity. After arriving, participants signed the consent form and
received standardized explanations of the study subject and the
different interaction techniques. Then, the HMD was mounted and
adjusted while the participant’s dominant hand was entered into
the system. The practical study part started with a graph shown
in the environment, for which all six selection techniques could be
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Figure 6: The results of the required physical effort with significant differences indicated for our six selectionmethods regarding

low,medium, and high data complexity (see Section 4.2). Error bars show the standard error.

tried out. Textual guidance and advice by the study supervisor made
sure that all techniques were understood and could be used by the
participants. After the trial session, the actual study part started. For
each interaction concept, three complexities (low, medium, high)
were tested and repeated three times, resulting in 6 × 3 × 3 = 54
individual tasks. For all users, the same networks were used, but
the order of the selection techniques was randomized. The data
complexity increased from low to medium to high within each task
and for each selection technique. Prior to solving tasks, users re-
ceived an explanation of the next technique before the network was
visualized in the VR environment with one highlighted target node.
This node had to be selected using the corresponding technique
before the study continued with the next task. Questions could be
asked at any time and comments were noted for the qualitative
evaluation. After completing the practical session, a questionnaire
with demographic and content-related questions was filled and the
participants received a compensation of 10 EUR before leaving.

4.4 Participants

We invited 18 participants (nine female, nine male), of which 16
were right-handed. The age of the participants varied between 20
and 32 (M=26.1, SD=3.21). All participants reported normal (eight
people) or correct-to-normal (ten people) vision with no known
color deficiencies. As we did not require any preknowledge or expe-
rience, we asked our participants for their familiarity with VR and
network analysis. Ten people reported no, four little, four some, and
one expert-level VR experience. Regarding network analysis, eight
people reported having no, three little, two some, two high-level, and
three expert-level experience. Thus, the participants covered the
entire range of experience levels with the study-related concepts
with a focus on novice users.

4.5 Results

In the following, we report the results of our user study. We applied
a significance level of 𝛼 = 0.05 and denote three classes of statistical
significance: 𝑝 < 0.001 : ∗ ∗ ∗, 𝑝 < 0.01 : ∗∗, 𝑝 < 0.05 : ∗.

4.5.1 Efficiency. The distributions of the answer time results (see Ta-
ble 1 and Figure 5) significantly differ from normal distributions
(Shapiro-Wilk Test) and can not be transformed. Thus, we rely on
non-parametric tests for the statistical evaluation. Friedman tests

show significant differences among the six conditions regarding an-
swer time for low (𝑝 < 0.001, 𝑄 = 81.81), medium (𝑝 < 0.001, 𝑄 =

75.04), and high (𝑝 < 0.001, 𝑄 = 57.29) data complexities. Post-
hoc pairwise Wilcoxon signed-rank tests with Holm-Bonferroni
correction indicate significant differences between individual se-
lection methods, visualized in Figure 5 and summarized in more
detail in Table 2. Across all conditions, ■ Ray was the fastest se-
lection technique, significantly outperforming ■ Neighborhood
and ■ Volume (also ■ Filter for medium- and ■ Touch for
high-complex data). These techniques were also outperformed by
■ Fisheye, which also outperformed ■ Touch for low and high
complexities. While for low and medium complexities ■ Filter

was only significantly faster than ■ Volume, it additionally out-
performed ■ Touch, and ■ Neighborhood for high-complex
networks. ■ Touch was only faster than ■ Volume (only for
low and medium complex networks) and ■Neighborhood (only
medium complexity). Overall, ■ Ray, ■ Filter, and ■ Fisheye

showed the best results regarding efficiency, with ■ Filter having
the most stable average answer times across the complexities.

4.5.2 Physical Effort. Working for a long time in an immersive
setup can be exhausting, especially when the physical effort is high.
To evaluate how physically demanding the six selection techniques

Table 1: The average efficiency, physical effort, anduser prefer-
ence for all six selection methods regarding low (L), medium

(M), and high (H) complex data. User preference is measured

on a scale from 0 to 10 (lowest to highest preference) for

non-cluttered (NC) and cluttered data (C).

Efficiency Physical Effort Preference

L M H L M H NC C

■ 16.60s 12.48s 20.84s 3.44m 2.55m 3.52m 8.11 5.33
■ 19.60s 15.84s 58.33s 8.54m 7.23m 17.82m 7.61 5.50
■ 21.83s 18.22s 20.86s 3.91m 2.89m 2.74m 7.00 8.11
■ 37.23s 37.27s 55.11s 9.10m 11.02m 15.72m 6.89 7.88
■ 42.95s 36.30s 39.54s 7.01m 4.03m 5.03m 5.72 5.11
■ 17.32s 15.77s 23.05s 2.41m 2.23m 3.40m 4.33 4.89
■ Ray ■ Touch ■ Filter ■ Volume ■ Neighborhood ■ Fisheye
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Table 2: P-values of the pairwise tests with Holm-Bonferroni

correction. The upper-right matrix triangle depicts the

values regarding efficiency, the bottom-left triangle the

physical effort. Each cell contains the p-values for low,
medium, and high data complexity for the six methods:

■ Ray ■ Touch ■ Filter ■ Volume ■ Neighborhood ■ Fisheye

■ ■ ■ ■ ■ ■

■
0.1305
0.3961
0.0117

0.1305
0.0187
0.8810

< 0.0001
< 0.0001

0.0001

0.0016
0.0001
0.0035

1.0
0.6538
1.0

■
< 0.0001

0.0001
< 0.0001

1.0
0.7567
0.0062

< 0.0001
< 0.0001

1.0

0.0528
0.0038
1.0

0.0295
0.7567
0.0355

■
0.4065
0.5318
1.0

< 0.0001
< 0.0001
< 0.0001

0.0001
< 0.0001
< 0.0001

0.0660
0.1101
0.0039

0.1305
0.7567
1.0

■
< 0.0001
< 0.0001
< 0.0001

0.6186
0.5318
1.0

< 0.0001
< 0.0001
< 0.0001

1.0
0.7567
0.8810

< 0.0001
0.0001
0.0016

■
0.0378
0.0697
0.0692

0.1413
0.0033

< 0.0001

0.3361
0.6651
0.0124

0.1273
0.0009
0.0001

0.0056
0.0010
0.0070

■
0.4065
0.6651
1.0

< 0.0001
< 0.0001
< 0.0001

0.0137
0.1449
1.0

< 0.0001
< 0.0001
< 0.0001

0.0027
0.1240
0.0692

are, we gathered the movement of the VR controllers and the head-
set during the user study, combined these values into a single mea-
sure, representing the physical effort, and present the results in the
following (see Table 1 and Figure 6). The distributions of the phys-
ical effort do not follow normal distributions (Shapiro-Wilk Test)
and can not be transformed. Friedman tests reveal significant differ-
ences in physical effort for low (𝑝 < 0.001, 𝑄 = 88.17),medium (𝑝 <

0.001, 𝑄 = 75.34), and high (𝑝 < 0.001, 𝑄 = 96.87) data complexi-
ties. Hence, we applied pairwise Wilcoxon signed-rank tests with
Holm-Bonferroni correction (see Figure 6 and Table 2). ■ Fisheye

significantly outperformed ■ Touch and ■ Volume for all com-
plexities, as well as, ■ Neighborhood and ■ Filter for net-
works of low complexity. ■Ray required significantly less physical
interaction than ■ Touch and ■ Volume across all complexities
and less than■Neighborhood for low-complex networks. More-
over, ■ Filter outperformed ■ Touch and ■ Volume (all com-
plexities), as well as, ■Neighborhood (only highest complexity).
For medium- and high-complex networks, ■Neighborhood out-
performed■Touch and■Volume. In summary,■Ray,■ Filter,
and■ Fisheye had the least physical demand (with similar results),
while interactions requiring direct touch or the placement of a se-
lection volume in the graph led to significantly more physical effort.

4.5.3 Qualitative Feedback. Aside from the quantitative data, we
gathered qualitative feedback using a questionnaire and the partici-
pants’ comments during the study. As one part of the questionnaire,
we asked the participants for their personal preference regarding
the selection techniques (see Figure 7 and Table 1). In the case of
non-cluttered data, on average, participants mostly favored ■ Ray,
followed by ■Touch, ■ Filter, ■Volume, ■Neighborhood,
and■ Fisheye. In the case of cluttered data, the preferences shifted,

Ray

C

NC

Touch

C

NC

Filter

C

NC

Neighborhood

C

NC

Fisheye

C

NC

Volume

C

NC

Figure 7: Average user preferences (0-10) for the six selection

techniques considering non-cluttered data (NC) and cluttered

data (C). Error bars show the standard error.

preferring ■ Filter, followed by ■ Volume, ■ Touch, ■ Ray,
■ Neighborhood, and ■ Fisheye. For non-cluttered data, the
method indicated by most participants as their favorite was ■ Ray

(𝑛 = 9), and the least preferred method was ■ Fisheye (𝑛 = 10). In
the cluttered case, ■ Filter and ■ Volume (𝑛 = 9) were mostly
preferred, ■ Neighborhood was the least favored technique
(𝑛 = 7).

This trend is also indicated by the comments of the participants.
Regarding the ■ Ray technique, users mentioned that it was “easy
to use” (𝑛 = 6), and “good for non-cluttered data” (𝑛 = 3), while
five participants argued that the technique was “hard to get precise
selection”. Individual participants also found it “intuitive” (𝑛 =

1), but also “training-intense” (𝑛 = 1). Seven participants “liked”
the ■ Touch technique, finding it “intuitive” (𝑛 = 3), “realistic”
(𝑛 = 1), and appreciated the ability to walk into the graph (𝑛 = 2).
However, seven participants also found it “hard for cluttered data”.
In contrast to that, the ■ Filter selection was considered “helpful”,
especially for cluttered data (𝑛 = 13). Nevertheless, individual users
found it “hard to rotate” (𝑛 = 1), argued that it requires some
involvement (𝑛 = 1), and suggested making the filter plane scalable
(𝑛 = 1). The ■ Volume technique was highly appreciated by the
participants, finding it “very useful” (𝑛 = 8), “easy to use” (𝑛 = 3),
especially helpful for cluttered data (𝑛 = 7), and appreciating the
disambiguation after the initial selection (𝑛 = 2). While seven
participants denoted the ■ Neighborhood technique as “useful”
and “fun to use” (𝑛 = 1), it was also considered to be “hard to
control” (𝑛 = 3), “difficult”, and challenging to anticipate the next
selected nodes, especially when the clutter level was high (𝑛 = 1).
As possible improvements, participants suggested to use only edge-
connected nodes instead of having virtual edges to all nodes in
a certain radius (𝑛 = 1) and to hide nodes not contained in the
neighborhood and thus, not selectable with the joystick (𝑛 = 1). The
overall least preferred technique ■ Fisheye was only considered
“useful” by three participants, especially for cluttered data, and two
participants found the disambiguation mechanism helpful. This was
mostly the case, as participants found this method “difficult” and
“complex” (𝑛 = 3), and thus, “not useful” (𝑛 = 6). In general, users
were able to solve the tasks using all methods, and the study setup
worked as intended. When asked for other selection approaches not
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used in the study, participants mentioned that they would like to
combine the ■ Filter technique with ■ Neighborhood (𝑛 = 2)
or ■ Volume (𝑛 = 2) to first reduce the clutter, and then select a
node with the option to correct it using the joystick.

5 DISCUSSION

Following, we discuss the results and impact of our user study.

5.1 Result Discussion and Findings

The efficiency evaluation revealed that the ■ Ray technique was
the fastest across all network complexities, particularly excelling
in low and medium complexities. This finding aligns with its wide-
spread use in current VR applications, where its direct pointing
mechanism is straightforward and quick for non-cluttered envi-
ronments. However, as network complexity increased, the perfor-
mance of ■ Filter and ■ Fisheye became comparable to the
■ Ray technique, which became more challenging with increas-
ing occlusion and clutter. While the ■ Ray technique was still the
fastest method for high-complex data, the comments of the partici-
pants and their reported preferences suggest that for even denser
networks and with more training with the more complex filter
and disambiguation techniques, other techniques might outper-
form ■ Ray. Especially the ■ Filter technique seems promising,
as its efficiency was constant between the different complexities,
showing its usefulness in dense environments and suggesting that
techniques incorporating occlusion management can significantly
enhance selection efficiency in cluttered VR setups. While not pre-
ferred by most users, the ■ Fisheye technique also performed well
in terms of efficiency across all complexities. The focus+context
approach might have helped users to disambiguate regions of in-
terest, although it required some training and familiarity. As also
suggested by the participants’ comments, ■ Touch works mostly
for small and non-cluttered networks, while the ability to accurately
select a node highly decreases, leading to a drastic increase in re-
quired time. The ■ Neighborhood method required a similar
amount of time across all complexities, suggesting that this method
requires some training and refining the initial selection by joystick
navigation can be challenging, especially when the target is in the
center of the graph and occlusion limits the vision. This impres-
sion is also supported by the preference values and the comments.
Hence, combining it with a technique like ■ Filter–as suggested
by participants–might help to make use of the capabilities of this
technique. Similarly, ■ Volume required more time than other
techniques, but the user preference was much higher, especially for
cluttered networks. Together with the comments, this raises the
impression that participants were willing to invest time in placing
the selection volume and moving the nodes apart before finally
selecting the target, reducing unintended selections and increasing
confidence. Notably, for most methods, the answer time decreased
between the low and the medium data complexity conditions. This
could indicate that the difficulty between those conditions did not
drastically increase while the experience from the low-complex
data helped users to solve the medium-complex tasks.

Physical effort is a critical factor in VR applications, where
prolonged use can lead to fatigue. Our results indicate that the
■ Fisheye technique required the least physical effort across all

complexity levels, likely due to its joystick-based disambiguation
mechanism, which minimized extensive movements. The ■ Filter
and ■ Ray techniques also demonstrated low physical effort, par-
ticularly in high-complexity networks, emphasizing their suitabil-
ity for extended use. Conversely, the ■ Touch and ■ Volume

techniques demanded the highest physical effort. The direct hand
interaction in ■ Touch required substantial movement, especially
in cluttered environments. Similarly, the ■ Volume technique’s
sphere placement and subsequent node separation, while effective
in reducing occlusion, involved considerable physical manipulation,
making it less favorable for long sessions. The ■ Neighborhood
technique did not reveal notable physical demand patterns.

The qualitative feedback provided additional insights. The
■ Ray technique was preferred for non-cluttered data due to its
simplicity and speed. However, in cluttered environments, the
■ Filter and ■ Volume techniques emerged as favorites. The
ability to reduce occlusion and disambiguate nodes without losing
their topology made these techniques more appealing and useful
for complex networks. Surprisingly, despite its intuitiveness and
low complexity, ■ Touch did not convince the participants, espe-
cially with increasing occlusion, since touching nodes to efficiently
select them requires space around the target and increases the
physical effort. The preferences regarding the ■ Neighborhood

technique were mixed. While it enables users to refine their ini-
tial selection within its neighborhood, occlusion made it hard to
see the effects, and with increasing neighborhood members, the
joystick-based interaction required more precise operation. Thus,
we consider this approach still useful, but in combination with other
disambiguation or filtering techniques. The ■ Fisheye technique,
despite its efficiency and low physical effort, was less favored due
to its perceived complexity and learning curve. Moreover, we see
our implementation as an initial attempt to transfer the benefits of
2D fisheye-disambiguation into 3D. Investigating implementations
that are tailored to the characteristics of 3D setups and evaluating
different designs could greatly improve the results of this technique.

5.2 Research Impact and Outlook

Our findings have significant implications for the design of VR-
based network analysis tools. The ■ Filter and ■ Volume tech-
niques, with their strong performance in cluttered environments,
should be considered for larger graphs in the future. Integrating
occlusion management and node disambiguation features can
enhance the usability and effectiveness of these tools, particularly
for large and dense networks. Especially the ■ Filter approach
comes with high potential, not only for selecting nodes but also for
exploration of the network structure. Our techniques preserve the
network topology, allowing for node selection without losing track
of the structure and characteristics. The study results suggest that
combining techniques could further improve performance. For
instance, integrating the occlusion management of ■ Filter with
the correction mechanism of ■ Neighborhood or ■ Volume

could provide a robust solution for various network complexities.
This is also the case for ■ Fisheye, our disambiguation technique
that can be coupled with the other methods. The results of our
study also suggest that different data complexities require differ-
ent selection techniques. Therefore, network analysis tools could
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incorporate multiple different selection techniques and apply them
based on the data complexity or individual user preference. While
our work focused on hand-based interaction, it would be of high
relevance to investigate the applicability of the concepts for gaze
interaction. As discussed in Section 2.1, gaze interaction has already
been integrated for selection in immersive settings, showing high
potential. Some of our methods, namely ■ Ray (directly selecting
focused nodes), ■ Fisheye (disambiguating the area around the
focus point), and ■ Neighborhood (hopping to nodes relative
to the gaze direction), can be directly adapted to gaze interaction.
For ■ Filter and ■ Volume, depth is essential for placing the
objects, which is more difficult with eye gaze. However, by inte-
grating a second modality, such as a controller or hand gestures,
these methods could also be used with gaze interaction.

Despite careful consideration, our study comes with limitations.
The participant pool primarily included novice users with varying
VR and network analysis experience, potentially influencing results.
Future studies should involve a broader range of expertise. The
controlled laboratory setting may not fully reflect real-world com-
plexities. The study focused only on individual node selection tasks,
so results may differ for other interactions like multi-node selection
or dynamic graph exploration. The network sizes tested may not rep-
resent the full spectrum encountered in practice. Additionally, some
techniques, like the fisheye effect, were initial adaptations from 2D
to 3D and could benefit from further refinement. Future research
should address these limitations by including diverse participants,
real-world settings, and optimized technique implementations.

For future research, hybrid approaches, such as combining
■ Filter and ■ Neighborhood, should be evaluated in real-
world applications. Additionally, the fisheye’s potential in VR envi-
ronments warrants further investigation. Refining its implementa-
tion to reduce complexity and improve intuitiveness could make
it a valuable technique for immersive network analysis. Further,
adapting and evaluating the presented techniques for gaze interac-
tion (or gaze with a second modality) is of high interest. Moreover,
testing the approach with even larger and denser networks might
lead to further insights. Similarly, investigating the applicability of
our approaches or deviations for multi-node selection could be of
high interest. Understanding user training and adaptation to this
technique would also provide insights into enhancing its usability.

6 CONCLUSION

This work evaluated six structure-preserving node selection tech-
niques in an immersive VR environment, focusing on efficiency,
physical effort, and user preferences. We conducted a user study
with 18 participants, testing each technique on graphs of three dif-
ferent complexities. Our findings show that ray-casting is efficient
for non-cluttered environments, while filter plane and selection vol-
ume techniques perform better in cluttered settings by managing
occlusion and disambiguating nodes. Other techniques, such as fish-
eye disambiguation or neighborhood refinement, were promising
but less preferred by users or led to increased physical or temporal
effort. These insights inform and validate the design of VR-based
network analysis tools, highlighting the need for hybrid approaches
combining various techniques. Future research can optimize these
methods and explore their applicability in further domains.
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