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ABSTRACT 

The detection of previously unknown, frequently occurring patterns in time series, often called motifs, has been 
recognized as an important task. However, it is difficult to discover and visualize these motifs as their numbers 
increase, especially in large multivariate time series. To find frequent motifs, we use several temporal data 
mining and event encoding techniques to cluster and convert a multivariate time series to a sequence of events. 
Then we quantify the efficiency of the discovered motifs by linking them with a performance metric.  To 
visualize frequent patterns in a large time series with potentially hundreds of nested motifs on a single display, 
we introduce three novel visual analytics methods: (1) motif layout, using colored rectangles for visualizing the 
occurrences and hierarchical relationships of motifs in a multivariate time series, (2) motif distortion, for 
enlarging or shrinking motifs as appropriate for easy analysis and (3) motif merging, to combine a number of 
identical adjacent motif instances without cluttering the display. Analysts can interactively optimize the degree 
of distortion and merging to get the best possible view. A specific motif (e.g., the most efficient or least efficient 
motif) can be quickly detected from a large time series for further investigation. We have applied these methods 
to two real-world data sets:  data center cooling and oil well production. The results provide important new 
insights into the recurring patterns.  
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1. INTRODUCTION 
1.1 Motivation 
Many time series contain sequences of frequent patterns, often called motifs. Motif discovery is used to reveal 
trends, relationships, anomalies, and assist users in hypothesis evaluation and knowledge discovery. Efficient 
algorithms for detecting motifs in time series data [4] have been used in many applications, such as identifying 
words in different languages, detecting anomalies in patients’ medical records over time [5], and chiller 
efficiency in data centers [14]. 

   Figure 1 shows an example of the visual analysis of a pair of data center chiller time series in which different 
motifs were discovered. A chiller is a key component of the cooling infrastructure of a data center [15, 16, 3, 
17]. The cooling efficiency of a chiller unit, also called its coefficient of performance (COP), indicates how 
efficiently the unit provides cooling and is defined as the ratio between the cooling provided and the power 
consumed. Motifs are a sequence of frequently occurring patterns (represented by rectangles). Each motif is 
specified in terms of its starting and ending times, marked here on the original chiller utilization time series. 
Motifs can be of varying lengths, with many shorter motifs nested within longer motifs, as a consequence of the 
level-wise motif mining algorithm [14]. Motifs are colored according to how efficiently the chiller ensemble 
performs within the motif. As a result, from motifs like the ones shown in Figure 1, service managers can 

 
Figure 1: Frequent Patterns (Motifs) Discovered in Data Center Chiller Time Series  

(x-axis: time in 1-minute intervals, y-axis: %utilization of chillers R1 and R2, color: chiller’s cooling efficiency)  
Motifs are represented by rectangles of a different size.  

The height of a motif is proportional to the average duration time of all occurrences of the same motif. 



examine historical behavior to draw inferences and gain new insights regarding the efficiency of different 
operational configurations. Specifically, key questions include: 

� Are there repeating patterns of different types of motifs? How do they relate to a cooling efficiency 
metric (Coefficient of Performance [6])?  

� How does the chiller ensemble transition over time from a low efficiency motif to a high efficiency 
one?  

   The service manager can quickly answer the first question using the cooling efficiency color map. The motifs 
in darker shades of blue are the most efficient. The second question requires further investigation as detailed in 
Section 4.1. The visual analysis allows data center service managers to avoid the operational configurations 
associated with motifs that have a low cooling efficiency. A large time series data set can contain hundreds or 
even thousands of motifs. Analyzing and visualizing these motifs involve several challenges: 

� Displaying a large number of potentially overlapping motifs associated with multivariate time series. 
� Searching and retrieving the most efficient motifs.  
� Analyzing both the motifs and the context around the motifs for root-cause analysis.  

 

1.2 Related Work  
A common method to visualize time series patterns is to use line charts. Line charts are widely used and are 
intuitive and easy to understand. But if the data set contains many time series with a large number of 
observations and many repeated patterns, the time series will have a high degree of overlap, which obscures 
important information. Buono [2] provided the ability to interactively search patterns in multivariate time series 
by pre-selecting an interesting pattern. Munzner’s LiveRAC [12] supports the analysis of large system 
management time series with a visual comparison of devices and parameters. In work by Hao et al. [7], the 
problem of visualizing large time series is addressed by pixel cell-based high density displays.  

   Motif mining is the task of finding approximately repeated subsequences in multivariate time series, which is 
studied in various works, e.g., [16, 8, 10]. Mining motifs in symbolized representations of time series can be 
found in the rich body of literature in bioinformatics, where motifs have been used to characterize regulatory 
regions in the genome. As the work closest to ours, we explicitly focus on the SAX representation [9], which 
also provides some significant advantages for mining motifs. First, a random projection algorithm is used to 
hash segments of the original time series into a map. If two segments are hashed into the same bucket, they are 
considered as candidate motifs. In a refinement step all candidate motif subsequences are compared using a 
distance metric to find the set of motifs with the highest number of non-trivial matches. A contrasting 
framework, referred to as the frequent episode discovery, is an event-based framework that is also applicable to 
symbolic data which is non-uniformly sampled. This enables the introduction of junk or “don't care" states into 
the definition of what constitutes a frequent episode. 

      To visualize motifs, Lin’s VizTree [11] transforms a large time series into a symbolic representation, 
encoding the data into a tree with branches to represent symbols and motifs. The frequency of a motif is 
encoded in the thickness of a group of branches. Lin employs both tree and line charts to link different pieces of 
information. To understand a motif, VizTree requires user domain knowledge and interactions on the tree. To 
simplify the motif analysis process, Ordinez [13] adds radial representations to their line charts for further 
analyzing the relationships among their patients’ medical records over time.  

   All the above techniques have contributed innovative visualization solutions emphasizing the finding of motifs 
and transforming large volumes of data into valuable information. However, analysts want to have an overview 
of repeated patterns and transitions between those patterns within a single view.  In addition, they want to search 
for a motif that is the most or least efficient one based on a performance metric, e.g., the chiller utilization 
metric for a data center cooling infrastructure, or an oil well production metric for oil well data.  

1.3 Our Contribution 
For analyzing frequent patterns in large time series, we derive three new techniques: (1) motif discovery and 
layout, using colored rectangles for visualizing the occurrences and hierarchical relationships of motifs in a 
multivariate time series, (2) motif distortion which enlarges either motif or non-motif areas to allow the analyst 
to focus on the content and the structure of the areas and (3) motif merging which allows analysts to combine 
repeated motifs into a single area for data reduction and visual un-cluttering. In order to quickly identify the 
most efficient motifs from a large time series, each motif is linked to its performance coefficient (COP) [6] for 
quick retrieval of information as needed.  



   We have combined the above visual analytics techniques to provide a better understanding of the results of the 
motif mining algorithms, allowing the service managers to explore the big picture, namely the sequence of 
motifs and their behaviors, including their dependency on other attributes such as the cooling efficiency in a 
data center. Our motif discovery and data mining approach provides both qualitative and quantitative 
characterizations of the time series. Finally, we evaluate these techniques with respect to two real-world 
applications: data center chiller utilization and oil well flow production.  

   The paper is structured as follows: In section 2, we introduce a visual pattern analysis pipeline and describe 
the main stages used to discover motifs in a large multivariate time series. In section 3, we present the 
construction of visual motif layouts and our new visualization techniques. Section 4 describes two applications 
in which real-world data is used. An evaluation of the effectiveness of our techniques are presented in section 5. 
Section 6 contains the conclusions and future work. 

2. PATTERN FINDING IN LARGE MUTIVARIATE TIME SERIES 
A schematic overview of our approach is given in Figure 2 which shows an example of how to monitor chiller 
efficiency in data centers using a pair of data center chiller time series in which different motifs were 
discovered. The illustrated process can be subdivided into three phases: (1) the input selection phase to select 
the multivariate time series and parameters, (2) the motif pattern discovery phase to map a multivariate time 
series to the characteristics of the frequent patterns (motifs), in the form of motif start/end times, which allows 
the motif’s efficiency (COP) to be computed, and (3) the motif visual analytics phase to lay-out the discovered 
motifs into the same multivariate time series. With our new motif distortion and merging techniques, users are 
able to visualize the relationships and efficiencies of the motifs. As we will show, a combination of visual and 
motif analysis is the key to finding trends and anomalies in the time series.   

Motif pattern finding techniques have previously been described in [14].  Our primary goal is to link the 
multivariate, numeric, time series data to high level efficiency characterizations. We decompose this goal into 
symbolic representation, event encoding, motif mining, and efficiency characterization, thus using motifs as a 
crucial intermediate representation to aid in data pattern analysis and reduction. The following are the main 
stages involved in discovering frequent motifs: 

Event encoding. We are given a multivariate time series    T = ‹t1,...,tm› where each real-valued vector ti captures 
the utilization values of an ensemble of chillers. We first perform k-means clustering on the multivariate time 
series considering each time point as a vector and use the cluster labels as symbols to encode the time series. 
The number of clusters can be appropriately chosen; in this particular instance we found 20 clusters works 
particularly well [14].  Observe that the multivariate series is now encoded as a single (one-dimensional) symbol 
sequence [14]. Essentially, we have stripped off the temporal information, clustered the data, and put the 
temporal information back, thus “redescribing” the data. The resulting sequence of cluster labels is analyzed to 
detect change points. Change point detection transduces the symbol stream into a sequence of events where an 
event is defined as a transition in the cluster label. 

Motif discovery and mining. Frequent episode mining is conducted on the transition event stream to detect 
repetitive motifs. The framework of serial episodes with inter-event time constraints is used. The structure of a 
serial episode ��is given by: 

 

 
Figure 2: Visual Frequent Pattern (Motif) Analysis Pipeline 



E1,…,En are the transition events characterized by a pair of cluster IDs participating in the transitions. Each pair 
of event-types in � is associated with an inter-event constraint which specifies the maximum allowed time gap 
between them. The mining process follows a level-wise procedure similar to the Apriori [1] algorithm, that is, 
candidate generation followed by counting. As shown in Figure 3, the episode mining framework allows other 
“don’t care” events to occur between any pair of events in an episode. In our application this helps 
accommodate spurious or noise transitions. 

   The frequency measure for an episode is based on non-overlapped counting. Two occurrences i.e. sets of 
transition events corresponding to a motif are said to be non-overlapped if they do not share any portion of the 
time series. This seems most applicable in the context of time series data. It also simplifies the counting 
procedure as one does not have to track more than one occurrence of a particular motif at any given time. Figure 
3 below gives an example of two non-overlapped occurrences of the motif B→A→B→A. The counting 
algorithm resets all its internal states after completing each 
occurrence of the motif.  

Efficiency characterization. Finally, each motif is 
characterized in terms of an efficient metric. It is difficult 
(and subjective) to compare two motifs in terms of their 
efficiency by inspecting them visually. Therefore, it is 
necessary to quantify the efficiency of all motifs by 
computing a suitable metric for each of them. This enables 
efficiency comparisons between motifs: their categorization 
as 'good' or 'bad' from the efficiency metric point-of-view. Furthermore, this information helps provide guidance 
to an administrator or a management system regarding the most 'efficient' configurations. 

   In general, we use the above methods to map a multivariate time series to frequent patterns. Now the challenge 
is to translate these discovered patterns back to the original time series for users to continue to analyze the 
patterns and their behaviors. This gap requires visualization to map the discovered motifs back to the time 
series. 

3. MOTIF PATTERN VISUALIZATION 
3.1 Motif Layout 
After applying the above mentioned methodology, we 
present the discovered motifs in a single display. For 
nested motifs, it is often difficult to recognize their 
starting and ending time; a long duration motif can 
contain several short duration motifs or can overlap 
other motifs.   To overcome these difficulties, we 
derive a new layout algorithm (Algorithm 1) and 
draw rectangles to represent the   occurrence of 
motifs. The color of a rectangle represents its 
numerical importance or – if no such metric exists as 
in most examples in this paper – different colors are 
used to distinguish different patterns. The nested 
rectangles are used for visualizing the hierarchical 
relationships among motifs. The rectangle’s height is 
linearly proportional to the statistical rank of the 
average duration of a motif. The statistical rank is 
used to distinguish motifs with nearly the same 
height.  

   Figure 4 shows 11 consecutive occurrences of motif 5. Each motif is represented by a blue rectangle. Service 
managers can mouse over an embedded motif to find the detailed information.  Motif 5 is on the lowest level 
and is nested in the other motifs. The Each motif 2 contains two occurrences of motif 3, two of motif 4, and 
three of motif 5. Motif 4 overlaps motifs 2, 3, and 5. To analyze this behavior, service managers can enlarge the 
motif areas to analyze their structures and their nesting relationships. 

 
Figure 3: Example of Non-Overlapping Counting 

 

Algorithm 1 

Algorithm 1: Layout and draw motifs 
Input: Array of motifs: Motif [ ] allMotifs 
 
// Draw all occurrences of each motif  
forEach Motif m in all motifs sorted by average occurrence length do 
 int heightOfMotif = scaled statistical rank of motif m according to 

the height of the line chart 
 forEach TimeInterval t in occurrences of motif m do 
  // the method calcXCoords determines the (possibly distorted) 
  // x-coordinate of a given timestamp 
  double startX = calcXCoords(t.startTime); 
  double endX = calcXCoords(t.endTime); 
    setColor(m.motifColor); 
  setBorderColor( according to selection property ); 
  
  // draw rectangles vertically centered 
  paintRectangle(startX,  
   heightOfLineChart / 4 - heightOfMotif.get(m) / 2, 
   endX - startX,  
   heightOfLineChart / 2 + heightOfMotif.get(m)); 
 end 
end 



 
                                       Figure 4: Motif Visual Layout 
                       Each rectangle represents an occurrence of a motif 

  Visualizing the properties and behaviors of motifs in a massive multivariate time series is a complex task 
because of the large number of motifs (hundreds or even thousands) and the fact that they may be nested and 
overlapping. We introduce two new techniques, motif distortion and motif merging, to enable analysts to 
perform the following tasks: 

� Explore motifs and their structure.  
� Find the root-cause of a low efficiency motif by analyzing a sequence of transition events in a time 

series before the low efficiency motif occurred.  

3.2 Motif Distortion 
Distortion enlarges either areas with motifs or areas without 
motifs using a user-activated slider. In Figure 5, distorting the 
time series is done by applying a specific density-equalizing 
distortion technique. We calculate weights for each time interval 
and use them as the input to the distortion algorithm. These 
weights are based on the number of motifs occurring at that time. 
In a preprocessing step, we calculate the weights for both motif 
areas and non-motif areas within each time interval. To enlarge 
the motifs, we use the number of motifs. To enlarge areas 
without motifs, we use the inverse of the number of motifs in the 
time interval. If there are no motifs we use a constant weight of 
1. The calculation of weights for enlarging motifs and enlarging 
non-motif areas is depicted in Algorithm 2. Figure 6 shows how 
the distortion algorithm works. Our technique tries to enlarge or 
shrink areas according to the weights. In Figure 5, our technique 
divides the time series into equal size parts and resizes each part 
according to the aggregated weight of the part.  

We first calculate a fully distorted view for each task (enlarging 
motifs or enlarging areas without motifs) and then calculate the zero slider position. When the user moves the 
slider to the left, areas without motifs are enlarged, the slider’s middle position is its origin scale, and when the 
user moves the slider to the right, motifs are enlarged. For determining the distortion for the intermediate 
positions of the slider, we use a weighted interpolation between the original scale and the fully distorted view. 

 



 
Figure 6: Distorting the Time Scale According to Given Weights 

3.3 Motif Merging 
In Figure 7, we provide a second slider to merge multiple occurrences of motifs to a single rectangle to reduce 
the data and the visual clutter. If the slider is moved, motifs of the same type that begin or end at adjacent 
positions are combined. We define two occurrences of the same motif as adjacent if the time duration between 
those occurrences does not exceed a given threshold. The threshold is set by the user via a slider. The value is 
measured in minutes and ranges from zero minutes to a calculated upper bound. For each motif, we compute the 
minimum gap length between its occurrences and average values over all instances of the motif.  Note that only 
the same types of motifs are merged. Users can mouse over the time series in a merged motif to display the 
current time interval and the efficiency measure value.   

After applying various degrees of distortion and merging, the motif time series greatly simplified for further 
visual analysis.  

 
Figure 7: Motif Visual Merging 

(x-axis: time intervals, y-axis: %utilization of chiller R1. rectangles: motifs, color: motif type) 
                                                          Move the slider to the right to merge adjacent motifs of the same type.  

 

 
Figure 5: Motif Visual Distortion  

(x-axis: time intervals, y-axis: %utilization of chiller R1,  rectangles: motifs, color: motif types) 
Move the distortion slider to the right to enlarge motifs. Move the distortion slider to the left to enlarge the non-motif area.  

 



4. APLICATIONS  
Motif visual analysis has a large 
number of applications, including 
anomaly detection, prediction, and 
clustering.   We will demonstrate 
the above techniques with data 
center chiller sensor time series and 
oil well production sensor data 
(e.g., oil flow, pressure).  The 
identified motifs help the users to 
visualize cooling/oil production 
efficiency quickly. Most 
importantly, service managers are 
enabled to avoid the inefficient 
patterns and guide the operations 
towards more efficient ones. 

4.1 Data Center Cooling 
Monitoring  
 

Finding low efficiency motifs  

The motif time series in Figure 8 
show the utilization of four chillers 
(R1-R4) with 13,578 records at 1-
minute intervals. The color shows 
the motif efficiency computed from 
the cooling efficiency metric. 
Service managers can quickly 
identify that motif 5 is more 
efficient than the other motifs. 
Furthermore, service managers are 
able to interact with the other motifs 
to analyze the characteristics of 
these motifs.  For example, in motif 
5, chiller R2 runs at medium 
utilization, while chiller R4 runs at 
high utilization.  In motif 8, chiller 
R1 operates in a low utilization.  By 
visual observation, we can see that 
the utilization of chiller R4 in motif 
5 is the highest. 

Transition from low efficiency 
motif to a high efficiency motif  

Data center service managers want 
to know how low efficiency motifs 
transition to high efficiency motifs 
in a given time period. In order to 
examine the changes over a period of time, the service manager can move the distortion slider (shown in Figure 
5) to the left to shrink the motif areas and enlarge the non-motif time intervals as shown in Figure 9.   

   From the behavior of these non-motif time intervals, the data center service managers are able to make the 
following observations: 

 
Figure 8: Motifs 5 and 8 are Enlarged to Compare their Chiller Utilization  

Motif 5 is more efficient than motif 8. Motif 8’s chillers R1 and R3 have some oscillatory behavior.  
(x-axis: 07-02 01:48 to 07-04 21:33, y-axis: %utilization of chillers R1-R4, color: cooling efficiency). 

 
Figure 9: Enlarge the non-motif area to observe the transitions  

from low cooling efficiency motif 8 to high cooling efficiency motif 5. 
(x-axis: time line from 07-02 01:48 to 07-04 21:33, y-axis: %utilization, color: cooling efficiency). 

 



� Water chiller R4 is turned off before motif 8.   
� Water chiller R4 starts up before the start of Motif 5, contributing to its improved cooling efficiency.   

 
   In addition, our techniques allow data center service managers to investigate other motif characteristics and 
make comparisons with other attributes, such as power and temperatures in order to gauge their impact on the 
cooling efficiency.  

4.2 Oil Well Production Motif Observations  
The picture on the left of Figure10 is a typical oil well which is used to produce daily oil supplies. Figure 10 
shows a real-world oil well production time series (85,035 records) with different frequent patterns (motifs) 
identified by seven distinct colors. The most critical problem in the oil industry is to reduce the non-productive 
time. The common questions are: 

� Which oil well flow pattern is the most productive?  
� What transitions occur after a big drop in oil well flow?  How can this be recovered from? 

    
Figure 10 illustrates two different motif visualization methods: one uses only motif distortion as shown in 
10(A); the other uses a combination of both distortion and merge as shown in Figure 10(B). As an evaluation 
result, the use of a combination of distortion and merge makes the motif visual analytics most effective.  
From Figure 10(B), the production manager can see that the green motif is the most productive with an oil flow 
of up to 74%. Also, the production manager can determine that after a big drop in oil flow it is best to gradually 
increase the pressure as shown in the green motifs.   

5. EVALUTION 
5.1 Evaluation from Data Center Cooling Monitoring 
Our new motif finding, distortion, and merging visualization techniques have been successfully used on several 
data centers of different sizes, ranging from 3,000 to 14,000 sq. ft. and containing hundreds of racks. Several 
billion records from data centers have been analyzed.  

Figure 11 is a regular time series to which data center operators have access.  Operators can analyze the time 
series and observe the variation of utilization over time.  Such interfaces are available today in building 
management systems. However, operators do not know which set of patterns represents an efficient mode of 
operation, nor do they understand whether such a pattern has occurred in the past or not. Usually, such 
operational patterns are characteristic of a mismatch between chiller operation and demand variation. Not all 
chillers can scale uniformly in capacity with a rise in demand. Also demand does not uniformly change over 
time. But, this kind of monitoring is essential in building efficient management systems. 

 

 

 
Figure 10: Oil Well Production Time Series with 7 Different Frequent Patterns with Distinct Colors  

(x-axis: time, y-axis: % oil flow and pressure, color: each motif has a distinct color) 



The motif time series as 
shown in Figure 8 helps 
service managers identify 
motifs and their cooling 
efficiencies and provides 
guidance on how the 
current performance 
compares with the past. 
Our new techniques can 
assist service managers to 
move the chiller system 
to a more efficient state.  

Analyzing transitions 
between different motifs 
of different cooling efficiencies is an important capability for administrators and helps them improve chiller 
performance.  Figure 9 shows how service managers can look at such transitions between states from the past 
using the distortion and merging sliders. Using existing regular time series (Figure 11) it can take days, while 
using motifs (Figures 8, 9, and 10), it can be done in minutes. 

5.2 Evaluation from oil well production observation 
Oil well pressure and flow 
are normally strongly 
correlated. However, 
variations do occur due to 
well-head problems or 
geological issues. The 
variations can be 
complicated and depend 
on the geology of the oil 
well and its composition. 
Identification of motifs in oil well pressure and flow can help in classification of such issues. Finding the motifs 
which are able to maximize throughput (or oil flow) at the lowest pressure is the goal of the well operator. 
Without our motif layout, it is almost impossible for administrators to find these frequent patterns as shown in 
Figure 12. Using motifs, as illustrated in Figure 10, the service managers can quickly find the most efficient 
motifs. Furthermore, service manager can reduce the motifs which cause fluctuations in pressure (or flow). The 
motifs with high oscillations can be detrimental to well operation and lead to reliability issues.  

5.3 An informal user study 
From an informal user study (12 users) using both regular time series (Figures 11 and 12) with and without 
motifs, we are getting at least an 87% times savings by applying motif layout, distortion, and merging 
techniques.  No user can identify all the repeated patterns (motifs).  Most of the users can only find about a 
couple of frequently repeating patterns.    

6. CONCLUSION 
Finding frequently occurring patterns and analyzing them allows data center and oil well service managers to 
determine which configurations are more efficient and which ones result in poor efficiency so the latter can be 
avoided. In this paper we address the whole visual analysis pipeline for motifs. First, we briefly describe a novel 
motif discovery algorithm, which is based on cluster analysis, event encoding, frequent motif mining, and 
sustainability characterization of those motifs. Second, we introduce three new visualization and interaction 
techniques (motif layout, distortion and merge) for the analysis of motifs discovered from mining. We allow 
service managers to adjust the degree of distortion and merge to generate the best view on a single display. In 
addition, we link the motifs to the associated efficiency metrics for service managers to query the least/most 
efficient motifs for root-cause analysis.  Our results from both the real-world data center and oil/gas production 
time series sensor data show that our techniques successfully enable users to identify both efficient and 
inefficient patterns.  This demonstrates the wide applicability and usefulness of our techniques. In the future, we 
want to use discovered motifs to detect the current operational motif in real-time to predict near term behavior.  

Acknowledgment: The authors wish to thank C. Patel and M. Hsu for their suggestions and encouragement, 
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Figure 11: Data Center Chiller (R1-R4) % utilization regular time series without motif 

 
Figure 12: Oil well production regular time series without motif 
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