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Information Visualization for DNA Microarray
Data Analysis: A Critical Review

Leishi Zhang, Jasna Kuljis, and Xiaohui Liu

Abstract—Graphical representation may provide effective
means of making sense of the complexity and sheer volume of data
produced by DNA microarray experiments that monitor the ex-
pression patterns of thousands of genes simultaneously. The ability
to use “abstract” graphical representation to draw attention to ar-
eas of interest, and more in-depth visualizations to answer focused
questions, would enable biologists to move from a large amount
of data to particular records they are interested in, and therefore,
gain deeper insights in understanding the microarray experiment
results. This paper starts by providing some background knowl-
edge of microarray experiments, and then, explains how graphical
representation can be applied in general to this problem domain,
followed by exploring the role of visualization in gene expression
data analysis. Having set the problem scene, the paper then exam-
ines various multivariate data visualization techniques that have
been applied to microarray data analysis. These techniques are
critically reviewed so that the strengths and weaknesses of each
technique can be tabulated. Finally, several key problem areas as
well as possible solutions to them are discussed as being a source
for future work.

Index Terms—Data analysis, gene expression, microarray,
visualization.

I. INTRODUCTION

OVER the last few years, it has been common to use high-
throughput functional genomics methods to investigate

multiple events in a cell or tissue that define a phenotype. DNA
microarrays are one such methodology that allows the simulta-
neous determination of mRNA abundance for many thousands
of genes in a single experiment [21], [52]. Given that genes with
related functions are likely to be regulated together, microarray
techniques provide a mechanism for the initial identification and
studying of novel gene sequences with related functions [14],
[42]. However, the generation of all these gene expression data
will lose most of its potential value unless important conclusions
can be extracted from such large datasets [10], [20]. To explore
the full potential of microarray data, the data has to be analyzed
and presented in a way that biologists can readily understand.
One approach to achieving this goal is through the use of data
visualization techniques [22], [43].

Multidimensional data analysis is an established technique
for exploration, analysis, and presentation of large datasets. A
graphical representation is generated from the data content, and
viewed by an observer, engaging vision—the human sense with
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Fig. 1. Multidimensional data visualization.

the greatest bandwidth and the ability to recognize patterns sub-
consciously [4]. It has two fundamental related aspects: 1) struc-
tural modeling and 2) graphical representation [12]. Structural
modeling aims at detecting, extracting, and simplifying under-
lying relationships by forming a structure that characterizes a
collection of documents or other datasets. Structural modeling
involves applying appropriate computational, statistical, or data
mining techniques to generate virtual structures of the data.
Graphical representation aims to transforming an initial pre-
sentation of structure into a graphical one, so that the structure
can be visually examined and interacted with. Graphical repre-
sentation can be divided into two main components—intrinsic
visualization (graph drawing) and extrinsic visualization (visual
form). The former maps object relationships to spatial distances
whereas the latter maps object properties to color, shape, texture,
and so on [5] (see Fig. 1). However, the boundary of these two
aspects of visualization is blurred. Algorithms such as multidi-
mensional scaling (MDS), self-organizing maps (SOMs), and
principal component analysis (PCA) can be classified either as
structural modeling methods or graph drawing techniques since
the outputs of these data mining algorithms can be directly plot-
ted to graphical display without further manipulation.

Since much work has already been carried out to review
the structural modeling aspect of microarray data analysis [2],
[46], [53], [55] and existing microarray data visualization tools
[40], [50], this paper instead focuses on the graphical repre-
sentation techniques that have been applied to microarray data
analysis, where not much attention has been received. The re-
mainder of this paper is organized as follows. In Section II,
some background knowledge of microarray experiment and
data visualization is provided for understanding the main fea-
tures of microarray datasets. Section III discusses the role of
visualization in gene expression data analysis. Section IV intro-
duces the concept of graphical representation, which consists of
two fundamental components—graph drawing and visual form.
Sections V and VI critically review the graph drawing algo-
rithms and visual methods that have been applied to display the
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data mining results respectively. Section VII summarizes the
whole paper, identifies several key problem areas, and proposes
possible solutions.

II. MICROARRAY EXPERIMENTS

A microarray is normally a glass or silicon slide, onto which
single-stranded DNA molecules are attached at fixed locations or
spots. Such a microarray may consist of thousands of spots, each
related to a single gene. The central principle of the microarray
technique is the selective binding of complementary single-
stranded nucleic acid sequences (hybridization) and the use of
fluorescent probes to visualize the difference in cDNA level that
represents mRNA level [15], [24], [41].

One of the most popular experimental methods is to compare
the mRNA levels across two cell cultures such as a cancer cell
versus a healthy cell as a control (see Fig. 2) [13]. The first step
of the experiment is to extract purified mRNA from both cell
types. In order to distinguish cDNAs from different cell types,
fluorescent labeling molecules of different colors (usually red
and green) are used to stain each sample. After labeling the
cDNA molecules, both extracts are washed over the microar-
ray where they bind selectively to their complementary DNA
strands in the spots according to the principle of the microar-
ray technique described before. The last step of the experiment
measures the hybridization level of each spot on the array. If the
mRNA from the cancer cell is abundant, the spot will be red; if
the mRNA from the healthy cell is abundant, it will be green.
If mRNAs from both cells bind equally, the spot will be yellow,
while if neither binds, it will not be fluorescent and the spot
will be black. The red and green light detection channels will
then be normalized so that the two datasets can be compatible
for intensity ratio calculation, i.e., each data point produced by
a DNA microarray experiment represents the ratio of expres-
sion levels of a particular gene under two different experimental
conditions.

The data from a series of m such experiments may be repre-
sented as a gene expression matrix, in which each of the n rows
(each row representing an attribute) consists of an m-element
expression vector for a single gene (each element representing a
single gene). Since microarray data normally consist of a large
number of attributes (genes), the visualizations always face the
challenge of displaying a large amount of information on a lim-
ited computer display. So, sophisticated searching and analysis
methods are required to highlight features hidden in this special
dataset. This is the reason why advanced data mining and visu-
alization techniques can potentially be applied to help biologists
extract meaningful patterns from microarray data.

III. GENE EXPRESSION DATA ANALYSIS AND VISUALIZATION

Microarray experiments often produce such a massive amount
of information that is too large to study and interpret manually
from a spreadsheet or a plain text file. Visualization uses com-
puter graphics to present data or information in different visual
forms so that meaningful patterns can be extracted from the large
datasets. Such patterns may, for example, help biologists detect
the likely functions of genes, how genes may be regulated, and

Fig. 2. Microarray experiment (copyrighted Cummings and Relman [13]).

how they interact with each other in health and disease pro-
cesses [45].

A. Visualization in Gene Expression Data Analysis

Visualization has a special place in data analysis because of
the power of the human eye/brain to detect structures. Various
visual methods can be used to display data mining processes
and outcomes in ways that capitalize the particular strengths
of human pattern processing abilities. Appropriate visual meth-
ods may provide instant recognition of unknown patterns and
unexpected relationships by drawing attention to the areas of
interest or answering focused biological questions. In gene ex-
pression data analysis, the visualization can facilitate tasks such
as determining the characteristics of unknown genes, bringing
clarity to previously unknown diagnostic categories [1], extract-
ing focused networks from existing database [49], or confirming
prevailing clinic hypotheses [47].

Recently, visualization has helped biologists find many in-
teresting relationships and patterns from gene expression data.
For example, Alon et al. [3] proposed a two-way clustering
method for analyzing a data set consisting of the expression
patterns of different cell types where the visualization clearly
separates cancerous from noncancerous tissue and cell lines
from in vivo tissues on the basis of subtle distributed patterns of
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genes. Bhattacharjee and Richards [8] found distinct adenocar-
cinoma subclasses by examining the mRNA expression levels
corresponding to 12 600 transcript sequences in 186 lung tu-
mor samples. Khan et al. [36] used gene expression profiling
and artificial neural networks to help classification and diag-
nostic prediction of cancers. Ramaswamy et al. [47] found a
gene expression molecular signature of metastasis in primary
solid tumors by comparing the gene-expression profiles of ade-
nocarcinoma metastases of multiple tumor types to unmatched
primary adenocarcinomas.

Using two examples, discussed next, we will demonstrate
how visualization can help find patterns and relationships in
the data mining results. The first example shows how two
distinct subclasses of a disease can be distinguished from a
dendrogram view of gene expression data; the second ex-
ample illustrates how a meaningful focused interaction sub-
network can be extracted from a massive protein interaction
network.

Example 1—Refinement of Clinical Classification: The most
common method in gene expression data analysis is cluster-
ing that groups together genes with similar expression pro-
files. Genes that are similarly expressed often participate
in the same cellular processes, so the clustering may sug-
gest possible functional relationships among the clustered
genes.

Alizadeh et al. [1] have demonstrated that visualizing the
clustering result can bring clarity to previously unknown diag-
nostic categories in cancer research. By visually inspecting the
gene expression profiling, they identified two molecularly dis-
tinct forms of diffuse large B-cell lymphoma (DLBCL) that had
gene expression patterns indicative of different stages of B-cell
differentiation. Fig. 3 illustrates how the subtypes of DLBCL
are discovered by visually inspecting the data mining results.
Firstly, the hierarchical clustering view of all gene expression
data is generated; the clustering result indicated that gene ex-
pression patterns in DLBCLs might be inhomogeneous and the
expression of the germinal center B-cell genes among DLBCLs
varied independently from the expression of genes in other gene
expression signatures (see the left dendrogram). As a conse-
quence, the expression patterns of the genes that define the
germinal center B-cell signature are picked out for reclustering.
Two DLBCL subgroups, GC B-like DLBCL (orange) and acti-
vated B-like DLBCL (blue), were then defined by this process
(see the right dendrograms). The classification was validated
by clinical records—patients with GC B-like DLBCL had a
significantly better overall survival rate than those with acti-
vated B-like DLBCL. The molecular classification of tumors on
the basis of gene expression visualization can, thus, help iden-
tify previously undetected and clinically significant subtypes of
cancer.

Example 2—Extraction of Focused Subnetwork: Another im-
portant method in gene expression data analysis is network mod-
eling that generates gene networks from microarray data using
various data mining techniques [16]. Among all the genes that
are selected for a set of microarray experiments, specific groups
of genes may be activated by particular signals, which once
activated, regulate a common biological process. The group

Fig. 3. DLBCL subgroups discovery (copyrighted Alizadeh et al. [1]).

members may regulate each other’s transcriptions. Such groups
are called genetic regulatory systems. Network modeling is
used for observing the interrelationship between genes within
a genetic regulatory system. The modeling of gene networks
is not only useful for data understanding, but also helpful in
generating possibly interesting hypotheses for further investi-
gation. Again, visualization of the network structure provides a
clear and concise summary of the regulatory interactions. More-
over, higher level structures can be extracted from the network
representation.

An example of such network extraction can be found in the
work of Rhodes and Chinnaiyan [49], who tried to gain a deeper
biological insight from the cancer gene expression data by vi-
sually exploring the links in a protein interaction network and
speculating the linchpin of a cancer. Fig. 4 illustrates a known
protein interaction network and a focused interaction subnet-
work extracted from the network. On the left is a signature of
300 genes significantly overexpressed in multiple myeloma. In
the middle is a known network structure according to the Hu-
man Protein Reference Database. Within the network, the in-
teractions among 300 genes that are significantly overexpressed
in multiple myeloma are highlighted in red. A focused interac-
tion subnetwork in which all members are overexpressed was
extracted (on the right). Upon exploring the links in the sub-
network, Rhodes and Chinnaiyan [49] speculated that RAF1
may be the linchpin, as several members of the network (RAS,
PAK1, and BAG1) function to activate RAF1. Thus, by targeting
RAF1, as opposed to other members of the network, biologists
may be able to blunt the effects of the entire subnetwork. Al-
though they stated that the interpretation may be speculative, it
does highlight the potential for interaction networks in the anal-
ysis of cancer signatures. Insights gained from such analysis can
be treated as hypotheses for further research.

The aforementioned examples demonstrate that visualization
can play an important role in understanding and further ex-
ploring gene expression data analysis. In the next section, the
concept of data visualization (graphical representation) and its
main contents will be discussed.
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Fig. 4. Interpreting cancer gene-expression signatures (copyrighted Rhodes
and Chinnaiyan [49]).

IV. GRAPHICAL REPRESENTATION

A graphical representation refers to the visual interpretation
of complex relationships in multidimensional data. It has two
main components: intrinsic visualization (graph drawing) and
extrinsic visualization (visual form). The former concentrates
on drawing the graphical representation of the structures using
effective graph layout algorithms while the latter focuses on
displaying the virtual structures in appropriate visual forms so
that the models can be easily understood and interacted with.

Graph drawing addresses the problem of generating the lay-
outs of graphs automatically. Normally, graphs are depicted with
their nodes as points in a plane and their edges as line or curve
segments connecting those points. A graph layout algorithm
reads as input a combinatorial description of a graph G, and
produces as output a drawing of G according to a given graphic
standard. Most graphic standards are generally accepted aes-
thetic criteria, such as distributing the nodes evenly in the frame,
minimizing edge crossings, making edge lengths uniform, re-
flecting inherent symmetry, or conforming to the frame [23].
However, in almost all data presentation applications, the use-
fulness of a graph drawing depends on its readability, i.e., the
capability of conveying the meaning of the diagram quickly and
clearly [19].

A choice of visual form also plays an important role in graph-
ical presentation. The same datasets can be visualized using
various visual methods. Good visual presentations can effec-
tively convey the key features of a complex structure to a wide
range of users and audience, whereas poor ones may obscure the
nature of an underlying structure [12]. As any human’s ability
to measure visual, auditory, tactile, and other stimuli is lim-
ited [44], visualization scientists try to harness the perceptual
capabilities of the human visual system by choosing appropriate
visual forms to display objects. Because of the large quantity and
complexity of the microarray data, data analysis is frequently
focused on a visualization that reflects a conventional or famil-
iar perspective to the viewer with additional information content
provided by highlights, e.g., colors, intensities, etc. There is no
“right” way to visualize data as no single visual method can

convey all the relevant features of the data, and users will need
different visualizations depending on their research targets and
previous experience. Consequently, biologists need to be able to
access multiple visualization techniques that are geared toward
answering different data analysis questions through the presen-
tation of the data from a number of different perspectives.

In the next two sections, graph layout algorithms and visual
methods that have been applied in microarray data visualization
will be critically reviewed.

V. GRAPH DRAWING

Graph drawing algorithms play a fundamental role in data
visualization. They aim to map object relationships to spatial
distances by positioning similar objects close to one another,
and dissimilar objects far from each other. A great deal of work
on the problem of graph layout has been carried out in recent
years resulting in a number of sophisticated and powerful al-
gorithms [17], [33], [37], [38], [54], [57]. To draw graphical
models effectively, various graph layout algorithms are applied
in the visualization of microarray data including PCA, MDS,
force-directed spring models (FDSMs), SOMs, minimum span-
ning tree (MST), treemaps, and Tang’s mapping method. Given
their importance, they are briefly described as follows.

A. Principle Components Analysis

PCA is a standard method in data analysis and visualiza-
tion [33] that determines linear transformation of a sample of
points in an N-dimensional space that exhibits most clearly the
properties of the sample along the coordinate axes. Along the
new axes, the sample variances are extremes (maxima and min-
ima) and uncorrelated. The new axes are defined as principle
axes. According to Rencher’s definition [48], the principal axes
will include those along which the point sample has little or
no spread (minima of variance). Hence, an analysis in terms
of principal components can show (linear) interdependence in
data. A point sample of N dimensions for whose N coordinates
M linear relations hold will show only (N -M ) axes along which
the spread is nonzero [9]. Using a cutoff on the spread along
each axis, a sample may, thus, be reduced in its dimensionality
(see Fig. 5).

The principal axes of a point sample are found by choosing
the origin at the “center of gravity” and forming the dispersion
matrix tij

tij =
1
N

∑
�(xi − 〈xi〉) (xj − 〈xj 〉)�

where the sum is over the N points of the sample, the xi’s
are the ith components of the point coordinates, and 〈·〉 stands
for the average of the parameter. The principal axes and the
variance along each of them are then given by the eigenvectors
and associated eigenvalues of the dispersion matrix.

PCA tries to reduce the dimensionality of the data to sum-
marize the most important parts while simultaneously filtering
out noise. This is a well-understood and effective algorithm
for computing the multidimensional projection that has been
widely used to plot microarray data in 2-D or 3-D scatter plots to
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Fig. 5. PCA (copyrighted Gilbert and Schroeder [25]).

display similarly expressed gene groups. However, PCA cannot
take into account nonlinear structures consisting of arbitrarily
shaped clusters or curved manifolds since it describes the data
in terms of a linear subspace. If the data set is highly nonlin-
ear, it may be difficult to visualize it with linear projections on a
low-dimensional display even if the projection angle is carefully
chosen.

B. Multidimensional Scaling

MDS is a set of data analysis techniques that displays the
structure of distance-like data as a geometrical picture [38]. In
MDS visualization, the original q-axis and coordinates of points
µi = (µi1 , µi2 , . . . , µiq )

T do not enter the visualization directly.
Instead, a configuration of points xi = (xi1 , xi2 , . . . , xip)

T is
found in a space of lower dimension p < q, such that all in-
terpoint distances ‖xi − xj‖ match as closely as possible the
original distance ‖ui − uj‖. The result is usually a 2-D or 3-D
configuration of points, each representing a single element from
a data collection. Fig. 6 illustrates an example of the MDS result
from 1352 genes. The lines connect genes or experiments that
exhibit strong correlations (for example, red links have stronger
correlations than do black lines). The coloring of the points
expresses their correlation to the selected point.

The most common metric that has been used to evaluate
how well a particular configuration reproduces the observed
distance matrix is the stress measure. The raw stress value φ
of a configuration is defined by the summary of stress between
objects

φ =
∑

[dij − f (δij)]
2

where dij stands for the reproduced distances, given the respec-
tive number of dimensions, and δij stands for the input data (i.e.,
observed distances). The expression f (δij) indicates a nonmetric,
monotone transformation of the observed input data (distances).
Thus, it will attempt to reproduce the general rank ordering of
distances between the objects in the analysis. The smaller the

Fig. 6. MDS of 1352 genes (copyrighted Best et al. [7]).

stress value, the better is the fit of the reproduced distance matrix
to the observed distance matrix.

The optimization process can be performed by applying a
number of established function optimization heuristics such as
Newton–Raphson, tabu search, genetic algorithm, and simulated
annealing. A good review of these approaches can be found
in [4].

The advantage of MDS over other multivariate visualization
techniques is that it is independent of the number of variables.
As long as it is possible to ascertain the high-dimensional dis-
tance between observations, a low-dimensional embedding can
be found. However, since in the general case, it is not possible to
map all distances accurately onto a lower dimensional space, it
is quite possible that the MDS methods preserve most distances
approximately and some distances poorly. In particular, in the
metric MDS, the long distances will dominate over the shorter,
local ones. Another problem with the algorithm is that it is
computationally intensive for large datasets. However, the com-
putational complexity can be reduced by restricting attention to
a subset of the distances between the data items.

C. Self-Organizing Map

Kohonen’s [37] SOM uses a simple analogy with the hu-
man brain’s way of organizing information in a logical manner.
As a visualization technique, the algorithm has been extended
by a heatmap-based strategy for visualizing the U-matrix by
Hautaniemi and Yli-Harja [29].

Unlike PCA and MDS, SOM is called a topology-preserving
map since a topological structure is imposed on the nodes in the
network. The map consists of two layers of neurons: an input
layer and a competition/output layer (see Fig. 7). The weights
of the connections from the input neurons to a single neuron in
the competition layer are interpreted as a reference vector in the
input space.

Kohonen’s method [37] adopts the method of competitive
learning with “winner takes all”: when an input pattern is pre-
sented to the network, that neuron in the competition layer is
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Fig. 7. Architecture of the SOM network.

Fig. 8. Training the SOM for 3-D data.

determined, the reference vector of which is closest to the input
pattern. This neuron is called the winner neuron, and it is the
focal point of all the weight changes. The weights of the connec-
tions leading to the winner neuron will then be changed in such
a way that the reference vector represented by these weights is
moved closer to the input pattern.

In addition, there is a neighborhood relation defined on the
competition layer, which indicates which weights of other neu-
rons will also be changed. During the self-organizing procedure,
the topologically close relationship of the organized informa-
tion is maintained. Initially, a large area is treated in a similar
fashion. Later in the iteration, this zoom shrinks. By virtue of
its learning algorithm, the SOM forms a nonlinear regression
of the ordered set of reference vectors into the input space.
The reference vectors form an elastic network that follows the
distribution of the data (see Fig. 8).

The advantage of SOM against other nonlinear projection
methods is that SOM can preserve the topology—the local
neighborhood relations. SOM tries to guarantee that items pro-
jected to nearby locations are similar, which means that the local
order and local clustering structures shown on the map display
are as trustworthy as possible. However, in terms of displaying
global structure, SOM does not provide as accurate a layout as
MDS. In SOM, the size of the map needs to be carefully de-
cided since the computational complexity is determined by the
number of map units. Besides the computational complexity, the
existence of local minima in the cost functions may also cause
problems [34].

D. Force-Directed Spring Model

Force-directed placement is a widely used method for draw-
ing undirected graphs. The earliest force-directed placement
model is based on the spring embedder model [17]. The main

Fig. 9. Spring mode.

idea of this force-directed placement is to simulate physical–
chemical models. In the heuristics, the nodes are considered
as particles. Starting from an arbitrary initial position, the al-
gorithm simulates the movements of the nodes in a physical–
chemical model and lowers the energy stepwise such that the
nodes come to rest.

The spring model is based on a physical system in which the
graph’s edges are replaced by springs and the nodes are replaced
by rings (see Fig. 9). The forces acting on every node include
spring force Fs and repulsion force Fr .

The resultant of force Fs and Fr can be calculated by using
the equations

Fs(d) = ks log(d)

Fr (d) =
kr

d2

where ks and kr denote the current distance between a pair
of nodes and the distance d is the length of the spring for the
connected nodes. Among the parameters that control the forces
acting on the nodes and cause their movements are spring length,
spring stiffness, spring type, and the initial configuration. Un-
der the influence of spring force between connected nodes and
repulsion force between unconnected nodes, the graph will au-
tomatically calculate the position of each vertex until the system
reaches a stable state.

Force-directed approaches normally produce a nice layout
when drawing large graphs with cycles. This can be applied to
drawing large gene networks in an aesthetically pleasing way.
However, when linear and branched parts of a graph need to be
drawn, they do not perform as well as other hierarchical layout
algorithms. Therefore, it would be more appropriate to apply
hierarchical layout algorithms when the size of graph is not
very large. In addition, when the algorithm is applied to display
clusters, force-directed approaches have to consider the graph
as fully connected, i.e., all nodes are connected to each other
making the algorithm extremely computationally demanding.

E. Minimum Spanning Tree

The MST algorithm was developed by Boruvka in 1926 [26].
It can be applied to display the similarity of genes to a hier-
archical tree structure. Treating the hierarchical gene clusters
as a graph, a spanning tree can be seen as an undirected con-
nected acyclic spanning subgraph. Intuitively, a spanning tree
for a graph is a subgraph that has the minimum number of edges
for maintaining connectivity. If w(e) is the weight for an edge
e in a graph, then the weight of the tree is the sum of all the
w(e) in the tree. An MST is a spanning tree where the sum of
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w(e) is minimal. In other words, the MST of a graph defines the
cheapest subset of edges that keeps the nodes in one connected
component.

There are several algorithms available for computing the
MTS [6]. One of the easiest to understand is Kruskal’s greedy al-
gorithm [38]. The algorithm works as follows: 1) sort the edges
of graph G in increasing order by length; 2) keep a subgraph S
of G, initially empty; 3) for each edge e in the sorted order, if
the endpoints of e are disconnected in S, then add it to S. After
all edges have been added to the subgraph, the graph is drawn.

In terms of visualizing tree structures, MST is fast and effi-
cient. However, the resulting graph drawing may vary from one
execution to another since the choice of the starting vertex of the
algorithm is completely arbitrary in combination with the fact
that, at some stage of the execution, some candidate edges may
have the same weight, and therefore, the choice of edge may be
different each time.

F. Treemaps

Treemaps are proposed by Johnson and Shneiderman as a
space filling approach to the visualization of hierarchical trees
[54]. Basically, any hierarchical structure can be thought of as a
set of nodes, with each child node being some subset of its parent
node. Treemaps attempt to take advantage of this comparison by
drawing each child node enclosed within its parent. This leads
to a collection of embedded rectangular bounding boxes, which
readily shows the hierarchical structure of the information space.

A rectangular area is initially allocated to hold the represen-
tation of the tree. This area is then subdivided into a set of
rectangles that represent the top level of the tree. This process
continues recursively on the resulting rectangles to represent
each lower level of the tree. The parent–child relationship is in-
dicated by enclosing the child-rectangle by its parent-rectangle,
that is, all descendants of a node are displayed as rectangles in-
side its rectangle. Associated with each node is a numeric value
(e.g., size of a directory) and the size of a node’s rectangle is
proportional to that value (see Fig. 10) [32].

Treemaps efficiently utilize screen space by using all of the
available display. The layout allows the user to easily compre-
hend the overall structure of the hierarchical tree. However, the
lack of edges linking among nodes might prevent viewers from
understanding the hierarchical structure of datasets. In addi-
tion, it is more computationally expensive than the classical tree
drawing algorithms.

G. Tang’s Mapping Methods

A novel mapping technique that projects n-dimensional vec-
tors into 2-D points has been proposed by Tang et al. [57]. The
mapping is similar to radial coordinate visualization techniques
such as Radviz’s [30]. The result preserves the correlation rela-
tionship between vectors in the output space. For example, two
data points X and Y would be mapped to a radial line, given
X = aY , where a is a scalar. All vectors with the same pattern
will map to the same line, and the similar ones will map to a
narrow region around (see Fig. 11).

Fig. 10. Nineteen-level hierarchy as a complex directed acyclic graph that
catalogues approximately 14 000 genes according to their biological functions.

Fig. 11. Projection of the data points with same pattern.

Tang’s approach maps a vector �Pg = (xg1 , xg2 , . . . , xgn ) into
a 2-D point �P ∗

g by following the formula

�P ∗
g =

n∑
i=1

(
wi ∗

(
4
n

)
∗ (xgi)

)
�Si

where wi is an adjustable weight for each coordinate, n is the
vector length of the original space, 4/n is a ratio to centralize the
points, and �Si (i = 1, 2, . . . , n) are the unit vectors that divide
the center circle of the display screen equally.

Tang’s approach was further extended by Zhang and Zhang
[59] based on the first harmonic of the discrete Fourier transform
(DFT), and implemented in the software VizStruct [59].

The algorithms are computationally efficient and display cor-
relation effectively in a 2-D space. However, although this ap-
proach allows automatic adjustment of parameters, in order to
get better results manual adjustments are still essential.

H. Discussion

In this section, various graph drawing algorithms that have
been applied to microarray data visualization are discussed. Dif-
ferent algorithms can be applied in different circumstances of
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microarray data visualization depending on what kind of infor-
mation the biologists are seeking to grasp during their studies.
A graph layout method that works well for one research objec-
tive may not work well for another due to the differences in the
properties of the data and the type of biological insight users are
trying to gain.

Among all graph drawing methods, algorithms such as PCA,
MDS, SOM, and Tang’s mapping have more power in visualiz-
ing the group information of a number of genes. MST, FDSM,
treemap, radial view, and hyperbolic view (see next section) are
normally considered as candidates for drawing hierarchical gene
clusters, and in particular, FDSM is one of the most appropriate
algorithms for visualizing large gene networks.

Algorithms, such as PCA, MDS, SOM, and Tang’s approach,
try to project the multidimensional data onto a 2-D or a 3-D
display so that a global view of the gene clusters can be found.
The aforementioned approaches can successfully reduce the di-
mensionality of data to two or three dimensions so that each
data point can be represented as a point in a 2-D or 3-D display.
Each of these four algorithms has its own strengths. PCA dis-
plays the linear projection of the datasets and summarizes the
most important parts while simultaneously filtering out noise.
MDS and SOM can visualize nonlinear structures consisting of
arbitrarily shaped clusters or curved manifolds where MDS pro-
vides a more accurate layout for global structure, while SOM
attempts to display local structures as trustworthily as possible.
An alternative method to displaying a global picture of gene
groups is Tang’s mapping approach. The algorithm is compu-
tationally efficient but manual adjustments of parameter values
are essential in order to get better results.

MST, FDSM, and treemap can all be applied to draw hier-
archical gene clusters. However, MST is one of the most fre-
quently used of all these algorithms. The visualization draws
gene clusters as dendrograms—a hierarchical tree view of the
similarities between genes. FDSM and treemaps do not perform
as well as MST in drawing hierarchical gene clusters. This is
because FDSM is not good at drawing linear and branched parts
of a graph, while in treemaps, the lack of edges linking among
nodes might prevent viewers from understanding the hierarchi-
cal structure of the data. Other approaches such as the radial
view and the hyperbolic view (see next section) can also be ap-
plied to draw hierarchical trees. However, these two techniques
were initially designed to draw free trees rather than rooted trees
with hierarchical structures; therefore, the hierarchical drawing
can be misleading when the focus of observation is moved away
from the root node.

Both MST and FDSM can also be applied to display in-
terrelationships between genes as gene networks. MST is more
computationally efficient. However, when a large network needs
to be drawn, FDSM provides a nicer layout.

A brief summary of the strengths and weakness of graph
drawing methods can be found in Table I.

VI. VISUAL FORMS

A successful visualization strategy is a purposeful design
intended to evoke cognitive relationships in the viewer [58].

TABLE I
COMPARISON OF GRAPH LAYOUT ALGORITHMS

Visual design is used to display data in ways that capitalize upon
the particular strength of human pattern processing abilities [27].
In this section, we will examine the visual forms that have been
widely used in gene expression data analysis, including 2-D or
3-D scatter plots, color-coded heatmaps, parallel coordinates,
dendrograms, and others.

A. 2-D or 3-D Scatter Plots

The scatter plot is a standard tool for microarray visualization.
This technique normally maps similarity between genes to a
2-D or 3-D virtual space to help biologists find clusters, outliers,
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Fig. 12. Scatter correlation graph that highlights the probe selected in the
pivot table.

trends, and correlations from data. Brushing and colored class
points are widely used to gain additional insight into the data.
Fig. 12 shows an example of a scatter plot visualization that
highlights the selected probe.

A scatter plot can be extended by animation, shapes, glyphs,
icons, colors, and interactions. It can also be extended to a higher
dimension by a scatter plot matrix—a grid of scatter plots. The
scatter plots matrix is useful for looking for all possible two-way
interactions or correlations between dimensions during initial
exploration of a data set.

Scatter plots display multivariate data onto a 2-D space. This
allows the examination of the correlation between variables.
The major difficulty in using this type of method in a data
mining setting is that for a large data set, the display becomes
overwhelming and incomprehensible. To detect more compli-
cated relationships, more sophisticated methods need to be ap-
plied [27].

B. Color-Coded Heatmaps

A color-coded heatmap is a standard visual method for vi-
sualizing the multivariate gene expression datasets in a single
display. The heatmap can be viewed as a variation of the paral-
lel coordinates plot, in which color is used to convey dimension
values.

In color-coded heatmap visualizations, the ratio of gene ex-
pression discussed in Section II is displayed using a color scale.
For example, in most cases, black is used to indicate no change
in expression, while an increase in the experimental relative to
the control is shown as red, and a decrease in the experimental
relative to the control is shown as green (see Fig. 13). Various
color scales are applied in different software tools to display the
patterns.

A color-coded heatmap provides a vivid view of gene ex-
pression patterns within a microarray experiment by displaying
genes with similar induction or repression patterns close to each
other. However, the hierarchical relationship between genes can-
not be perceived unless the technique is combined with other
visual method such as dendrogram trees.

Fig. 13. Gene expression patterns visualized using color-coded heatmaps (im-
age copied from [11]).

Fig. 14. Parallel coordinates visualization displaying gene expression levels
for each cluster.

C. Parallel Coordinates

Parallel coordinates is another commonly used technique for
visualizing gene expression patterns. It visualizes multidimen-
sional datasets by arranging axes vertically, and by spacing them
uniformly across the plane [31]. Each data point is displayed as
a polygonal line connecting the corresponding abscissas on the
parallel axes. The technique can be improved by ordering the
axes (see Fig. 14).

Parallel coordinates can clearly display multivariables in one
graph. In parallel coordinates, the relationship of two dimen-
sions can be easily read if these two dimensions are assigned
to neighboring axes. However, different orderings can produce
different representations, and for parallel coordinates, the or-
der in which the axes are drawn is arbitrary. In addition, it is



ZHANG et al.: INFORMATION VISUALIZATION FOR DNA MICROARRAY DATA ANALYSIS 51

Fig. 15. Hierarchical cluster tree generated using Splus 2000 software.

hard to observe relationships between more than two dimen-
sions since it is difficult to follow the line across several axes.
Furthermore, the number of observations that can be displayed
is limited by the size of screen space and the implementation
used.

D. Dendrograms

Hierarchical clusters of genes are mostly drawn in two ways:
either as a system of nested subsets, maximal in the sense that
one cannot identify any additional subsets without violating the
nesting, or as a binary tree with a distinguished root that has
all the data items at its leaves. The former generates a structure
called a treemap (see Section IV-E), whereas the latter generates
dendrograms.

A dendrogram is a rooted tree with the root anchored centrally
on the top of the image and the children nodes drawn downward
using straight or bended lines (see Fig. 15). Some dynamic
programming may be used to find the “most parsimonious”
tree for a given set of sequences. For example, an MST can be
used to obtain the graphical representation. Another dynamic
programming problem arises from the problem of fitting an
optimal dendrogram to a distance matrix.

Drawing a dendrogram is simple, fast, and predictable. How-
ever, the utilization of geometrical space is not optimized. There
are many unused holes in the geometrical plane that waste a large
portion of the display space. Furthermore, since all the leaves
are shown at the same level in the drawing, the ordering of the
leaves is arbitrary, as is their horizontal position. The heights
of the internal nodes may also be arbitrary, depending on the
metric information used to form the clustering. Such problems
make it difficult for dendrograms to scale up well with large
amounts of data.

E. Radial View and Hyperbolic View

Apart from the aforementioned techniques, a radial view and
a hyperbolic view (see Fig. 16) may also be applied in tree
visualization. The radial view [18] recursively positions children

Fig. 16. Hyperbolic view.

of a subtree into circular wedges. The angles of these wedges
are proportional to the number of leaves of the subtree. The
hyperbolic layout is a new technique developed by Lamping and
Rao [39]. This layout technique constructs trees in a hyperbolic
plane, and then, maps that structure into an ordinary Euclidean
plane.

These two techniques can display a large data set in a rel-
atively small space. However, they were initially designed to
draw free trees rather than rooted trees with hierarchical struc-
ture in which hierarchical drawing can be misleading when the
focus of observation is moved away from the root node.

F. Other Visual Methods

There are many other visual methods that can be applied to
microarray data analysis to facilitate the discovery of features
and relationships in data. For example, techniques such as zoom-
ing, panning, and jittering can improve visualization when too
many points overlap or the data resolution causes many data
points to lie at the same coordinate [28], [50]. Animation can be
applied to display the pattern from different viewpoints. Shapes,
glyphs, icons, colors, etc. can be used as extra dimensions of in-
formation space to visualize high-dimensional gene expression
data [56], [60].

G. Discussion

In this section, various visual forms that have been applied
to microarray data visualization are reviewed. As different vi-
sual forms may reveal different biological insights from data,
there is no “best” way to visualize the data. Normally, several
visual methods are combined together to enhance the power of
visualization and display data mining results more effectively.
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TABLE II
COMPARISON OF VISUAL FORMS

Among the aforementioned visual forms, the scatter plot is
probably the best method to help biologists find clusters, out-
liers, trends, and correlations from data. Color-coded heatmaps
and dendrograms are normally combined together to display
hierarchical clustering results—the visualization provides not
only the expression level of each gene among all experimental
conditions but also the underlying structure of the data. Radial
and hyperbolic views may perform similar tasks; however, their
hierarchical drawing can be misleading when the focus of ob-
servation is moved away from the root node. In contrast to other
visual forms, the strength of parallel coordinates is its ability to
clearly draw multivariables as a series of line graphs in one dis-
play that makes it convenient to compare relationships between
two dimensions, provided that the order of the axes is carefully
arranged.

A brief summary of the strengths and weaknesses of each
visual method can be found in Table II.

VII. CONCLUSION AND FUTURE WORK

The rapid advances in high-throughput technologies such as
DNA microarray have resulted in a great demand for visual-
izing multidimensional expression data in an effective way so

that interesting patterns, features, and relationships can be ex-
tracted from a large data set. Visualization of high-dimensional
data involves a combination of structural modeling and graph-
ical representations. Structural modeling forms a structure that
characterizes a collection of datasets, while graphical represen-
tation provides visual interpretation of the complex relationships
in a multidimensional data set.

The visualization techniques discussed in this paper are in-
tended to show that there is a large and rich body of existing
work that can be adopted or taken as a basis for further research.
However, there is no “right” way to visualize microarray data,
i.e., no single visualization can convey all the relevant features
of the data. As a result, biologists need to be able to access mul-
tiple visualization techniques that are geared toward answering
different data analysis questions through the presentation of the
data from a number of different perspectives. There are several
areas that can be improved.

1) Although much effort has been made to reduce the di-
mensionality of data before plotting each data item onto a
computer display, the number of data items is not reduced.
For a large gene expression dataset, a global view of all
data points is often overcluttered, and consequently, some
valuable information may be hidden from the viewer. A
possible solution to tackle this problem is to apply some
“focus + content” visualization techniques so that the
points of interest can be shown in detail, and the overview
of the graph is still preserved in the same window. Exam-
ples of such visualization techniques include the “fisheye
view” [51] or “magnifying glasses” [35].

2) Time series expression experiments are becoming an in-
creasingly popular method for studying a wide range of
biological systems. However, visualization techniques that
can be applied to display time series are under develop-
ment but not yet available. Traditional line graph visual-
ization can only provide a local view of gene expression
patterns over time, i.e., only one or a few genes can be
displayed at a time. Moreover, the dynamic aspect of gene
expression patterns over time cannot be effectively visu-
alized through classical presentations. To overcome these
problems, various animation techniques may be applied to
simulate the dynamic changes of gene expression patterns
over time and provide a global view of all these changes.

3) Since most of the data mining and graph layout algorithms
are computationally expensive, it is beneficial to speed
up the structural modeling and graph drawing process
by improving existing algorithms and applying them in
the application domain so that a fast and efficient gene
expression data analysis and visualization system can be
achieved.

4) The integration of multiple visualizations is critical. Dif-
ferent visualization methods display different properties
of data. Therefore, no single visual form can convey all
the relevant features of a given dataset. How to integrate
multiple visualization techniques to answer a particular bi-
ology question through the presentation of the data from
a number of different perspectives is still a challenging
task. For visualization researchers, it is important to have
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a thorough understanding of the problem domain before
designing an appropriate gene expression data analysis
and visualization system.

5) Data integration is yet another important issue in bio-
logical research on microarray data. Information from
a microarray experiment alone may not be sufficient
for biologists to understand the underlying relation-
ships among genes. Access to both internal and external
database/knowledge base may provide a more integrated,
“global” perspective that takes advantage of all available
information.
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