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Abstract—Visual exploration of multivariate data typically requires projection onto lower dimensional representations. The number of
possible representations grows rapidly with the number of dimensions, and manual exploration quickly becomes ineffective or even

unfeasible. This paper proposes automatic analysis methods to extract potentially relevant visual structures from a set of candidate
visualizations. Based on features, the visualizations are ranked in accordance with a specified user task. The user is provided with a

manageable number of potentially useful candidate visualizations, which can be used as a starting point for interactive data analysis.
This can effectively ease the task of finding truly useful visualizations and potentially speed up the data exploration task. In this paper,

we present ranking measures for class-based as well as non-class-based scatterplots and parallel coordinates visualizations. The
proposed analysis methods are evaluated on different data sets.

Index Terms—Dimensionality reduction, quality measures, scatterplots, parallel coordinates.

Ç

1 INTRODUCTION

DUE to the technological progress over the last decades,
today’s scientific and commercial applications are

capable of generating, storing, and processing large and
complex data sets. Making use of these archives of data
provides new challenges to analysis techniques. It is more
difficult to filter and extract relevant information from
the masses of data since the complexity and volume have
increased. Effective visual exploration techniques are
needed that incorporate automated analysis components
to reduce complexity and to effectively guide the user
during the interactive exploration process.

The visualization of large complex information spaces
typically involves mapping high-dimensional data to lower
dimensional visual representations. The challenge for
the analyst is to find an insightful mapping, while the
dimensionality of the data, and consequently, the number of
possible mappings increases. For an effective visual explora-
tion of large data sources, it is therefore essential to support
the analyst with Visual Analytics tools that help the user in
finding relevant mappings by providing an automated
analysis. One important goal of Visual Analytics, which is

the focus of this paper, is to generate representations that best
show phenomena contained in the high-dimensional data
like clusters and global or local correlations.

Numerous expressive and effective low-dimensional
visualizations for high-dimensional data sets have been
proposed in the past, such as scatterplots and scatterplot
matrices (SPLOM), parallel coordinates, hyperslices, dense
pixel displays, and geometrically transformed displays [1].
However, finding information-bearing and user-interpreta-
ble visual representations automatically remains a difficult
task since there could be a large number of possible
representations. In addition for us, it could be difficult to
determine their relevance to the user. Instead, classical data
exploration requires the user to find interesting phenomena
in the data interactively by starting with an initial visual
representation. In large-scale multivariate data sets, sole
interactive exploration becomes ineffective or even unfea-
sible since the number of possible representations grows
rapidly with the number of dimensions. Methods are
needed that help the user to automatically find effective
and expressive visualizations.

In this paper, we present an automated approach that
supports the user in the exploration process. The basic idea
is to either generate or use a given set of candidate
visualizations from the data and to automatically identify
potentially relevant visual structures from this set of
candidate visualizations. These structures are used to
determine the relevance of each visualization to common
predefined analysis tasks. The user may then use the
visualization with the highest relevance as the starting point
of the interactive analysis. We present relevance measures
for typical analysis tasks based on scatterplots and parallel
coordinates. The experiments based on class-based and
non-class-based data sets demonstrate the potential of our
relevance measures to find interesting visualizations, and
thus, speed up the exploration process.
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2 RELATED WORK

Over the last few years, several approaches for selecting
good views of high-dimensional projections and embed-
dings have been proposed. One of the first was the Projection
Pursuit [2], [3]. Its main idea is to search for low-dimensional
(1D or 2D) projections that expose interesting structures of
the high-dimensional data set, rejecting any irrelevant
(noisy or information-poor) dimensions. To exhaustively
analyze such a data set using low-dimensional projections,
Asimov presented the Grand Tour [4] that supplies the user
with a complete overview of the data by generating
sequences of orthogonal 2D projections. The problem with
this approach is that an extensive exploration of a high-
dimensional data set is effortful and time consuming. A
combination of both approaches, the Projection Pursuit and
the Grand Tour, is proposed in [5] as a visual exploration
system. Since then, different Projection Pursuit indices have
been proposed [6], [3], but only a few of these techniques
consider possible class information of the data.

As an alternative to Projection Pursuit, the Scagnostics
method [7] was proposed to analyze high-dimensional data
sets. Wilkinson presented more detailed graph-theoretic
measures [8] for computing the Scagnostics indices to detect
anomalies in density, shape, and trend. These indices could
also be used as a ranking for scatterplot visualizations
depending on the analysis task. We present an image-based
measure for nonclassified scatterplots in order to quantify
the structures and correlations between the respective
dimensions. Our measure could be used as an additional
index in a Scagnostics matrix.

Koren and Carmel propose a method of creating
interesting projections from high-dimensional data sets
using linear transformations [9]. Their method integrates
the class decomposition of the data, resulting in projections
with a clearer separation between the classes.

Another important visualization method for multivariate
data sets is parallel coordinates. Parallel coordinates was first
introduced by Inselberg [10] and is used in several tools,
e.g., XmdvTool [11] and VIS-STAMP [12], for visualizing
multivariate data. It is important for parallel coordinates to
decide the order of the dimensions that are to be presented
to the user. Aiming at dimension reordering, Ankerst et al.
[13] presented a method based on similarity clustering of
dimensions, placing similar dimensions close to each other.
Yang et al. [14] developed a method to generate interesting
projections also based on similarity between the dimen-
sions. Similar dimensions are clustered and used to create a
lower dimensional projection of the data.

In [15], Guo also addresses ways to integrate visual and
computational measures for picking and ordering variables
for display on parallel coordinates. He describes a human-
centered exploration environment, which incorporates a
coordinated suite of computational and visualization
methods to explore high-dimensional data and find
patterns in these spaces. The main difference between this
approach and our approach is that Guo searches for locally
defined patterns in subspaces and our work concentrates on
finding global patterns in a 2D projection of the data set.

The approach most similar to ours is Pixnostics, proposed
by Schneidewind et al. [16]. They also use image-analysis
techniques to rank the different lower dimensional views of
the data set and present only the best to the user. The
method does not only provide valuable lower dimensional

projections to the user, but also optimized parameter
settings for pixel-level visualizations. However, while their
approach concentrates on pixel-level visualizations as Jig-
saw Maps and Pixel Bar Charts, we focus on scatterplots
and parallel coordinates.

Parallel to our work [17], Sips et al. [18] developed a class
consistency visualization algorithm. Similar to ours, the
class consistency method proposes measures to rank lower
dimensional representations. It filters the best scatterplots
based on their ranking values and presents them in an
ordinary scatterplot matrix. Additional to the measure for
nonclassified scatterplots, we also propose three measures
for classified scatterplots as an alternative to [9] and [18].
Our measures first select the best projections of the data set,
and therefore, have the advantage, over embeddings
generated by linear combination of the original variables,
that the orthogonal projection axes can be more easily
interpreted by the user.

As an alternative to the methods for dimension reorder-
ing for parallel coordinates, we propose a method based on
the structure presented on the low-dimensional embed-
dings of the data set. Three different kinds of measures to
rank these embeddings are presented in this paper for class
and non-class-based visualizations.

3 OVERVIEW AND PROBLEM DESCRIPTION

Increasing dimensionality and growing volumes of data
lead to the necessity of effective exploration techniques to
present the hidden information and structures of high-
dimensional data sets. For supporting visual exploration,
the high-dimensional data are commonly mapped to low-
dimensional views. Depending on the technique, exponen-
tially, many different low-dimensional views exist, which
cannot be analyzed manually.

Scatterplots are a commonly used visualization techni-
que to deal with multivariate data sets. This low-dimen-
sional embedding of the high-dimensional data in a 2D
view can be interpreted easily, especially in the most
common case of orthogonal linear projections. Since there
are n2!n

2 different plots for an n-dimensional data set in a
scatterplot matrix, an automatic analysis technique to
preselect the important dimensions is useful and necessary.

Parallel coordinates is another well-known and widely
used visualization method for multivariate data sets. One
problem of this kind of visualization is the large number of
possible arrangements of the dimension axes. For an n-
dimensional data set, it has been shown that nþ1

2 permuta-
tions are needed to visualize all adjacencies, but there are n!
possible arrangements. An automated analysis of the
visualizations can help in finding the best visualizations
out of all possible arrangements. We attempt to analyze the
pairwise combinations of dimensions which are later
assembled to find the best visualizations, reducing the
visual analysis to n2 visualizations.

Some applications involve classified data. We have to
take this property into account when proposing our ranking
functions. When dealing with unclassified data, we search
for patterns or correlations between the data points. This
might reveal important characteristics that can be of interest
to the user. In order to see the structure of classified data, it
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is necessary for the visualizations to separate the clusters or
at least to have a minimal overlap. The greater the number
of classes, the more difficult the separation.

In our paper, we describe ranking functions that deal
with visualizations of classified and unclassified data. An
overview of our approach is presented in Fig. 1. We start
from a given multivariate data set and create the low-
dimensional embeddings (visualizations). According to the
given task, there are different visualization methods and
different ranking functions that can be applied to these
visualizations. The functions can measure the quality of
the views and provide a set of useful visualizations. An
overview of these techniques is shown in Fig. 2. For
scatterplots on unclassified data, we developed the Rotating
Variance Measure (RVM) which favors xy-plots with a high
correlation between the two dimensions. For classified data,
we propose measures that consider the class information
while computing the ranking value of the images. For
scatterplots, we developed three methods: a Class Density
Measure (CDM), a Class Separating Measure (CSM), and a
Histogram Density Measure (HDM). They have the goal to
find the best scatterplots showing the separating classes. For
parallel coordinates on unclassified data, we propose a
Hough Space Measure (HSM), which searches for interesting
patterns such as clustered lines in the views. For classified
data, we propose two measures: 1) the Overlap Measure
(OM) that focuses on finding views with as little overlap as
possible between the classes, so that the classes separate
well, 2) the Similarity Measure (SM) which looks for
correlations between the lines. The measures are computed
directly over the visualization images and, in this first
version, do not consider possible overplotting in the images.

We choose correlation search in scatterplots (Section 4.1)
and cluster search (i.e., similar lines) in parallel coordinates
(Section 5.1) as an example of analysis tasks for unclassified
data sets. If class information is given, the tasks are to find
views, where distinct clusters in the data set are also well
separated in the visualization (Section 4.2) or show a high
level of inter- and intraclass similarity (Section 5.2).

4 QUALITY MEASURES FOR SCATTERPLOTS

Our measures aim to assess first the density and second the
separateness of classes in the distribution of the data. In
Section 4.1, we propose analysis functions assessing density
of the classes and Section 4.2 describes methods for assessing
the separateness of classes. In the case of unclassified but
well separable data, class labels can be automatically
assigned using clustering algorithms [19], [20], [21].

4.1 Scatterplot Measures for Unclassified Data

4.1.1 Rotating Variance Measure

High correlations are represented as long, skinny structures
in the visualization. Due to outliers, even almost perfect

correlations can lead to skewed distributions in the plot and
attention needs to be paid to this fact. The Rotating Variance
Measure is aimed at finding linear and nonlinear correla-
tions between the pairwise dimensions of a given data set.

First, we transform the discrete scatterplot visualization
into a continuous density field. For each screen pixel s and
its position x ¼ ðx; yÞ, the distance to its kth nearest sample
points Ns in the visualization is computed. To obtain an
estimate of the local density ! at a pixel s, we define ! ¼ 1=r,
where r is the radius of the enclosing sphere of the k-nearest
neighbors of s given by

r ¼ max
i2Ns

kx! xik: ð1Þ

Choosing the kth neighbor instead of the nearest eliminates
the influence of outliers. k is chosen to be between 2 and
n! 1, so that the minimum value of r is mapped to 1. We
used k ¼ 4 throughout the paper. Other density estimations
could, of course, be used as well.

Visualizations containing high correlations should gen-
erally have corresponding density fields with a small band
of larger values, while views with lower correlation should
have a density field consisting of many local maxima
spread in the image. We can estimate this amount of spread
for every pixel by computing the normalized mass dis-
tribution by taking s samples along different lines l"
centered at the corresponding pixel positions xl" and with
length equal to the image width, see Fig. 3. For these
sampled lines, we compute the weighted distribution for
each pixel position xi:
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Fig. 1. Working steps to get a ranked set of good visualizations of high-
dimensional data.

Fig. 2. Overview and classification of our methods. We present
measures for scatterplots and parallel coordinates using classified and
unclassified data.

Fig. 3. Scatterplot example and its respective density image. For each
pixel, we compute the mass distribution along different directions and
save the smallest value, here depicted by the blue line.



#i
" ¼

Ps
j¼1 p

sj
l"
kxi ! xsjk

Ps
j¼1 p

sj
l"

; ð2Þ

#i ¼ min
"2½0;2$'

#i
"; ð3Þ

where p
sj
l"

is the jth sample along line l" and xsj is its
corresponding position in the image. For pixels positioned
at a maximum of a density image conveying a real
correlation, the distribution value will be very small, if the
line is orthogonal to the local main direction of the
correlation at the current position, in comparison to other
positions in the image. Note that such a line can be found
even in nonlinear correlation. On the other hand, pixels in
density images conveying low correlation will always have
only large # values.

For each column in the image, we compute the minimum
value and sum up the result. The final RVM value is
therefore defined as

RVM ¼ 1P
x miny#ðx; yÞ

; ð4Þ

where #ðx; yÞ is the mass distribution value at pixel position
ðx; yÞ.

4.2 Scatterplot Measures for Classified Data

Most of the known techniques calculate the quality of a
projection, without taking the class distribution into
account. In classified data plots, we can search for the class
distribution in the projection, where good views should
show good class separation, i.e., minimal overlap of classes.

In this section, we propose three approaches to rank the
scatterplots of multivariate classified data sets, in order to
determine the best views of the high-dimensional structures.

4.2.1 Class Density Measure

The Class Density Measure evaluates orthogonal projections,
i.e., scatterplots, according to their separation properties.
Therefore, CDM computes a score for each candidate plot
that reflects the separation properties of the classes. The
candidate plots are then ranked according to their score, so
that the user can start investigating highly ranked plots in
the exploration process.

In the case, we are given only the visualizationwithout the
data, we assume that every color used in the visualization
represents one class. We therefore separate the classes first
into distinct images, so that each image contains only the
information of one of the classes. A continuous representa-
tion for each class is necessary in order to compute the
overlap between the classes, we estimate a continuous,
smooth density function based on local neighborhoods. For
each screen pixel s, the distance to its kth nearest neighbors
Ns of the same class is computed and the local density is
derived as described earlier in Section 4.1.

Having these continuous density functions available for
each class, we estimate the mutual overlap by computing
the sum of the absolute difference between each pair and
sum up the result:

CDM ¼
XM!1

k¼1

XM

l¼kþ1

XP

i¼1

!!pi
k ! pi

l

!!; ð5Þ

with M being the number of density images, i.e., classes,
respectively, pi

k is the ith pixel value in the density image
computed for the class k, and P is the number of pixels. If the
range of the pixel values is normalized to ½0; 1', the range for
the CDM is between 0 and P , considering two classes
ðM ¼ 2Þ. This value is large, if the densities at each pixel
differ as much as possible, i.e., if one class has a high density
value compared to all others. It follows that the visualization
with the fewest overlap of the classes will be given the
highest value. Another property of thismeasure is not only in
assessing well separated but also dense clusters, which ease
the interpretability of the data in the visualization. Note that
non-overlapping classes in scatterplots produce different
density images using our algorithm. Even if the clusters are
similar, the density images are different, which results in a
high value for the CDM measure.

4.2.2 Class Separating Measure

The CDM (Section 4.2.1) finds views with few overlaps
between classes and dense clusters in high-dimensional
data sets. The CDM is computed over density images with a
rapid falloff function. The local density ! was defined as
! ¼ 1=r (Section 4.1). By changing this function, we are able
to control the balance between the property of separation
and dense clustering. Choosing a function with an increas-
ing value for r can yield better separated clusters but with a
lower clustering property.

In our experiments, we found that using ! ¼ r instead
! ¼ 1=r provides a good trade-off between class separability
and clustering. In extension to the CDM, we therefore
propose the Class Separating Measure. The main difference
between these two measures is in the computation of the
continuous representation of the scatterplot, henceforth
termed distance field for the CSM (with ! ¼ r), and density
image for the CDM (with ! ¼ 1=r).

To compute a distance field, the local distance at a screen
pixel s is defined as r, where r is the radius of the enclosing
sphere of the k-nearest neighbors of s, as described earlier in
Section 4.1. Once we have the distance field of each class,
the CSM is computed as the sum of the absolute difference
between them (note that for the CDM measure, the inverse
of the distance was used)

CSM ¼
XM!1

k¼1

XM

l¼kþ1

XP

i¼1

!!pi
k ! pi

l

!!; ð6Þ

with M being the number of distance field images, i.e.,
classes, respectively, pi

k is the ith pixel value in the distance
field computed for the class k, and P is the number of
pixels. Comparing the CSM and the CDM, the Class
Separating measure has a bias toward large distances
between clusters, while the Class Density measure has a
bias toward dense clusters. We consider separation and
density of the clusters as two different user tasks.
Frequently, views with well-separated clusters are not
necessarily the ones with dense clusters. When a view
presents both properties simultaneously, it is assigned with
a higher value by the two measures, producing a similar
rank for both measures. A comparison between the Class
Separating and Class Density measures with a real example
is presented in Section 6.1.
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4.2.3 Histogram Density Measure

The Histogram Density Measure is a density measure for
scatterplots which extends the previously presented ap-
proaches by including nonorthogonal views in the results. It
considers the class distribution of the data points using
histograms. Since we are interested in plots that show good
class separations, HDM looks for corresponding histograms
that show significant separation properties. To determine the
best low-dimensional embedding of the high-dimensional
data using HDM, a two-step computation is conducted.

First, we search in the 1D linear projections which
dimension is separating the data. For this purpose, we
calculate the projections and rank them by the entropy
value of the 1D projections separated in small equidistant
parts, called histogram bins. pc is the number of points of
class c in one bin. The entropy, average information content
of that bin, is calculated as

HðpÞ ¼ !
X

c

pcP
c pc

log2
pcP
c pc

: ð7Þ

HðpÞ is 0, if a bin has only points of one class and log2M, if it
contains equivalent points of all M classes. This projection
is ranked with the 1D-HDM:

HDM1D ¼ 100! 1

Z

X

x

X

c

pcHðpÞ
 !

; ð8Þ

¼ 100! 1

Z

X

x

X

c

pc !
X

c

pcP
c pc

log2
pcP
c pc

 !
; ð9Þ

where 1
Z is a normalization factor, to obtain ranking values

between 0 and 100, having 100 as best value:

1

Z
¼ 100

log2M
P

x

P
c pc

: ð10Þ

In some data sets, paraxial projections are not able to show
the structure of high-dimensional data. In these cases,
simple rotation of the projection axes can improve the
quality of the measure. In Fig. 4, we show an example,
where a rotation is improving the projection quality. While
the paraxial projection of these classes cannot show these
structures on the axes, the rotated (dotted projection) axes
have less overlay for a projection on the x0-axes. Therefore,
we rotate the projection plane and compute the 1D-HDM
for different angles ". For each plot, we choose the best 1D-
HDM value. We experimentally found " ¼ 9m degree, with
(m 2 ½0; . . . ; 19Þ) to be working well for all our data sets.

Second, a subset of the best ranked dimensions are
chosen to be further investigated in higher dimensions. All
the combinations of the selected dimensions enter a PCA
computation. PCA [22] is a widely used technique for high-
dimensional data analysis. It transforms a high-dimen-
sional data set with correlated dimensions, in a lower
dimensional data set with uncorrelated dimensions, called
principal components.

For every combination of selected dimensions, after the
PCA is computed, the first two components of the PCA are
plotted to be ranked by the 2D-HDM. The 2D-HDM is an
extended version of the 1D-HDM, for which a 2D histogram
on the scatterplot is computed. The quality is measured,

exactly as for the 1D-HDM, by summing up a weighted sum
of the entropy of one bin. The measure is normalized
between 0 and 100, having 100 for the best data points
visualization, where each bin contains points of only one
class. Also, the bin neighborhood is taken into account, as
for each bin pc, we sum the information of the bin itself and
the direct neighborhood, labeled as uc. Consequently, the
2D-HDM is

HDM2D ¼ 100! 1

Z

X

x;y

X

c

uc !
X

c

ucP
c uc

log2
ucP
c uc

 !
;

ð11Þ

with the adapted normalization factor

1

Z
¼ 100

log2M
P

x;yð
P

c ucÞ
: ð12Þ

5 QUALITY MEASURES FOR PARALLEL

COORDINATES

When analyzing parallel coordinates plots, we focus on the
detection of plots that show either significant correlation
between attribute dimensions or good clustering properties
in certain attribute ranges. There exist a number of analytical
approaches for parallel coordinates to generate dimension
orderings that try to fulfill these tasks [13], [14]. However,
they often do not generate an optimal parallel plot for
correlation and clustering properties, because of local effects
which are not taken into account by most analytical
functions. We therefore present analysis functions that do
not only take the properties of the data into account, but also
consider the properties of the resulting plot.
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Fig. 4. 2D view and rotated projection axes. The projection on the
rotated plane has less overlap, and the structures of the data can be
seen even in the projection. This is not possible for a projection on the
original axes.



5.1 Parallel Coordinates Measures for Unclassified
Data

5.1.1 Hough Space Measure
Our analysis is based on finding patterns like clustered lines
with similar positions and directions. Our algorithm for
detecting these clusters is based on theHough transform [23].

Straight lines in the image space can be described as
y ¼ axþ b. The main idea of the Hough transform is to
define a straight line according to its parameters, i.e., the
slope a and the interception b. Due to a practical difficulty
(the slope of vertical lines is infinite), the normal repre-
sentation of a line is

! ¼ xcos" þ ysin"; ð13Þ

where ! is the length of the normal from the origin to the line
and " is the angle between this normal and the x-axis. Using
this representation, for each non-background pixel in the
visualization, we have a distinct sinusoidal curve in the !"-
plane, also called Hough or accumulator space. An intersec-
tion of these curves indicates that the corresponding pixels
belong to the line defined by the parameters ð!i; "iÞ in the
original space. Fig. 5 shows twosynthetic examplesofparallel
coordinates and their respective Hough spaces: Fig. 5a
presents two well-defined line clusters and is more interest-
ing for the cluster identification task than Fig. 5b, where no
line cluster can be identified. Note that the bright areas in the
!"-plane represent the clusters of lines with similar ! and ".

To reduce the bias toward long lines, e.g., diagonal lines,
we scale the pairwise visualization images to an n( n
resolution, usually 512( 512. The accumulator space is
quantized into a w( h cell grid, where w and h control the
similarity sensibility of the lines. We use 50( 50 grids in
our examples. A lower value for w and h reduces the
sensibility of the algorithm because lines with a slightly
different ! and " are mapped to the same accumulator cells.

Based on our definition, good visualizations must
contain fewer well-defined clusters, which are represented
by accumulator cells with high values. To identify these
cells, we compute the median value m as an adaptive
threshold that divides the accumulator function hðxÞ into
two identical parts:

P
hðxÞ
2

¼
X

gðxÞ; where

gðxÞ ¼
x; if x ) m;

m; else:

" ð14Þ

Using the median value, only a few clusters are selected in
an accumulator space with high contrast between the cells
(See Fig. 5a), while in a uniform accumulator space, many
clusters are selected (See Fig. 5b). This adaptive threshold is
not only necessary to select possible line clusters in the
accumulator space, but also to avoid the influence of
outliers and occlusion between the lines. In the occlusion
case, a point that belongs to two or more lines is computed
just once in the accumulator space.

The final goodness value for a 2D visualization is
computed by the number of accumulator cells ncells that
have a higher value than m normalized by the total number
of cells ðw _hÞ to the interval ½0; 1':

si;j ¼ 1! ncells

wh
; ð15Þ

where i; j are the indices of the respective dimensions, and
the computed measure si;j presents higher values for
images containing well-defined line clusters (similar lines)
and lower values for images containing lines in many
different directions and positions.

Having combined the pairwise visualizations,we cannow
compute the overall quality measure by summing up the
respective pairwise measurements. This overall quality
measureof aparallel visualization containingndimensions is

HSM ¼
X

ai2I
sai;aiþ1 ; ð16Þ

where I is a vector containing anypossible combination of the
ndimensions indices. In thisway,we canmeasure the quality
of any given visualization by using parallel coordinates.

Exhaustively, computing all n-dimensional combina-
tions in order to choose the best/worst ones requires a
very long computation time and becomes unfeasible for a
large n. In these cases, in order to search for the best n-
dimensional combinations in a feasible time, an algorithm
to solve a Traveling Salesman Problem is used, e.g., the
A*-Search algorithm [24] or others [25]. Instead of
exhaustively combining all possible pairwise visualiza-
tions, these kinds of algorithms would compose only the
best overall visualization.

5.2 Parallel Coordinates Measures for Classified
Data

While analyzing parallel coordinates visualizations with
class information,we consider twomain issues. First, in good
parallel coordinates visualizations, the lines that belong
inside a determined class must be quite similar (inclination
and position similarity). Second, visualizations, where the
classes can be separately observed and that contain less
overlapping are also considered to be good. We developed
two measures for classified parallel coordinates that take
these matters into account: the Similarity Measure that
encourages inner class similarities, and the Overlap Measure
that analyzes the overlap between classes. Both are based on
the measure for unclassified data presented in Section 5.1.

5.2.1 Similarity Measure
The similarity measure is a direct extension of the measure
presented in Section 5.1. For visualizations containing class
information, the different classes are usually represented by
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Fig. 5. Synthetic examples of parallel coordinates and their respective
Hough spaces: (a) presents two well-defined line clusters and is more
interesting for the cluster identification task than (b), where no line
cluster can be identified. Note that the bright areas in the !"-plane
represent the clusters of lines with similar ! and ".



different colors. We separate the classes into distinct
images, containing only the pixels in the respective class
color, and compute a quality measure sk for each class,
using (15). Thereafter, an overall quality value s is
computed as the sum of all class quality measures:

SM ¼
X

k

sk: ð17Þ

Using this measure, we encourage visualizations with
strong inner class similarities and slightly penalize over-
lapped classes. Note that due to the classes overlap, some
classes have many missing pixels, which results in a lower
sk value compared to other visualizations, where less or no
overlap between the classes exists.

5.2.2 Overlap Measure
In order to penalize overlap between classes, we analyze the
difference between the classes in the Hough space (see
Section 5.1). As in the similarity measure, we separate the
classes to different images and compute the Hough trans-
form over each image. Once we have a Hough space h for
each class, we compute the quality measure as the sum of
the absolute difference between the classes:

OM ¼
XM!1

k¼1

XM

l¼kþ1

XP

i¼1

!!hi
k ! hi

l

!!: ð18Þ

Here, M is the number of Hough space images, i.e., classes,
respectively, and P is the number of pixels. This value is
high if the Hough spaces are disjoint, i.e., if there is no large
overlap between the classes. Therefore, the visualization
with the smallest overlap between the classes receives the
highest values.

Another interesting use of this measure is to encourage
or search for similarities between different classes. In this
case, the overlap between the classes is desired, and the
previously computed measure can be inverted to compute
suitable quality values:

OM INV ¼ 1=OM: ð19Þ

6 APPLICATION

To evaluate our measures, we tested them on a variety of
different real data sets. We applied our Class Density
Measure, Class Separating Measure, Histogram Density Mea-
sure, Similarity Measure, and Overlap Measure on classified
data, to find views that try to either separate or show
similarities between the classes. For unclassified data, we
applied our Rotating Variance Measure and Hough Space
Measure in order to find linear or nonlinear correlations and
clusters in the data sets, respectively.

Except for the HDM, we chose to present only relative
measures, i.e., all calculated values are scaled so that the best
visualization is assigned 100 and the worst 0. This scaling is
intended to ease the interpretability of the measure by the
user. For the HDM, we chose to present the unchanged
measure values, as the HDM allows an easy direct inter-
pretation, with a value of 100 being the best and 0 being the
worst possible constellation. If not otherwise stated, our
examples are proof-of-concepts, and interpretations of some
of the results should be provided by domain experts.

We used the following data sets: Parkinson’s Disease is a
data set composed of 195 biomedical voice measures from
31 people, 23 with Parkinson’s disease [26], [27]. Each of
the 12 dimensions is a particular voice measure. The voice
recordings from these individuals have been taken with the
goal to discriminate healthy people from those with
Parkinson’s disease. Olives is a classified data set with
572 olive oil samples from nine different regions in Italy [28].
For each sample, the normalized concentrations of eight
fatty acids are given. The large number of classes (regions)
poses a challenging task to the algorithms trying to find
views in which all classes are well separated. Cars contains
7,404 cars listed with 24 different attributes, including price,
power, fuel consumption, width, height, and others,
automatically collected from a national second hand car
selling website. We chose to divide the data set into two
classes: benzine and diesel to find the similarities and
differences between these.Wisconsin Diagnostic Breast Cancer
(WDBC) data set consists of 569 samples with 30 real-valued
dimensions each [29]. The data are classified into malign
and benign cells. The task is to find the best separating
dimensions. Wine is a classified data set with 178 instances
and 13 attributes describing chemical properties of Italian
wines derived from three different cultivars. A synthetic
data set that contains 1,320 data items and 100 variables, of
which 14 contain significant structures [30].

6.1 Scatterplot Measures
First, we show our results for RVM on the Parkinson’s Disease
data set. The three best and the three worst results are shown
in Fig. 6. High correlations have been found between
the dimensions Dim 9 (DFA) and Dim 12 (PPE), Dim 2
(MDVP:Fo(Hz)) andDim 3 (MDVP:Fhi(Hz)) as well as Dim 2
(MDVP:Fo(Hz)) and Dim 4 (MDVP:Flo(Hz)) and got a high
value by the measure (Fig. 6). However, visualizations
containing low correlation received a low value.

In Fig. 7, the results for the Olives data set using our
CDM measure are shown. Even though a view separating
all different olive classes does not exist, the CDM reliably
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Fig. 6. Results for the Parkinson’s Disease data set using our RVM
measure (Section 4.1). While clumpy low-correlation bearing views are
punished (bottom row), views containing higher correlation between the
variables are preferred (top row).



choses three views which separate the data quite well in the
dimensions Dim 4 (oleic) and Dim 5 (linoleic), Dim 1
(palmitic) and Dim 5 (linoleic) as well as Dim 1 (palmitic)
and Dim 4 (oleic).

We also applied our HDM technique to this data set.
First, the 1D-HDM tries to identify the best separating
dimensions, as presented in Section 4.2.3. The dimensions
Dim 1 (palmitic), Dim 2 (palmitoleic), Dim 4 (oleic), Dim 5
(linoleic), and Dim 8 (eicosenoic) were ranked as the best
separating dimensions. We computed all subsets of these
dimensions and ranked their PCA views with the 2D-HDM.
In the best ranked views, presented in Fig. 8, the different
classes are well separated. Compared to the upper row in
Fig. 7, the visualization utilizes the screen space better,
which is due to the PCA transformation.

Comparing our CSM and CDMmeasures, we can observe
that they present distinct results on the same data sets.
Applying the CSM to the Wine data set reveals views that
present a good separation between the classes (Fig. 9). The
best ranked plots present a large distance between the
centers of the class clusters: Dim 7 (Flavanoids) and Dim 13

(Proline), Dim 7 (Flavanoids) and Dim 10 (Color intensity),
and Dim 7 (Flavanoids) and Dim 12 (OD280/OD315 of
diluted wines). The worst ranked views, in opposite, show
only cluttered data. The result for CDMmeasure on theWine
data set is depicted in Fig. 10. The best ranked plots (Dim 7
(Flavanoids) and Dim 10 (Color intensity), Dim 1 (Alcohol)
and Dim 7 (Flavanoids), and Dim 7 (Flavanoids) and Dim 13
(Proline)) presentmore dense clusters, as expected. Note that
the second best ranked view, Dim 1 (Alcohol) and Dim 7
(Flavanoids) (with CDM ¼ 89), is not considered good using
the CSMmeasure (CSM ¼ 58). Comparing Figs. 9 and 10, we
can observe that the CSM favors large distances between the
clusters, while the CDM assigns high values to views that
present dense but separated clusters, even if the distances
between them are much smaller.
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Fig. 7. Results for the Olives data set using our CDM measure
(Section 4.2.1). The different colors depict the different classes (regions)
of the data set. While it is impossible for this data set to find views
completely separating all classes, our CDM measure still found views
where most of the classes are mutually separated (top row). In the worst
ranked views, the classes clearly overlap with each other (bottom row).

Fig. 8. Results for the Olives data set using our HDM measure
(Section 4.2.3). The best ranked plot is the PCA of Dim (4,5,8) revealing
a good view on all the classes, the second best is the PCA of Dim (1,2,4),
and the third is the PCA on all eight dimensions. The differences between
the last two are small, because the variance in that additional dimensions
for the third Eigenvector relative to the second is not big. The difference
between these and the first is clearly visible.

Fig. 9. Results for the Wine data set using our CSM measure
(Section 4.2.2). The best ranked plots present a large distance between
the centers of the class clusters, while the worst ranked views show only
cluttered data.

Fig. 10. Results for the Wine data set using our CDM measure
(Section 4.2.1). Note that the second best ranked view, Dim 1 (Alcohol)
and Dim 7 (Flavanoids) (with CDM ¼ 89), is not considered good using
the CSM measure (CSM ¼ 58).



The analyst has also the possibility to look at all
orthogonal views of a data set at once by arranging them
in a scatterplot matrix. In our system, the scatterplots are
shown in the upper right half of the SPLOM, while the other
half is used to display the goodness values of each plot. To
guide the analysis, the user can fade out lower ranked
views, which helps to focus on those with a higher
probability of information-bearing content. This is espe-
cially helpful if the number of dimensions in the data set is
very large, as the number of plots in an SPLOM increases
quadratically. Fig. 11 shows an example. Both SPLOMs
show the WDBC data set, but the left one shows the results
for the RVM, while the right one shows the results for the
CDM measure. The threshold for both SPLOMs was set to
0.95, so all plots with a lower rank have been faded out. As
can be seen in the enlarged detail, different views come into
focus depending on the chosen measure. While the RVM
considers plots with a high degree of correlation as more
important, the CDM focuses on separating the designated
classes, here the malign and benign cells. What pattern is
preferable always depends on the user task.

6.2 Parallel Coordinates Measures
To measure the value of our approaches for parallel
coordinates, we estimated the best and worst ranked
visualizations of different data sets. The corresponding

visualizations are shown in Figs. 12, 13, and 14. For a better
comparability, the visualizations have been cropped after the
display of the fourth dimension.We used a size of 50( 50 for
the Hough accumulator in all experiments. The algorithms
are quite robust with respect to the size and using more cells
generally only increases computation time but has little
influence on the result.

The recent work presented by Johansson and Johansson
[30] introduces a system for dimensionality reduction by
combining user-defined quality metrics using weighted
functions to preserve as many important structures as
possible. The analyzed structures are clustering properties,
outliers, and dimension correlations. We used a synthetic
data set presented in their paper to test our Hough Space
Measure. The HSM algorithm prefers views with more
similarity in the distance and inclination of the different
lines. We computed our HSM on this synthetical data set
and presented the result in Fig. 12. Here, we can see the best
ranked plots for clustered data points in the top row and the
worst ranked plots in the bottom. At the top, the clusters of
lines are clearly visible in contrast to the bottom where no
structures are visible. The five dimensions that are in the
best plots are dimensions A, C, G, I, J. Four out of five
dimensions are also determined by [30] as the best
dimensions for clustering. They use user-defined quality
measures for their system and our resulting dimensions are

592 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 17, NO. 5, MAY 2011

Fig. 11. Results on the WDBC data set for the RVM (left) and the CDM (right). In this example, views with a goodness value of less than 0.95 have

been faded out. This way, many irrelevant views can be faded out reducing the important plots to a more manageable size.

Fig. 12. Results for the synthetic data set. Best and worst ranked visualizations using our HSM measure for nonclassified data (Section 5.1.1). Top
row: The three best ranked visualizations and their respective normalized measures. Well-defined clusters in the data set are favored. Bottom row:
The three worst ranked visualizations. The large amount of spread exacerbates interpretation. Note that the user task related to this measure is not
to find high correlation between the dimensions but to detect good separated clusters.



a subset of their best nine dimensions. This gives the proof
that our measures are also designed in the way that users
would rank their plots.

Applying our Hough Similarity Measure to the Cars data
set, we can see that there seem to be barely any good
clusters in the data set (see Fig. 13). We verified these by
exhaustively looking at all pairwise projections. However,
the only dimension where the classes can be separated and
at least some form of cluster can be reliably found is Dim 6
(RPM), in which cars using diesel generally have a lower
value compared to benzine (Fig. 13, top row). Also, the
similarity of the majority in Dim 15 (Height), Dim 18
(Trunk), and Dim 3 (Price) can be detected. Obviously, cars
using diesel are cheaper, this might be due to the age of the
diesel cars, but age was unfortunately not included in the
data base. On the other hand, the worst ranked views using
the HSM (Fig. 13, bottom row) are barely interpretable, at
least we were unable to extract any useful information.

In Fig. 14, the results for our Hough Overlap Measure
applied to the WDBC data set are shown. This result is very
promising. In the top row, showing the best plots, the malign
and benign are well separated. It seems that the dimensions
Dim 22 (radius (worst)), Dim 9 (concave points (mean)), Dim
24 (perimeter (worst)), Dim 29 (concave points (mean)), and
Dim 25 (Area (worst)) separate the two classes well.

7 EVALUATION OF THE MEASURES’ PERFORMANCE

USING SYNTHETIC DATA

To show the effectivity of our measures and to explain their
differences, we analyzed their results on a synthetical data
set. We created a 10-dimensional data set with two classes.
By selecting just two classes, we aim to show the funda-
mental differences between the measures, which allow to
detect hidden patterns.

In three dimensions, we hid target patterns to test how
these projections are ranked by the measures. The patterns
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Fig. 13. Results for the Cars data set. Cars using benzine are shown in black, diesel in red. Best and worst ranked visualizations using our Hough
similarity measure (Section 5.2.1) for parallel coordinates. Top row: The three best ranked visualizations and their respective normalized measures.
Bottom row: The three worst ranked visualizations.

Fig. 14. Results for the WDBC data set. Malign nuclei are colored black, while healthy nuclei are red. Best and worst ranked visualizations using our
overlap measure (Section 5.2.1) for parallel coordinates. Top row: The three best ranked visualizations. Despite good similarity, which is similar to
clusters, visualizations are favored that minimize the overlap between the classes, so the difference between malign and benign cells becomes more
clear. Bottom row: The three worst ranked visualizations. The overlap of the data complicates the analysis, the information is useless for the task of
discriminating malign and benign cells.



were created as follows: the first pattern in dimension (2-5)

contains two classes with means at m1 ¼ ð6; 14Þ and

m2 ¼ ð13; 6Þ, each containing 500 samples from a multi-

variate normal distribution with

C1 ¼
3 2:7
2:7 3

# $
;

the covariance matrix of the variables. In dimension 6, we
defined two classes with means at m3 ¼ 6, respectively,
m4 ¼ 13 with 500 random samples of a normal distribution
and with standard deviation std ¼ 1:5 for each class. With
this definition of the dimensions, three patterns in dimen-
sions (2-5), (2-6), and (5-6) occur.

In the other seven dimensions, we defined random
patterns. These are developed systematically, by taking for
every dimension the mean md ¼ 10 and 1,000 samples from
a normal distribution starting from a standard deviation
std ¼ 0:5 and increasing this with 0.5 for each dimension.
Therefore, the last random dimension has the std ¼ 3:5.

In Fig. 15, we present the scatterplot matrix of the
synthetical data set showing the scatterplots above the
main diagonal and the parallel coordinates plots under
the diagonal.

We ranked all these plots with our measures for
scatterplots and parallel coordinates. The results are pre-
sented in Fig. 16. For every measure, we show a point chart
containing the sortedmeasure results. The target patterns are
marked red in each plot. It can be seen that all measures
ranked as best plot one of the target patterns.

The scatterplot measures for classified data CDM and
CSM found all the three target patterns as the best projections
of the data set. This confirms our assumption that these
measures search for the projections with the best class
separability and the most dense classes. The RVM designed
for data sets without classes was computed on the same data
setwith no class information. (Note that thismeans thatRVM
was measured on plots like in Fig. 15 that have no different
colors for the data points.) The best ranked scatterplot by
RVM is (2-5) having the most dense target pattern. RVM is
aimed to find the scatterplots with the highest correlations.
We can see that (2-5) is the target pattern with the highest
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Fig. 15. Matrix for the synthetic data set with scatterplots above the main

diagonal and parallel coordinates plots below.

Fig. 16. Results of the seven measures for classified and unclassified data. The first row shows the result for the scatterplot measures and the

second row for the parallel coordinates measures. The ranks are sorted decreasing and the target patterns are marked with red crosses.



correlation. The second target pattern (2-6) shows two
clusters with high correlation, and is also found by the RVM.

The 1D-HDM ranked best the target patterns with a
result of 100. This synthetical data set is unfortunately
inapplicable to test the 2D-HDM because the patterns are
along the euclidian dimensions, and therefore, the 1D-HDM
finds the best projection. Computing the PCA and searching
for a better projection of the principal components is not
necessary, because the value of 100 cannot be improved.
Applying the PCA to the best dimensions selected by the
1D-HDM (2, 5, and 6), we obtain the plot showed in Fig. 17.
These best components of the PCA are also ranked with 100
by the 2D-HDM. Note that the resulting plot is not visually
better than the orthogonal projection (2-5) and no additional
information can be obtained through the PCA.

The parallel coordinates measures are designed to target
different patterns.HSM ranks best parallel coordinates plots
for unclassified data with similar positions and directions,
i.e., clusters. For classified data, SM looks for these clusters
taking the classes into account and OM is designed to find
parallel coordinates plots having classeswith fewest overlap.

In the point charts of the bottom row of Fig. 16, we see
that all the measures for parallel coordinates ranked best
one of our target patterns. HSM analyzed the data with no
class information and ranked as best plot (5-6), where two
classes are visible. OM also ranked (5-6) as the best, because
this plot has the fewest overlap between the two classes. SM
ranked two target patterns in top 3:(5-6) as the best, and (2-
6) as third best, presenting lines in the two classes with
almost the same positions and directions.

This evaluation is only a starting point for an evaluation
of every possible parameter combination. In future, a
complete statistical analysis of the correlation between the
measures and the correlation to the ground truth is
necessary. In the following, we briefly outline the basic
steps for the future evaluation process:

1. Define ground truth. The ground truth should be
generated in a synthetic data set having two
independent variables, as the density and separ-
ability of classes.

2. Vary the number of classes. The synthetical data
sets have to have different number of classes.

3. Vary the number of dimensions. The synthetical
data sets have to have different number of dimen-
sions. They should simulate different types of high-
dimensional data: small data sets—two to nine

dimensions, medium data sets—10 to 49 dimensions,
and large data sets—50 to 100 dimensions.

4. Statistical analysis. Make a statistical analysis of the
correlation between the measures, and a correlation
to the ground truth.

8 CONCLUSION

In this paper, we presented several methods to aid and
potentially speed up the visual exploration process for
different visualization techniques. In particular, we auto-
mated the ranking of scatterplot and parallel coordinates
visualizations for classified and unclassified data for the
purpose of correlation and cluster separation. In the future,
a ground truth could be generated, by letting users choose
the most relevant visualizations from a manageable test set
and compare them to the automatically generated ranking
in order to prove our methods. Some limitations are
recognized as it is not always possible to find good
separating views, due to a growing number of classes and
due to some multivariate relations, which is a general
problem and not related to our techniques.

The limitations of the above approach are, of course,
determined by the task, the data complexity, and the
measures applied to find the requested patterns. Tasks
might be of different types, such as finding outliers,
significant patterns, different types of correlations between
the dimensions, etc. The complexity of the data can be
described by the number of dimensions, the number of
contained classes, and the clarity of patterns (noise, over-
plotting, and distribution of the data). This complexity
strongly influences the ability of measures to detect the
required patterns. There are a number of measures in the
domain of the paper assessing different types of tasks and
different applicability level for different data sets. However,
creating a data-task-measure taxonomy for our domain is
out of scope of the current paper, we strongly recommend
such an approach for future research. Our current approach
therefore is to describe systematically the functioning of the
presented measures as a function of their ability to detect
hidden patterns in the data for a particular task. Conse-
quently, our results have to be handled accordingly.

Our future work will consider comparison to other
existing measures. Furthermore, issues such as overplotting
will be part of our study since they were currently
disregarded. Scalability concerns will need to be addressed
in future research under the constraint of data complexity
and heuristics to reduce the search space for target patterns.
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