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Abstract
During the last two decades, a wide variety of advanced methods for the
visual exploration of large data sets have been proposed. For most of these
techniques user interaction has become a crucial element, since there are many
situations in which users or analysts have to select the right parameter settings
from among many in order to construct insightful visualizations. The right
choice of input parameters is essential, since suboptimal parameter settings
or the investigation of irrelevant data dimensions make the exploration pro-
cess more time consuming and may result in wrong conclusions. But finding
the right parameters is often a tedious process and it becomes almost impos-
sible for an analyst to find an optimal parameter setting manually because of
the volume and complexity of today's data sets. Therefore, we propose a novel
approach for automatically determining meaningful parameter- and attribute
settings based on the combined analysis of the data space and the resulting
visualizations with respect to a given task. Our technique automatically ana-
lyzes pixel images resulting from visualizations created from diverse parame-
ter mappings and ranks them according to the potential value for the user.
This allows a more effective and more efficient visual data analysis process,
since the attribute/parameter space is reduced to meaningful selections and
thus the analyst obtains faster insight into the data. Real-world applications
are provided to show the benefit of the proposed approach.
Information Visualization (2007) 6, 75--88. doi:10.1057/palgrave.ivs.9500150
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Introduction
A wide variety of advanced visual exploration and visualization methods
have been proposed in the past. These techniques have proven to be of
high value in supporting researchers and analysts to obtain insight into
large data sets and to turn raw data into useful and valuable knowledge
by integrating the human in the exploration process. However, with the
increasing volume and complexity of today’s data sets, new challenges for
visualization techniques arise. To keep step with the growing flood of
information, visualization techniques are getting more sophisticated, for
example by integrating automated analysis methods or providing new vi-
sualization metaphors as proposed in the context of visual analytics.1

But this also means, that visualization techniques are getting more com-
plex, forcing the user to set up many different parameters to adjust the
mapping of attributes to visual variables on the display space. In classical
data exploration, playing with parameters to find a promising parameter
setting is an important part of the exploration process, but with the in-
creasing number and diversity of the parameters it becomes more and more
difficult to determine a good parameter setup, which is vital for insightful
visualizations.
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Figure 1 A typical application scenario: the visual analysis of
a census data set involves different normalizations to a color
scale; Although both visualizations are based on exactly the
same input data, figure 1b provides more insight since a log-
arithmic color scale is more suitable for the underlying data
distribution.

For example, if we have 50 attributes (or attribute di-
mensions) and four parameters for the visual mapping,
as for example, in pixel bar charts2 employed in the sec-
tion Pixel bar charts, then we have over 5 million possi-
ble, mappings and it is very unlikely to find useful ones
interactively.

Suboptimal parameter settings or the investigation of
irrelevant data dimensions make the exploration process
tedious and an interactive search impossible. In general,
finding a good parameter setup is a challenging task for
the analyst, since it is often not clear what is the best pa-
rameter setting for a given task, due to the huge parameter
and attribute space.3

A simple application scenario is shown in Figure 1. The
figure shows two choropleth maps visualizing U.S.A. pop-
ulation density data at county level. The two maps are
based on the same input data, but created with two differ-

ent parameter settings. More precisely, in the left figure a
linear color mapping was chosen, in the right figure a log-
arithmic color mapping was chosen. It is easy to see that
the linear mapping provides much less insight into the
data than the logarithmic mapping, because the data are
highly non-uniformly distributed. For instance, very high
populated areas around Los Angeles, Chicago or Manhat-
tan cause uniform dark colors for the remaining U.S.A.
and it is almost impossible to see fine structures or dif-
ferences in population density among them. In practice,
the analyst does not know a priori which normalization
function is best suited for a given data set and he may test
some preferred ones. Of course, there are typically much
more parameters that have to be selected.

But the growing data complexity and data volumes do
not allow such playing with data by hand anymore. There-
fore, the paper aims at supporting the user in finding
promising parameter setups from the available parame-
ter space to speed up the exploration process. We present
a framework that employs automated analysis methods
to detect potentially useful parameter settings for a given
pixel-based visualization technique and an associated in-
put data set, with respect to a given user task like Cluster-
ing or Outlier detection. This approach is an extension of
our work introduced in.4

Background
In many application scenarios, analysts have to deal
with large parameter spaces when using visualization
techniques to explore large data sets. These parameters
control the visual encoding of the data, including the
selection of attributes from the input data, the selection
of the color scale, algorithm parameters, the selection
of visual variables and so on. The problem is that the
optimal parameter setting for a given task is often not
clear in advance, which means that the analyst has
to try multiple parameter settings in order to generate
valuable visualizations. Since such selections can hardly
be done manually, the integration of automated meth-
ods to support the analyst has been recognized as an
important research problem in the context of visual
analytics.1

First approaches have been proposed in the context
of visualization. In House et al5, a semi-automated tech-
nique to search the visualization parameter space with
applications in surface texturing is presented that focuses
especially on perceptual and aesthetic concerns. The
basic idea is to employ a genetic algorithm to guide a
human-in-the-loop search through the parameter space.
The approach produces some initial visualizations con-
structed from different parameter settings (parameter
vectors). The resulting visualizations are rated by the
user, and this rating is then used to guide the progress of
the genetic algorithm. This technique follows approaches
proposed in Sims6 and Greenfield7, which coupled image
generations with user feedback in the context of genetic
algorithms. As a result, the approach builds a database of
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rated visualization solutions. Data mining technique may
then be used to extract information from the database.
The drawback of these approaches is that the user is still
involved in the evaluation stage, that means that the
number of visualizations that can be evaluated is rather
limited.

In the field of InfoVis, some techniques were proposed
which avoid this problem by applying exclusively auto-
mated methods. In Wilkinson et al,8 Tukey9 and Tukey
and Tukey10 graph theoretic approaches to analyze Scat-
terplots were proposed. This work called Scagnostics
highly influenced our work. Since Scatterplot matrices
contain as many scatterplots as there are pairs of param-
eters (attributes), they do not scale well to high numbers
of dimensions. Therefore, it would be useful to reduce
the number of scatterplots by pruning irrelevant ones
with respect to a given task. The goal of the mentioned
approaches was to find interesting attribute relationships
by creating scatterplot matrices from the data and then
analyze each scatterplot, which reveals a relationship be-
tween two attributes, for certain properties using graph
theoretic methods. The basic idea is to construct geomet-
ric graphs based on the data points of each scatterplot
and then to compute relevance measurements from these
graphs. For example, properties of the convex hull and
the minimal spanning trees of the scattered points are
used for outlier or cluster analysis. These techniques
have shown that automated analysis works well to filter
relevant from irrelevant scatterplots.

With our approach, we extend this idea to a broader
set of visualization techniques. We provide analysis func-
tions to analyze both patterns in the data using data anal-
ysis techniques as well as the patterns contained in the
images by using image analysis techniques. Hence, we
suggest a general process model for automated parame-
ter space analysis and show how we applied this model
to pixel based visualization techniques namely pixel bar
charts and space filling curves. Although data mining
methods are commonly used for data analysis, our ap-
proach is novel since only little research has been done on
analyzing visualizations with respect to their information
content using image analysis methods.

The pixnostics approach
The next sections focus on the problem of automatically
searching through visualization parameter space to sup-
port the user in finding promising parameter settings
to speed up the exploration process. Since we deal with
pixel images resulting from visualizations, instead of
scatterplots, we call our approach pixnostics instead of
scagnostics.

The basic idea is to integrate image analysis and re-
trieval methods in the visualization process to compute
measurements based on the properties of the image pix-
els like color and pixel neighborhoods. Therefore we
consider visualization of data as a process of creating im-
ages I, whereas we focus in our experiments on pixel-based

visualization techniques in which every data point cor-
responds to a pixel.

In the following, we describe this problem and how we
addressed it in more detail.

Visualization parameter space
The challenging task in generating expressive visualiza-
tions is to find an adequate visual encoding of the input
data set in the data display space. The visual encoding
depends on the input data, the employed visualization
technique and the visual variables given by a particular
parameter setting. In classical data exploration, the map-
ping to visual variables described by Bertin,11 such as
position (x,y), size or color is manually controlled by
the user.

More precisely, the central process of visualizationV can
be described as

I(t)= V(D, S(P), t), (1)

where data D is transformed using a specification S
into a time varying image I(t), according to the work
proposed by Wijk.12 To simplify matters, we aim at
determining initial parameter settings for non-animated
visualizations, therefore the time t can be excluded from
our considerations. (Note that the complexity of the
problem would be boosted exponentially, if we take time
into consideration.) Figure 2 illustrates this classical visu-
alization pipeline.

Based on the formula above, the data set D is given
as input data within a database environment with D =
(d1, . . . , dn). In general the employed visualization tech-
nique V is defined by the application scenario and is given
by the user. In13 an approach is proposed where the visu-
alization technique is determined automatically, but his
approach is limited to relational data.

In the following we use novel pixel-based techniques
namely pixel bar charts2 and Jigsaw maps14 as examples
to explain our new idea and focus mainly on demographic
data provided by the U.S. Census Bureau to evaluate our
approach.

Pixel bar charts (described in the section pixel bar
charts) have four parameters and more to adjust the vi-
sual encoding. It uses one parameter to separate the data
into bars, two parameters for ordering of pixels in x and
y directions and one parameter for color coding. How-
ever, by using pixel bar charts for analyzing typical data
sets with at least 10–20 attribute dimensions, it is very
hard for the user to find interesting patterns hidden in
the data via manual parameter selection, since there are
thousands of visual mappings possible, but the number
of parameter settings that the user may try manually is
limited.

In our setting, the input data D and the visualization
technique V is given by the user and P={Pi=(p1i , . . . , pmi )}
as instance of a parameter setting generating image I(S(Pi))
is determined by the system.

Information Visualization
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Figure 2 Classical visualization process: the user has to find
an optimal parameter setting manually. Ideally such a setting
should produce an insightful visualization I.

Limits and problem complexity
Most visualization techniques can handle less attributes
than provided by the dimensionality of the input data
set, so in the visualization step potentially useful attribute
combinations must be selected from the data. As an ex-
ample, we consider a data analyst who wants to use the
pixel bar chart technique to analyze real-world customer
purchase data. Such data sets typically contain at least 20
dimensions (attributes), including name of item, price of
item, name/id of the customer, status and so on. The num-
ber of possible parameter settings Pi = (p1i , . . . , p

m
i ) that

control the visual encoding and therefore the number of
possible images IPi is defined by the number of different
attribute combinations of size m from the available num-
ber of dimensions d, given as

|{I(S(Pi))= V(D, S(Pi), t)}| = d!
(d −m)! . (2)

For the pixel bar chart example, we may specify m= 4 at-
tributes at once from the input data with 20 dimensions,
which would result in 116,280 mappings. This number
may be increased by additional parameters like different
colormaps or different scalings. The equation above also
shows that increasing dimensionality boosts the parame-
ter space exponentially. If we have 50 attributes the num-
ber of possible mappings is 5.5 million. Then the analyst
faces the problem, how to determine interesting subsets
from the available data dimensions for visual analysis, that
could reveal interesting relationships.

The pixnostics process model
Our pixnostics approach follows a three-step process based
on the current task-at-hand:

• Analytical filtering and pruning of the set of possible im-
ages {{I(S(Pi))} by analyzing the parameter space Pi. The
aim is to extract useful attribute selections and useful
parameter settings automatically (candidate set CS),

• Image analysis of the remaining candidate set CS-
generating visualizations using the determined candi-
date attributes

• Ranking and output of the candidate set CS-providing a
ranking of candidate images ICS

Figure 3 illustrates the pixnostics process model. In clas-
sical visual exploration, the user visually analyzes a col-
lection of data items to find answers to various questions
(analysis tasks). In our framework, an analysis task T de-
scribes conditions that the data items needs to fulfil in the
resulting visualization, which is the input of the pixnos-
tics pipeline together with the dataD and the specification
of the visualization method S (left side in Figure 3). Then
data analysis and image analysis methods are applied to se-
lect potential interesting visualizations and present them
to the user (center/right side in Figure 3). An issue for fu-
ture work is to adapt these functions by integrating the
user feedback in form of a relevance feedback loop.

Since the applied methods highly depend on the se-
lected task, it is one of the major challenges to identify
the most common tasks, identify their impact to unique
visual properties in the resulting image I and finally to
find adequate analysis functions for each of the tasks, that
is to find good predictors for these properties in images.
Unique properties in images are homogenous areas, color
outliers, edges and segments, etc. Previous studies on vi-
sualization design proposed a range of different analysis
goals and tasks.15–19 They propose individual taxonomies
of information visualizations using different backgrounds
and models, so that users and analysts can quickly identify
various techniques that can be applied to their domain of
interest. Based on the proposed approaches, we identified
the following generic tasks: identify, locate, cluster, asso-
ciate, compare, correlate, match and sort whereas we fo-
cus in our initial experiments in the context of this paper
mainly on cluster and outlier analysis.

In the following, we describe the individual steps in
more detail.

Step 1: analytical filtering and pruning
In practice, the number of attributes is greater than the ca-
pabilities of most visualization techniques. The first step
of our pixnostics approach is therefore to determine rele-
vant relationships among the different attributes analyt-
ically. In our experiments we use classical data mining
techniques and statistic measures, more precisely, correla-
tion analysis, partial matching techniques, classification
techniques and cluster analysis to accomplish this step,
but of course, other task-specific analysis techniques may
be used as well.

Correlation analysis Attributes that are correlated may be
interesting for detailed analysis, because they may reveal
relevant impact relationships. Therefore, we employ cor-
relation analysis to find groups of correlated attributes.
We determine the pair-wise global correlations among all
measurements as given by Pearson’s correlation matrix.
Pearson’s correlation coefficient r between bivariate data
A1i and A2i with (i = 1, . . . , n) is defined as

r =
∑n
i=1 (A1i − Ā1)(A2i − Ā2)√∑n

i=1 (A1i − Ā1)
2∑n

i=1 (A2i − Ā2)
2

, (3)
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Figure 3 Pixnostics process model: combining task-dependent automated data and image analysis techniques.

where Ā1 and Ā2 are the means of the A1i and A2i values,
respectively.

If two dimensions are perfectly correlated, the cor-
relation coefficient is 1, in case of an inverse correla-
tion it is −1. In case of a perfect correlation, we can
omit one of the attributes since it contains redundant
information.

In Figure 4 an example from the census housing data20

on U.S. state level is shown, correlation coefficients for
pairs of attributes are shown in the upper right half of the
matrix, histograms in the diagonal show the data distri-
bution. The data set contains, for example, information
about U.S. education levels, crime rates, housing or house-
hold incomes on different levels of detail (country, state,
county, block level). Typical exploration tasks focus on
the extraction of information about housing neighbour-
hoods for particular areas within the U.S. including the
identification of correlations between statistical parame-
ters like household income, house prices, education levels
and crime rates. The figure clearly shows that states with
high total population have high gross rents (0.96) or that
Median Household incomes are correlated with Median
House prices per state (0.68). The analyst may now inves-
tigate such relations in more detail. In most cases, how-
ever, the correlations are not perfect and we are interested
in high correlation coefficients and select sets of highly
correlated attributes to be visualized.

An available alternative for adjacently depicting similar
dimensions is to use the normalized Euclidean distance as
a measure for global similarity SimGlobal defined as

SimGlobal(Ai, Aj)=

√√√√√N−1∑
i=0

(b1
i − b2

i )
2, (4)

where bji = (a
j
i −min(Aj))/(max(Aj)−min(Aj)).

The global similarity measure compares two whole di-
mension such that any change in one of the dimensions
has an influence on the resulting similarity. The defined
similarity measure allows it to determine groups of simi-
lar attributes for the following visualization. Since in gen-
eral, computing similarity measures is a non-trivial task,

because similarity can be defined in various ways and for
specific domains, special measures may be included for
specific tasks.

Cluster analysis In order to perform a visual analysis, it
is important to have the possibility to partition the data
appropriately and then to focus on certain parts of the
data. Cluster analysis can help to do this based on the
characteristics of the data instances. The cluster analysis
may, for example, find out that the data instance of a
data set may be partitioned into different groups, which
may be then independently analyzed using visualization
techniques. Since attribute parameter values may be con-
tinuous (sales amount) or categorical values (item name),
the clustering approach has to take these properties into
account. There are a large number of clustering methods
that have been proposed in the literature Hinneburg and
Keim21 presents a nice overview). In the pixnostics proto-
type we employed k-means clustering,22 one of the most
popular approaches.

Classification analysis In some applications, for ex-
ample in visual root-cause analysis, the goal of the
data exploration is to understand the relationship be-
tween data attributes and some specific target attribute,
for example which attributes have an influence on
the target attribute. The task is to find the attributes
that are best predicting the outcome of the target at-
tribute. A well-known heuristic for this task is the GINI
index,23 which is commonly used in decision tree
construction.

Given a target attribute (e.g a business metric) AT
which is partitioned into a disjoint set of k classes (e.g
accept, reject) or value ranges (e.g large, medium, small)
denoted by C1, . . . , Ck (B= ⋃k

i=1 Ci), then the GINI index
of an attribute A, which induces a partitioning of A into
A1, . . . , Am, is defined as

InfoGainGINI (AT ,A)=
m∑
i=1

|Ai|
|AT |GINI(Ai), (5)
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Figure 4 Identifying correlations in census housing data on U.S. state level: besides trivial correlations (e.g population and number
of house units), some interesting correlations are revealed, for example, between population and gross rent (because of demand
and supply effects). Highly correlated attributes may be analyzed in more detail.

where

GINI(Ai)= 1 −
k∑
j=1

[ |Cj|
|Ai|

]2
.

The InfoGain is determined for all attributes and
attribute combinations and the attributes with the
highest InfoGain with respect to the target attribute
AT are chosen for visualization. These attributes are
best predicting the outcome of the target attribute
and therefore they may be relevant for detailed
analysis.

Step 2: image analysis
Once we have selected candidate parameter settings Pi, i=
1, . . . ,max based on promising attribute selections where
max is the number of parameter settings, we generate
visualizations by computing all possible mappings of the
candidate parameter set to visual variables.

We then apply image analysis methods to determine
the relevance, that is, the potential value of each image
(visualization), with respect to the given task. In compari-
son to existing semi-automated methods where the user is
forced to rate the generated visualizations, the image anal-
ysis is completely automated. The goal is to process the
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images in order to generate some measurements of its rel-
evance with respect to a given task T . The challenge is to
find adequate image analysis functions to reach this goal.
Numerous image processing operations �() for many dif-
ferent tasks exist in the literature, for example for Image
Segmentation, Image Retrieval, Edge Detection, Image De-
noising or Image Inpainting.24 Many of these techniques
may be very useful in visualization analysis.

In our initial experiments, we focused mainly on
the information content of each resulting visualization
V(D, S(Pi)) and employ this measure to compute the
relevance of each visualization for certain tasks. A very
promising way to extract such information from an im-
age, besides well-known color histograms, is Shannon’s
entropy measure.25 It is frequently used in image pro-
cessing and analysis. In Koskela et al.26 an entropy-based
approach for image cluster analysis is proposed, a more
general approach for image retrieval using entropy is
introduced in Zachary et al.27

In the first step, we generate and store IPi = I(Pi) =
V(D, S(Pi)) as a matrix U of scalars representing gray-scale
values, the pixel-matrix representation with U = (ui,j), i ∈
[0, . . . , Iwidth], j ∈ [0, . . . , Iheight ]. (color images are con-
verted to gray values). The base for our analysis is the dis-
tribution of gray values within the image. Thus, we are
interested to know the pixel distribution H in certain ar-
eas of the Image as a function of gray levels g. Image
histograms are an efficient way to reach this goal. The
histogram of the 2D image g(U) can be seen as a 1D func-
tionH[g] where the independent variable is the gray value
g and the dependent variable is the number of pixels H
with that level. We can then use the histogram properties
to make assumptions about the information contained in
the image. For example, if most pixels in an image are
contained in a small range of gray levels, the image can
be seen as redundant since it provides little new infor-
mation and thus the underlying parameter setting would
not lead to insightful visualizations. If there are too many
different gray levels, the image represents noise and it is
not likely that it contains relevant information. An im-
age with a bimodal histogram (i.e a histogram with two
peaks) may contain clusters and may be relevant for visual
exploration. Since all pixels in the image must have some
gray value in the allowed range, the sum of populations
of the histogram bins must be equal the total number of
image pixels N:

N =
gmax∑
g=0

H(g), (6)

where gmax is the maximum gray value (gmax=255 for an
8-bit quantizer). The histogram function is equal to the
scaled probability distribution function p(g) of gray levels
in that image:

p(g)= 1
N
H(g), with

g=max∑
g=0

p(g)= 1. (7)

Figure 5 Information content (IG) of different gray-level im-
ages. From an analyst's point of view, interesting images should
have an Information content in a certain range c between 0 and
IGmax.

Based on the probability distribution, we can now com-
pute Shannons Entropy, which is equal to the minimum
number of bits that are required to store the image. If the
probability of gray level g in the image u(i, j) is represented
as p(g), the definition of the quantity of information in
the image is

E(g)= −
gmax∑
g=0

p(g) log2(p(g)). (8)

From this definition, it is easy to show that the maxi-
mum information content E is obtained if each gray-level
has the same probability; in other words, a flat histogram
corresponds to maximum information content. The min-
imum information content E= 0 is obtained if the image
contains only one gray level. Since minimal information
content means redundancy and maximum information
content means information overload or noise, the inter-
esting images should have an information content in be-
tween, for example, in a task-dependent range c shown in
Figure 5.

Alternatively, we use the standard deviation stdev as a
measure of spread of gray levels g in a given image I with
N as the number of different gray levels in the image:

stdev(I, g)=

√√√√√ 1
N

N∑
i=1

(gi − g)2. (9)

Since we want to analyze the images not only in whole,
but also find interesting local patterns in the image, we
use a regular grid to separate the image in regular grid cells
and than apply the methods mentioned above to com-
pute values for each grid cell. The computation of the in-
formation content of each cell is identical to the methods
described above. The only difference is that from the in-
dividual grid values we then compute a single relevance
value for each image, described in the next section. To
adapt our method to given application scenarios, we do
not only use a fixed grid-resolution, but a hierarchy of grid
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Figure 6 Basic idea of grid-based information content. Based on the entropy values for certain grid resolutions, measurements for
the relevance of the image are generated. Darker gray levels correspond to higher entropy values.

cells as shown in Figure 6(b), efficiently implemented by
a quadtree data structure.28

Algorithm 1 Entropy-based image analysis

Step 3: ranking and output to the user
Having a function f, such as E, stdev, which mea-
sures the information content of an image, we can
now compute rankings from the candidate parame-
ter sets with respect to a given user task T. To show
the basic concepts of our approach, we focused two
major tasks that are common in most analyzes pro-
cesses, namely outlier analysis, including the search
for local outliers or values of interest (e.g find all
counties or cities that have similar household in-
come or unexpected household income) and cluster
analysis (e.g find areas with similar statistical param-
eters). In our prototype framework, we provide rank-
ing functions for both tasks and show how we ap-
plied it to real-world data sets. Of course, the user
may also use other ranking functions for specific tasks,
which can be easily integrated into the pixnostics
framework.

Computing the global ranking score To determine the rel-
evance of each visualization, we have to compute a global
ranking score from the grid cell values of each image. Be-
sides simple aggregation functions like average or stdev,
which have shown to be very useful to prune a large num-
ber of irrelevant visualizations, we employed several more
sophisticated functions.
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Figure 7 Visualization of information content: jigsaw maps are generated from NY median household income, darker colors
correspond to higher income. Gray levels show the information content of image sections, darker gray levels correspond to higher
information content. The permutated image has significant higher information content, which indicates bad clustering properties.

For cluster analysis for example, we initialize each reg-
ular grid cell GC(Ii) with its information content score
f(GC(Ii)). Then we start to merge regular grid cells GCk(Ii)
andGCl(Ii) that have similar content scores, to larger cells.
The new content score f ′(GC(Ii)) is determined using local
term weighting f(GCcommon(Ii))= l(f(GCk(Ii))+ f(GCl(Ii)).
The term weight function l is defined over the set of all
regular grid cells {GC(Ii)}. This allows us to investigate
clustering properties, where we are looking for images
with higher information content f on coarser grid res-
olutions and with lower information content f at finer
grid resolutions. The technique is similar to single link-
age clustering. We order on each resolution level the grid
cells according to their value f, starting with the finest
resolution. Then we expand grid cells with similar low
content scores and sum up their weight while enlarging
the grid cells. Since the spread of gray levels is typically
higher if the size of the grid cell increases, we use cell size
as an weighting factor. Note that the local term weight
l directly depends on the given task T. That means, the
user just needs to provide useful weight functions to
get a relevance measure of the image for the given task.
Well-known and widely used weight functions are binary
operators, logarithmic or augmented normalized term
frequency.

A second approach we employed for the analysis of
cluster properties is the BB Score (or BlackBlack count),29

which is commonly used in Geo-Analysis. This approach
takes the position (i, j) and (Entropy) value of each grid
cell as input and returns a measure that indicates if adja-
cent cells have similar values. Images where adjacent cell
have similar values have a higher BB score than images
where they have different values. Therefore, we rank im-
ages with higher scores higher, since they may provide
better cluster properties.

In outlier analysis, the goal is to compute a ranking of a
collection of images in such a manner that images show-
ing outliers should have higher global ranking scores. The
inverse normalized term frequency is a common choice
for outlier analysis. The normalized term frequency l is
defined as the logarithm of the sum of two information
content scores f(GCk(Ii)) and f(GCl(Ii) normalized by the
total number of regular grid cells |{GC(Ii)}|.

l(f(GCk(Ii))+ f(GCl(Ii))= log
( |{GC(Ii)}|
f(GCk(Ii))+ f(GCl(Ii)

)
.

Evaluation and application
To show the usefulness of our approach, we applied the
pixnostics technique to generate jigsaw maps and pixel
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Figure 8a Census data jigsaw unsorted (8a) and sorted (line by line starting at top left corner with most relevant) by ranking
function based on entropy and clustering task (8b).

bar charts. The proposed experiments show how Pixnos-
tics can steer the visual exploration process in an unsuper-
vised manner, to increase the efficiency of the exploration
process and to actively support the analyst to reduce the
effort of getting insight from the data.

Census data jigsaw maps
Our first application example analyzes U.S. census data,
in particular median household income for the state of
New York on block level. We generated visualizations us-

ing the jigsaw maps,14 a pixel-based technique based on
space filling curves. The basic idea is to map the census
data into the 2D plane in such a way that properties like
locality and clusters in the data are preserved by using
a space filling curve. To verify our proposed techniques,
we generated a jigsaw map from the New York state cen-
sus median household income data on block level which
should preserve the clusters in the data (clusters of areas
with high/low income) and their spatial location shown
in Figure 7(a). Then we permutate the data points at dif-
ferent permutation rates. This should of course destroy, or

Information Visualization



Automated visualization analysis Jörn Schneidewind et al
85

Figure 8b (continued).

at least reduce the clustering/locality properties. Now we
apply our automated analysis function based on the clus-
tering task, that ranks the underlying figures according to
their clustering properties. The original jigsaw should of
course be the image with the highest rank, since it pro-
vides the best clustering properties. The more permuta-
tion in the image, the lower should the relevance of the
image, that is its rank, be.

Thus, we consider the permutation rate as our input
parameter and want to find input parameters which
produce visualizations with good clustering properties.
Figure 8 shows the experimental results. The upper fig-

ure shows the unordered input data set, a set of jigsaw
images. It is easy to visually identify images with good
clustering properties, that is, images having a cluster
with low income in the upper left corner surrounded
by high income areas. In the lower figure, the result
after the analysis step is shown. It is easy to see that
figures with good clustering properties are ranked first,
while images containing more noise have lower rele-
vance. To determine the ranking, either the entropy
or the Standard deviation of the pixel grey levels in
combination with the regular grid cell hierarchies are
employed.
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Figure 9 Pixel bar chart showing top 25 results after image analysis using entropy measure. It is easy to see that the bar in the
middle ('reject' parts) show significant differences in comparison to the two other bars. (a) Ranking of images generated from
promising attribute selections. Each box shows a thumbnail of a PixelBarChart based on a certain attribute selection, ordered by
information content (desc). (b) Ranking after image analysis: the top 25 images are shown, with a fixed target attribute as splitting
attribute for the bars.
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Figure 7 shows the rationale for the ranking. An image
that provides a good clustering has areas with very low
Entropy or low Stdev of gray levels while the complete
figure does not necessarily have low Entropy. Therefore,
we start with a fine grid and determine the information
content of each cell like shown in Figure 7(b). Then we
hierarchically compare neighboring grid cells similar to
single linkage clustering and try to extend clusters. Finally,
we aggregate the information content of the clusters and
order the images according to their information content
values.

Pixel bar charts
Pixel bar charts2 are derived from regular bar charts. The
basic idea of a pixel bar chart is to present the data values
directly instead of aggregating them into a few data values
by representing each data item by a single pixel in the bar
chart.

The detailed information of one attribute of each data
item is encoded into the pixel color and can be accessed
and displayed as needed. To arrange the pixels within the
bars one attribute is used to separate the data into bars
and then two additional attributes are used to impose an
ordering within the bars along the x and y axes. The pixel
bar chart can be seen as a combination of traditional bar
charts and x–y diagrams.

Although pixel bar charts have been successfully applied
to explore large data sets (see Keim et al.30), the analyst has
to choose selections of attributes for separation, ordering
and color coding of data points from the underlying data
manually, according to his analysis tasks.

On the one hand, this is time consuming since he has
to try multiple parameter settings even those that do not
reveal interesting patterns, on the other hand he may
overlook interesting patterns since only a few attribute
combinations can be analyzed manually. To face this prob-
lem, we applied pixnostics to pixel bar charts, to guide
the analyst through the exploration process and indicate
potentially interesting parameter settings.

We applied our approach to a production data example.
The data set contains data from an assembly line, in par-
ticular measurements from different stages of the assem-
bly line like cast temperatures, part measurements and the
quality of the output. All in all the data set contains 22 at-
tributes. The output parts are classified into three groups:
accept, reject, rework. Parts that are grouped ‘accept’ pass
the quality check, ‘rework’ parts need to be reworked to
pass the quality check and ‘reject’ parts must be rejected
because of defects. The analysis of such data is an im-
portant task in order to reduce rejected parts and thus to
reduce production cost. Using pixel bar charts, the ana-
lyst faces to problem of how to find groups of attributes
that may influence the quality of the output. There are
175,560 combinations possible to choose 4 attributes as
visual variable from 22, even if the target attribute ‘Qual-
ity’ is fixed for separation of the bars, there are still over
9000 combinations for selection of three attributes out of
22, which cannot be checked manually.

Figure 10 Single bar chart constructed from the output result
of Pixnostics (from the Chart in the upper right corner in Figure
9(b).

Therefore, we first apply our automated analysis tools
to determine attributes that most influence the ‘Quality’
variable, using correlation and classification analysis. Of
course, we can additionally prune all parameter settings
where ‘quality’ is not involved, since these will not bring
us any new insight.

From the remaining combinations we either generate
images and order them by information content directly,
as shown in Figure 9(a) or we can filter pixel bar charts
where the target attribute is fixed as splitting attribute
and select the most valuable ones from them, as shown
in Figure 9(b).

The figure shows the 25 most relevant pixel bar charts
having ‘quality’ as splitting attribute. Note that the left
bar shows parts that are ‘rework’, the middle bar shows
‘reject’ parts and the right bar show ‘accept’ parts. It is
easy to see that the ‘reject’ bars look significantly different
than the rest. The analyst may now select a single image
from the provided images, and a pixel bar charts is created
from this selection as shown in Figure 10.

The analyst can now easily discover relevant patterns
by visual-based root cause analysis. In the image, the
color shows the temperature of a particular casting mold
and the ordering in y direction shows the duration of
the part at this stage. It is easy to see that the casting
mold had a significantly higher temperature for ‘re-
ject’ parts, which is a potentially reason for a damaged
part.

In this manner, the analyst may investigate further high
ranked images, which provides a more efficient way of
visual analysis than manual feature selection.

Conclusion and future work
Integrating automated analysis methods into the visual
exploration process is an important challenge in the age
of massive data sets and has been recognized as a major
research area in the context of visual analytics. Therefore,
the aim of this paper is to show how unsupervised anal-
ysis functions can help to speedup the visual exploration
process by supporting the user with task-driven relevance
functions for a more effective data analysis. The basic idea
of the proposed method is to measure the relevance of
the resulting visualization with respect to input parame-
ters and user tasks and to provide a ranking of potentially
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useful initial visualizations and initial parameter settings.
This helps the analyst to focus on relevant parts of the
data and relevant parameter settings and leads to an im-
proved exploration process. We provided a formal defini-
tion of our work and showed how the technique can be
used with jigsaw maps and pixel bar charts.

Future work will focus the improvement of the proposed
technique and its application to a variety of visualization
techniques, not only pixel based but also geometric and
iconic techniques. Furthermore, we will include the user
in the analysis process in form of relevance feedback to
dynamically adapt our relevance functions. An important
issue for future work is also the evaluation of the proposed
methods, since although our experiments show that the
concept has a great potential, real user studies that evalu-
ate the quality of our relevance functions are still pending
and are subject of future research.
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