
Visual quality metrics and human perception: an initial
study on 2D projections of large multidimensional data.

Andrada Tatu
∗

Institute for Computer and
Information Science

University of Konstanz

Peter Bak
†

Institute for Computer and
Information Science

University of Konstanz

Enrico Bertini
‡

Institute for Computer and
Information Science

University of Konstanz

Daniel Keim
§

Institute for Computer and
Information Science

University of Konstanz

Joern Schneidewind
¶

Telefonica o2 Business
Intelligence Center

Muenchen

ABSTRACT
Visual quality metrics have been recently devised to auto-
matically extract interesting visual projections out of a large
number of available candidates in the exploration of high-
dimensional databases. The metrics permit for instance to
search within a large set of scatter plots (e.g., in a scat-
ter plot matrix) and select the views that contain the best
separation among clusters. The rationale behind these tech-
niques is that automatic selection of “best” views is not only
useful but also necessary when the number of potential pro-
jections exceeds the limit of human interpretation. While
useful as a concept in general, such metrics received so far
limited validation in terms of human perception. In this
paper we present a perceptual study investigating the re-
lationship between human interpretation of clusters in 2D
scatter plots and the measures automatically extracted out
of them. Specifically we compare a series of selected metrics
and analyze how they predict human detection of clusters.
A thorough discussion of results follows with reflections on
their impact and directions for future research.

Categories and Subject Descriptors
H.5.2 [Information Interfaces and Presentation]: [User
Interfaces - Graphical User Interfaces]; I.5.3 [Pattern Recog-
nition]: [Clustering - Similarity Measures]
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General Terms
User Study, Visual Quality Metrics

1. INTRODUCTION
Effective and efficient analysis of large multi-dimensional
data is necessary, in order to understand the complexity of
the information hidden in modern databases. Visualization
has long been used as an effective tool to explore and make
sense of data, especially when analysts have open-ended
questions to formulate over the available information. While
several techniques and commercial products have proven to
be useful to provide effective support to the problem, mod-
ern databases are confronted with data complexities that go
well beyond the limits of human understanding.

Data dimensionality is a major limiting factor. Finding re-
lations, pattern, and trends over numerous dimensions is in
fact difficult because the projection of n-dimensional objects
over 2D spaces carries necessarily some form of information
loss. Techniques like multi-dimensional scaling (MDS) and
principal component analysis (PCA) offer traditional solu-
tions by creating data embedding that try to preserve as
much as possible distances in the original multi-dimensional
space in the 2D projection. These techniques have however
severe problems in terms of interpretation, as it is no longer
possible to interpret the observed patterns in terms of the
dimension of the original data space.

In order to overcome these limitations, several alternative vi-
sualization techniques have been developed in recent years,
notably scatter plot matrices [3] and parallel coordinates [9],
which better depict the relationship between data points and
the original data dimensions. Their effectiveness, however,
is highly related to the dimensionality of the data under in-
spection. Because the resolution available decreases as the
number of data dimensions increases, it becomes very diffi-
cult, if not impossible, to explore the whole set of available
projections manually.

For these reasons, a number of authors have started intro-
ducing visual quality metrics. The rationale behind this



method is that quality metrics can help users reduce the
search space of projections by filtering out views with low
information content. In the ideal system, users can select
one or more metrics and the system optimizes the visualiza-
tion in a way to reflect the choice of the user.

However, one problem with these metrics is the lack of em-
pirical validation based on user studies. These studies are in
fact needed to inspect the underlying assumption that the
patterns captured by these metrics correspond to the pat-
terns that are captured by the human eye. In this paper we
aim at opening a new trend of research in this direction by
analyzing some of the most promising metrics.

Our analysis is based on a user study where users had to
select projections of attribute-combinations well suited for
classifying the data under inspection. The study then com-
pares the scores of the selected scatter plots with the score
obtained by the selected quality measures to analyze their
correlation. The outcome of the study permits first of all
to validate the assumption that the selection of views best
ranks by quality measures is a viable way to simulate the se-
lection of users. Furthermore, the study permits to compare
the performance of the measures employed and kick-start
a quality measures benchmark process, where metrics are
compared against a baseline represented by the results ob-
tained.

In summary the main contributions of this paper are:

• A validation of the hypothesis that quality measures
can simulate the selection of best views by human be-
ings

• A comparison among a set of promising and estab-
lished measures

• The provision of a first benchmark framework, through
which it is possible to compare new quality metrics

The rest of the paper is organized as follows. Section 2 in-
troduces the related work, comparing our contribution to
existing research results. Section 3 describes the measures
employed in the study in details. Section 4 and 5 describe
the whole experiment design and results respectively. Sec-
tion 6 discusses the results obtained in the study offering
a vision on how they can be interpreted and exploited in
the future. Section 7 provides a description how to set up
a framework for user based evaluation of quality metrics as
suggested in this paper. Finally Section 8 provides the con-
clusions.

2. RELATED WORK
The two works that are mostly related to ours here are the
ones from which we have selected the metrics to compare
in the study ([17], [16]) which developed specifically qual-
ity measures for scatter plots. In both works the authors
propose automatic analysis methods to extract potentially
relevant visual structures from a set of candidate visualiza-
tions.

In [17] the visualizations are ranked in accordance with a
specified user task, which corresponds to a specific metric.

The ranking measures cover both classified (i.e., labeled) as
well as unclassified data and can be applied to scatter plots
and parallel coordinates views. From this work we include
only scatter plot measures for labeled data, namely, Class
Density Measure (CDM) and Histogram Density Measure
(HDM).

In [16] a similar work is presented. Sips et al. provide mea-
sures for ranking scatter plots with classified and unclassified
data. They propose two additional quantitative measures on
class consistency: one based on the distance to the cluster
centroids, and another based on the entropies of the spatial
distributions of classes. The paper provides also an initial
small user study where user selections are compared the out-
comes of the proposed methods. From this work we adopt
the Class Consistency Measure (CCM). The Class Density
Measure (please note that this measure is named the same
as the one used in [17] but is in fact different), which is also
presented in this work, is similar to the HDM Measure and
we will not include it in the analysis. Further details of these
measures will be provided in Section 3.

The idea of using measures calculated over the data or over
the visualization space to select interesting projections has
been proposed already in some foundational works, like Pro-
jection Pursuit [4, 8] and Grand Tour [1]. Projection Pur-
suit searches for low-dimensional (one or two-dimensional)
projections that expose interesting structures, using a “Pro-
jection Pursuit Index” which considers inter-point distances
and their variation. Gran Tour adopts a more interactive
approach by allowing the user to easily navigate through
many viewing directions, creating a movie like presentation
of the whole original space.

More recently, several works appeared in the visualization
community that propose some form of quality measures.
Examples are, measures based on clutter reduction for vi-
sualizations [13] [2], graph-theoretic measures for scatter
plot matrices [19], measures based on class decomposition
in linear projections [12], measures over pixel-based visual-
izations [15], and composite measures to find several data
structures outliers, correlations and sub-clusters [11].

A common denominator of all these works is the total ab-
sence of user studies able to inspect the relationship between
human-detected and machine-detected data patterns. While
it is certainly clear how these measures can help users deal
with large data spaces there are a number of open issues
related to the human perception of the structures captured
automatically by the suggested algorithms. In this paper
we focus on the question of whether there is a correlation
between what the human perceive and what the machine
detects.

Despite the lack of user studies specifically focused on the
issues discussed above there are a number of user studies
focused on the detection of visual patterns which are worth
mentioning here. A large literature exists on the detection
of pre-attentive features, notably the work of Healey focused
on visualization [6] and of Gestalt Laws [18] which are of-
ten taken as the basis for the detection of patterns from
visual representations. Some more specific works focused on
visualization are: [2] and [7] based on the perception of den-



sity in pixel-based scatter plots and in visualizations based
on “pexels” (perceptual texture elements) respectively, [10]
on the study of thresholds for the detection of patterns in
parallel coordinates, and [5] on the correlation between the
visualization performance an similarity with natural images.
The study presented in [14] on feature congestion is also rel-
evant and very similar to ours in terms of experiment design.
Users ranked a series of images in terms of their perception
of the degree of clutter exposed by the image and the study
correlated the degree of correlation between the user rank
and the rank given by the suggested feature congestion mea-
sure.

3. MEASURES
In the following section we will introduce the evaluated qual-
ity measures for 2D scatter plots. Our metrics come from
[16] and [17] and are summarized in Table 1.

Table 1: Overview of the analyzed measures.
Measure Section
Class Consistency (CCM) 3.1
Histogram Density 1D (1D-HDM) 3.2
Histogram Density 2D (2D-HDM) 3.2
Class Density (CDM) 3.3

In the following, the assumption is that each cluster is uniquely
labeled (either manually or through some form of n-dimensional
clustering algorithm) and that for each point it is possible to
know to which cluster it pertains. Finally, in the visualiza-
tions shown in the paper, and those used in the experiment,
each cluster is colored with a unique hue.

We will not provide extensive formal specifications and de-
tails on the metrics. For additional details and further dis-
cussions on their limits and capabilities please refer to the
original papers found in [16] and [17].

3.1 Class Consistency Measure
The Class Consistency Measure (CCM) presented by
Sips et al. in [16] is based on the distance of data points to
their cluster centroid. The measure assumes the calculation
of a clustering model in the n-dimensional space and com-
putes a specific value for a given 2D projection by projecting
points and centroids on the selected 2D space.

More precisely, the algorithm is based on the calculation of
how many points violate the distance to centroid measure.
For any given point the distance to its centroid in the n-
dimensional space must always be lower than the distance
to any other cluster centroid. But, when data is projected
on a specific 2D space, this property can be violated. There-
fore the measure is calculated, for a given projection, as the
proportion of data points that violate the centroid distance
measure.

The Class Consistency Measure (CCM) based on the cen-
troid distance is therefore calculated as follows:

1− |{p|∃j : d(p, centr(ck)) ≤ d(p, centr(cj))}|
m

(1)

where ck is the class of p, centr(ck) is the centroid of this
class, m the number of available classes, and d(p, centr(ck))
the centroid distance function.

3.2 Histogram Density Measure (1D and 2D)
The Histogram Density Measure (HDM) is a quality measure
for scatter plots presented in [17]. This measure considers
the class distribution of the points in the 2D scatter plot
when they are projected on the axes.

In the Histogram Density Measure 1D (1D-HDM)
data is projected over one axis and a histogram is calcu-
lated to describe the distribution of the data points over
it. Since there are points pertaining to different classes
(i.e., clusters) the measure is based on the analysis of the
amount of overlap among points in the same histogram bin.
The measure is intended to isolate plots that show good
class separations, therefore HDM looks for corresponding
histograms that show significant separation and this prop-
erty holds when the histogram bins contain only points of
one class.

In order to measure this property, the measure uses entropy
and rotation. Several instances of the same 2D projection
are computed, each with a different rotation factor. For each
one an average entropy value is computed and the best rank
among the rotation is selected as the measure’s value. The
computation of the entropy values is obtained as follows.

Each bin has an associated entropy equal to:

H(p) = −
∑
c

pc∑
c pc

log2
pc∑
c pc

(2)

where pc is the number of data points pertaining to class C.

H(p) is 0, if a bin has only points of one class, and log2M ,
if it contains equivalent points of all M classes.

The whole projection is ranked using the formula:

100− 1

Z

∑
x

(
∑
c

pcH(p)) (3)

where x represents the histogram bin and 1
Z

is a normaliza-
tion factor, to obtain ranking values between 0 and 100.

As explained above, this is computed for every rotated pro-
jection. For each plot the best 1D-HDM output is the quality
value.

The Histogram Density Measure 2D (2D-HDM) is an
extended version of the 1D-HDM, for which a 2-dimensional
histogram on the scatter plot is computed, that is each bin
represents a small square over the 2D projection and the
bin count is the number of data points falling within the
square. The quality is measured similarly to the 1D-HDM
by summing up a weighted sum of the entropy of each bin.
The measure is normalized between 0 and 100, having 100
for the best data points visualization when each bin contains
points of only one class.



In addition to the 1D-HDM, the bin neighborhood is also
taken into account in 2D-HDM. For each bin the information
of points pc in the bin and the direct neighbors labeled as uc

are summed up. The full equation explaining the calculation
in details can be found in the original paper.

The extended HDM measure to 2D can find also projections
where classes are like two concentric circles of different di-
ameters. In this case a 1D projection will always have a big
overlap of the classes, even if this circles don’t overlap in 2D
or nD.

3.3 Class Density Measure
The Class Density Measure (CDM) presented in [17]
evaluates the scatter plots according to their separation prop-
erties. The goal is to identify those plots that show minimal
overlap between the classes.

In order to compute the overlap between the classes the
method uses a continuous representation, where the points
belonging to the same cluster form a separate image. For
each class we have a distinct image for which a continuous
and smooth density function based on local neighborhoods is
calculated. For each pixel p the distance to its k-th nearest
neighbors Np of the same class is computed and the local
density is calculated over the sphere with radius equal to
the maximum distance.

Having these continuous density functions available for each
class the mutual overlap can be estimated by computing the
sum of the absolute difference between each pair and sum
up the results.

CDM =

m−1∑
k=1

m∑
l=k+1

P∑
i=1

||pi
k − pi

l|| (4)

with m being the number of density images, i.e., classes re-
spectively, pi

k is the i-th pixel in the k-th density image and
P is the number of pixels. This value is large, if the densities
at each pixel differ as much as possible, i.e., if one class has
a high density value compared to all others. Therefore, the
visualization with the fewest overlap of the classes will be
given the highest value. A property of this measure is that
not only it estimates well separated clusters but also clus-
ters where density difference is noticeable, which can ease
the interpretation of the data in the visualization.

4. EMPIRICAL EVALUATION
The following section describes the empirical evaluation of
the described measures for projection quality. The aim of
this evaluation is to assess the degree, to which these mea-
sures reflect users’ perception of a high quality projection.
Our method, therefore, consists of a user study for creating
a baseline and a series of measures that all judge the quality
of a set of scatter plots. The results show the correlation
computation between all the measures with the user graded
quality.

The hypotheses for the analyses were defined by the features
of the four different automatic measures. We expect lowest
correlation of the 1D-HDM measure with users’ selection,
since this measure takes only one dimensional projection for
computing the separation quality of the data into account.

Higher correlation results are expected by the 2D-HDM mea-
sure, because this extends its 1D version by creating a 2D
histogram and considers direct neighborhoods of each data
point for the quality computation. The perceived quality of
a projection may be even influenced by the density of clus-
ters having a minimal overlap, as suggested by the CDM. Fi-
nally, we expect high correlation with users’ selection, when
the consistency of clusters is computed, which is expressed
by the quality of separation of the clusters. This is assessed
by the CCM as described previously. In general, we ex-
pect a significant positive correlation of all these measure
with users selection, but these measures are also expected
to vary in their approximation of users’ perception, which
is expressed by the coefficient of determination - R2 - of the
regression.

4.1 Participants
Participants were 18 undergraduate students from the fac-
ulty of natural sciences. All had extensive experience in
working with computers and scatter plots. Students partic-
ipated in the experiment voluntarily and received no award
for participating in the experiment.

4.2 Data and Measures
For the purpose of the empirical evaluation we took the
Wine Dataset containing the results of a chemical analy-
sis of three wine types grown in a specific area of Italy.
These types are represented in the 178 samples, with the re-
sults of 13 chemical analyses recorded for each sample. This
dataset is provided by the UCI Machine Learning Reposi-
tory at www.archive.ics.uci.edu/ml/datasets/Wine. The 13
attributes of the dataset were pairwise combined into 78
scatter plots. The quality of these scatter plots was then
computed by the four different measures. The data did not
contain any special cases of cluster constellation, nor did it
have outliers or hidden data points.

The number of scatter plot representations to be used in the
user study was 18, in order to keep the performance time
reasonably small, to allow a one-page representation of all
the scatter plots at once in a reasonable size, so that all data
points can be seen. The selection of the 18 scatter plots was
conducted along the distribution of the measures’ quality
assignment, described as follows:

1. The quality values of the measures were normalized
between 0 to 1, and assigned to one quantile.

2. The scatter plots were sampled in a way that the dis-
tribution between the number of projections in higher
and lower quantiles is approximately the same, for all
measures.

3. As a result, the distribution of quality values in each
quantile was 4±1.

These selected scatter plots were ordered in six columns and
three rows and printed using a high quality color printer.
The order of the scatter plots was permuted by the Latin-
square method, which resulted in 18 different settings, one
for each participant. An example of the set of scatter plots
used in the experiment is shown in Figure 1.
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Figure 1: Projections of scatter plots used in the experiment. Participants had to select the best five
projections and order them by their quality. The order of the scatter plots was permuted for each participant
separately using the Latin-Square method.

4.3 Task
Participants were confronted with a scenario around the
wine-dataset. They were acting in this scenario as a wine-
consultants for three different types of wines. They were told
that their challenge is to analyze a large amount of attributes
describing the wines, such as color saturation, alcohol con-
tent, etc. Participants were requested to select projections
of attribute-combinations that are well suited for classify-
ing the three different types of wines. This task had to be
carried out using a selected set of scatter plot views show-
ing attributes in a pair-wise manner. At first, participants
were asked to select the five most qualitative projections for
separating wine types and then order them using numbers
between 1 and 5 (5 indicating the absolute best represen-
tation, and 1 the worst out of the five best quality scatter
plots).

4.4 Procedure
The experiment consisted of two parts. In the first part, par-
ticipants had to read a short description of the scenario, the
task and fill out a short standardized form on general ques-
tions (such as age, study stage, experience with computers
and scatter plots). In the second main part of the experi-
ment, participants had to perform the task by selecting and
ordering the five best representations that classify three wine
types. Clearly, the best suited scatter plot is the one that
allows a clear distinction of the three wine types by the two
attributes. Participants’ ability to do so mainly depends on
their ability to read and interpret scatter plots. The group
of participants was quite homogeneous, regarding age and
previous education. Expectedly, also their performance did
not show significant deviations or anomalies. This was as-
sured by computing that none is above or below the triple
standard deviation. Participants were not directed on how

to define a high quality projects, neither on to look for dense
or consistent clusters in any way, in order not to be biased
towards any of the measures.

5. RESULTS
A linear regression analysis was carried out using the Pear-
son coefficient for assessing the correlation between users’
classification and the measures’ quality assignment of the
selected projections. In order to make the measures compa-
rable, we individually normalized the assigned quality mea-
sures for the projections between 0 to 1. From the users’
answers we computed the probability of selecting a projec-
tion by counting the number of times each projection was
selected. These probabilities were weighted with the aver-
aged ranks assigned by the participants. This resulted in a
sequential order of the projections reflecting users’ quality
preferences. The dependent variable of the statistical eval-
uation was the user rankings, and each of the four measures
was one independent variable in separate computations. Re-
sults show significant positive correlation for all four mea-
sures (p<0.05, DF=1, DFe=16) with the users’ selection, as
shown in Table 2.

Table 2: Results of the regression analysis.
Measure t-value StdErr. Adj. R2

1D-HDM 3.366 0.196 0.378
2D-HDM 6.723 0.127 0.722
CCM 6.451 0.118 0.705
CDM 5.082 0.0151 0.594

There are interesting differences in R2 values tying the re-
sults to our hypotheses. These results indicate what pro-



portion of the variance is explained by the regression. The
highest R2 value is achieved by the 2D-HDM, CCM per-
formed slightly worse, followed by the CDM and the lowest
by the 1D-HDM measure. Our hypotheses were partially
fulfilled by these results and revealed some new significant
insights. The results of the correlation are shown in Figure 2.
The classification made by the users is mapped to the x-axis
and by the measures to the y-axis. The charts also show
the linear regression line with equation and unadjusted R2

value.

2D-HDM and CCM assigned the best quality to the projec-
tion exactly as the users did. CDM assigned for this projec-
tion 99% quality (rank 2), and 1D-HDM only 68% quality
(rank 4). The projection of users’ highest quality is shown
in Figure 3(a).

The highest quality projection selected by CDM and 1D-
HDM is shown in Figure 3(b). This projection shows a clear
and very dense cluster for one of the wine types, but a high
overlap for the other two types. Users assigned rank 4 for
this projection.

In users’ eye the worst quality projection was the one show-
ing high density of all three wine types but also a high over-
lap, as shown in Figure 3(c). This was also confirmed by
three measures, except by the CDM measure, which still
assigned a quality of 26.3% (rank 11) to this projection.

Interesting is also the phenomenon that none of the users
selected 8 of the 18 projections. CDM, however, still as-
signed 65% quality to one of these projections. The highest
quality assignment to one of these 8 projections was 58% by
1D-HDM, 50% by CCM, and only 40% by 2D-HDM.

In summary, 2D-HDM, tightly followed by CCM, reflected
users’ quality assignment best by getting the highest and
lowest quality ranking accurately, and having the highest
R2 value of the correlation. These results should however
not indicate that density (CDM) is unimportant for quality
assignments, rather motivate to combine and improve these
measures, so it can sufficiently support users in their task.

6. DISCUSSION
In the following section we examine more in details the re-
sults of the experiment, discussing some of their potential
implications and ideas for further research. As we have
noted in the results there is a divergence of results when
the measure takes into account the density or the amount
of overlap among the clusters. Histogram 2D together with
Class Consistency reflected users preference for high qual-
ity projections best than the others. Intuitively, both den-
sity and and overlap should play a role in the perception of
clusters, nonetheless the results of our experiment seem to
suggest that separation is more important. Future research
will need to address this issue and see whether a combina-
tion of measures based on both density and separation can
outperform the others.

Another open issue, not investigated in this study, is the in-
fluence different shapes of clusters might have on user per-
ception and, at the same time, on the proposed measures.
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(a) Users’ highest quality ranked projection was
confirmed by CCM and 2D-HDM quality mea-
sures.
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(b) Highest quality ranked projection by CDM
and 1D-HDM measures.
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(c) Users’ lowest quality ranked projection was
confirmed by CCM, 2D-HDM and also by 1D-
HDM quality measures.

Figure 3: Correlation of measures with users’ clas-
sification for highest and one lowest quality projec-
tion.



(a) 1D-HDM (b) 2D-HDM (c) CCM (d) CDM

Figure 2: Correlation of measures with users’ classification shows highest R2 values for the 2D-HDM measure.

Current results do not permit to differentiate between the
shapes clusters have, even if the images with highly ranked
clusters contain circular shapes.

In relation to this last observation, it’s worth noticing that
the major factor involved in the separation of clusters is the
proximity of the points. This is of course not surprising
as the Gestalt Laws of Grouping suggest that proximity is
the strongest visual features used by the visual system to
extract patterns out of images. Nonetheless, we believe it
is worth running new studies investigating the relationship
between the other laws of grouping (e.g., closure, similarity,
continuation, etc.), users’ perception and additional quality
metrics.

Our experimental task is focused on the perception of clus-
ters. However, it’s important to acknowledge that the per-
ception of clusters of an n-dimensional data spaces is not the
only useful task. The detection of outliers, for instance, is
also very relevant, for which it is not only necessary to find
suitable metrics but also run studies similar to ours, in or-
der to understand the relationship between user perception
and the metric. The same idea can and should be repeated
for several user’s tasks, visual patterns, and metrics. We
consider our study only a starting point in this direction,
nonetheless it introduces a well-reasoned experimental de-
sign procedure that can be repeated to explore all we have
outlined above. For this reason in the following section we
briefly summarize the common elements of our study design
so that it could be repeated in future experiments.

Finally, we want to point out that the current study focuses
exclusively on the correlation and comparison of what met-
rics and users detect, with an underlying assumption that
users’ perception represents a sort of optimum. This as-
sumption requires additional investigation as computational
methods might be able to detect interesting patterns that
users cannot necessarily perceive visually.

7. GUIDELINES
In the following we briefly outline the basic steps to repeat
in new user studies, following the same schema used in this
paper. Our motivation behind that is the desire to facilitate
the design of similar studies and to promote the production
of related studies on the perception of visual patterns and

their formalization in computable metrics.

1. Select a visualization technique. The first ele-
ment necessary is the selection of a specific visualiza-
tion technique. In our examples we have used scatter
plots which are one of the most used techniques in vi-
sualization. Future studies might include: treemaps,
parallel coordinates, line charts, etc.

2. Select a visual feature. In this phase it is necessary
to think in terms of what particular features can be de-
tected in the visualization technique under inspection.
Note that some concepts recur across several visualiza-
tion but need a redefinition for each specific case (e.g.,
clustering in scatter plots and in parallel coordinates).

3. Formalize the feature. This is a fundamental step
in our design schema. Once a specific features has
been selected it is necessary to formalize it in a way
that it can be computed through an algorithm. In this
phase is advisable to produce more than one measure
in order to capture several aspects of the same fea-
ture. This also permits to compare the performance
of the selected in measures in the study and acquire
additional information on the visual processes implied
in the perception of the feature.

4. Run a rank-based study. Once the feature has been
formalized it is possible to run a study where the users
have to rank the images in terms of the selected fea-
ture. When the images have been ranked it is possible
to compare the ranks given by the metrics and the ones
provided by the users (as suggested in our method and
design of the study).

5. Study and refine. The results of the algorithms can
be compared to the results obtained by the users who
represent the reference against which all measures are
evaluated. The goal of this phase is not only to de-
termine which of the metrics performs best, but also
to reason around the results to (1)hunt for interesting
insights about how users perceive the selected feature;
(2)design better metrics able to capture the desired
feature with more accuracy.



8. CONCLUSION AND FUTURE WORK
To conclude the research presented in this paper we would
like to recall the contributions promised in the introduction.
Through a user centered evaluation design we showed that
some quality measures are more and some less able to re-
flect users’ perception. However, it is still a question to
which extent users are able to preselect good quality pro-
jections of their multi-dimensional data in an efficient and
unbiased manner. Our results indicate that there is still a
lot to be done until the ultimate automatic quality mea-
sure can be found. Nevertheless, the provision of the first
quality benchmark framework, though which it is possible to
compare different metrics is created. One open question re-
garding the future development of similar studies is whether
the accumulation of several similar experiments on differ-
ent visualization techniques and features can be joined to
create a uniform model or better understanding of how vi-
sualization works and how visual patterns can be formalized.
While the answer to this issues is not clear at the moment,
it is evident that at the very least every single study has the
potential to improve the understanding and the utilization
of the selected technique.

In the future we plan to apply the same techniques to other
visualization methods, like parallel coordinates, and there-
fore evaluate the correlation between the specific quality
metrics and the user perception. Also we would like to in-
vestigate different visual patterns like outliers, because in
the current work we focus on cluster detection exclusively.
Like mentioned in Section 6, we also want to analyze how
good users are in finding interesting patterns.
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