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Abstract. Overlapping genes (encoded on the same DNA strand but
in different frames) are thought to be rare and, therefore, were largely
neglected in the past. In a test set of 800 viruses we found more than
350 potential overlapping open reading frames >500 base pairs which
generate BLAST hits, indicating a possible biological function. Inter-
estingly, five overlaps with more than 2000 bp were found, the largest
may even contain triple overlaps. In order to perform the vast amount
of BLAST searches required to test all detected open reading frames, we
compared two clustering strategies (BLASTCLUST and k-means) and
queried the database with one representative only. Our results show that
this approach achieves a significant speed-up while retaining a high qual-
ity of the results (>99% precision compared to single BLAST queries)
for both clustering methods. Future wet lab experiments are needed to
show whether the detected overlapping reading frames are biologically
functional.
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1 Introduction

1.1 Overlapping Reading Frames and Overlapping Genes

DNA consists of two complementary strands, uses a triplet code and, conse-
quently, open reading frames (ORFs), which may code for proteins, are possible
in six reading frames overlapping in different phases. A protein coding reading
frame on a given DNA sequence is, by convention, phase 41, the next frames are
+2 and +3, and, on the other strand -1, -2, and -3 (Fig. 1). This construction
results in a considerable theoretical coding density.
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Fig. 1. A double strand of DNA with the different possible reading frames. Encoded
amino acids are shown in the single letter code according to the standard genetic code.
Stop codons, which do not code for an amino acid, are depicted by a star.

The term “overlapping gene” has been used in the literature for several re-
lated biological phenomena. In order to avoid confusion, we introduce a distinc-
tion between trivial and embedded overlaps. In case of short, trivial overlaps, the
overlapping sequence has no important function at the protein level, but may
play a role in the regulation of gene expression, e.g., in transitional coupling [1,
2]. The process of gain and loss of trivial overlapping genes has been modeled by
mutational events, which displace the start or stop codons [3-9]. The focus of this
project, however, is on embedded genes which encode two completely different
functional amino acid chains (proteins) in different phases of the same DNA lo-
cus. Here, a protein coding reading frame is largely or entirely superposed on an
annotated reading frame (Fig. 2), and is therefore termed “embedded ORF” or,
if a function of the encoded protein has been demonstrated, ”embedded gene”.

| overlapping ORF I embedded ORF | overlapping ORF> }A
annotated ORF, sense strand
DNA

overlapping ORF | embedded ORF| overlapping ORF } B

Fig. 2. Types of ORFs to be investigated. A: sense strand ORFs, either partially or
completely overlapping. They can be in phase 4+2 or 43, since the annotated gene is
by definition in phase +1. B: antisense strand ORFs, either partially or completely
overlapping. They can be in phase -1, -2 or -3.

Usually, genome annotation programs consider embedded ORFs as being
non-functional. The rationale may be an intuitive one: It rests on the presumed
improbability of embedded genes to originate by chance [10, 11]. Furthermore,
overlaps pose severe restrictions on the evolution of both ORF's involved [7] since
many mutations in one phase directly affect the amino acid sequence encoded in
the other phase [12,13]. Nevertheless, the first fully sequenced organism, bacte-
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riophage X174, contains several embedded genes [14]. Subsequently, a number
of embedded genes have been discovered in viruses [15-18] and only recently, the
existence of several overlapping genes in other organisms has been acknowledged
[19,20]. Okamura et al. [21] suggested that amino acid chains encoded in alterna-
tive reading frames are a hidden coding reserve serving as novelty pool. Once a
frame shift mutation occurs, such formerly hidden ORF's become exposed, which
means that they are translated. Along those lines we wanted to examine how
many of the (overlapping) reading frames currently not annotated have sufficient
similarity to annotated genes to generate a BLAST hit in GenBank.

1.2 Detection of embedded genes by computational methods

An ORF, by definition, starts with a start codon and ends with a stop codon.
Clearly, not all ORFs are genes. To identify the genes among the many ORFs
in a genome during the annotation process is one of the central tasks of bioin-
formatics. Numerous algorithms have been developed by many bioinformatic
groups, such as GeneMark, Glimmer, ZCURVE, BLASTX, FASTA, ORPHEUS
or EasyGene (for an overview see [22]). After identification, such ORFs which
are likely to be true genes are labeled ”annotated” and recorded in genome
databases. The aim of this work is to examine genomes by using the implicit
state-of-the-art knowledge recorded in databases in terms of annotated genes to
see, if "hidden” overlapping reading frames can be discovered. In this feasibil-
ity study, we restricted ourselves to viral genomes sequenced until May 2008.
However, the main problem is that the number of ORFs encoded in genomes
is huge and, therefore, even searches which use a locally installed copy of these
databases would take months to complete. An efficient strategy to perform these
searches is therefore imperative. One important method to reduce the number
of database queries is to use clustering algorithms to meaningfully group the
ORFs (see [23,24] for a review of common clustering algorithms) and then only
perform one query per cluster. This allows to query databases such as GenBank
using BLAST with only a fraction of the ORFs and to transfer the query results
to the rest of the cluster without risking that the introduced error is too large. In
later stages, received hits will be analyzed with further bioinformatic methods,
e. g. promoter predictions and alike.

2 Computational methods for the detection of
overlapping genes

2.1 The data

For our analysis, we downloaded all available viral nucleotide sequences from [25]
on May 26, 2008 (nearly 3,000 viruses). All open reading frames (ORFs in six
reading frames) were extracted from the viral sequences using getorf [26]. ORF's
with less than 150 base pairs have not been considered, since smaller ORF's rarely
encode for a functional protein [27]. In total, about 229,000 ORFs with at least
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150 base pairs were extracted. To find out if the ORFs extracted eventually
encode functional proteins a comparison with the NCBI-Protein-Database nr
[28] is conducted. At the day of the download (May 26, 2008) the database
contained 6,544,368 protein sequences, totalling 5.33 GB of data. To query the
database the ORFs are translated to the corresponding amino acid sequence.
This poses a lesser constraint in finding potentially functional sequences in the
ORF's not originally annotated [22].

2.2 Querying the database

For querying the database we use the Basic Local Alignment Search Tool (BLAST)
that comprises a set of similarity search programs that were designed to find re-
gions of similarity between biological sequences [29]. BLAST allows searching
large databases for optimal local alignments. A list of the sequences with the
best local alignments is returned including similarity scores for each sequence.
In order to efficiently access the database, the collection of BLAST algorithms
was installed locally instead of using the web based version located on the NCBI
server.

For an arbitrarily chosen subset of 76,928 ORF's the above mentioned NCBI-
Protein-Database nr was queried using BLASTP, the algorithm of the BLAST
suite for querying protein databases. We used default BLASTP parameters ex-
cept the cut-off for the e-value has been set to <0.1. About 43% of the sequences
generated a hit which includes the already annotated genes. In average, it took
about 47.5 seconds per query. In total, we needed more than 42 days to process
the test dataset. Processing all 229,000 ORFs would have taken about 4 month.
Thus, the approach is clearly not efficient for future studies comprising more
sequence data.

2.3 Clustering for speed-up

To cut runtime, we first cluster the sequences according to their similarity and
subsequently query the database with only one representative.

We compared the results of two different clustering algorithms: BLAST-
CLUST [30] from NCBI [25] and k-means [24]. BLASTCLUST provides hierar-
chical clustering based on the single linkage approach. Basically, it implements
the BLAST-algorithms, which take evolutionary relatedness into account. The
advantages are to use end-to-end the same algorithm, and that two sequences can
be directly compared without transforming them into an information reduced
vector. In contrast to this, applying k-means as a partitioning-based clustering
algorithm requires to transform each sequence into a point in Euclidean space. A
histogram is formed by counting the occurrence of each amino acid in an ORF.
The result is expressed as a 20-dimensional feature vector and similar sequences
are assumed to locate at a similar position in this feature space.

Running BLASTCLUST with the default settings resulted in a set of 181,015
clusters. By subsequently relaxing the similarity requirements for sequences
that are placed in the same cluster, the number of clusters was reduced to
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164,593 (score density threshold S=1.0), 160,915 (S=0.5), 156,009 (S=0.001),
and 121,774 (S=5, length covered L=0.1)! . The least stringent clustering re-
duced the dataset approximately half to the starting number. In order to get
comparable results the exact same amount of clusters were generated using k-
means. Our analysis for both methods showed that there are many clusters that
contain only a single sequence and only few containing 20 or more sequences.
The reason for this is that the applied thresholds using BLASTCLUST are quite
strict to ensure that the whole data set is represented well. Regarding the speed
of the clustering process the k-means algorithm turned out to be about five times
faster than BLASTCLUST (approximately 7.5h compared to 38h, respectively).
However, this difference becomes insignificant if we look at the time required for
the total analysis. Figure 3 shows the total runtimes for clustering and data base
queries. For the smallest number of clusters, the approach saved up to 45% of
the runtime compared to querying each single sequence which in case of about
229,000 candidate sequences accounts for a saving of 58 days. Since BLAST is a
computationally demanding algorithm, this achievement is significant. Further
runtime reductions using BLAST necessitates special computer hardware [31].
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Fig. 3. Comparison of the total runtimes needed as a function of the number of clusters.
For comparison the time that would be needed when querying each single sequence is
given as well.

2.4 Effectiveness of the approach

Our experiments presented in the former section clearly show that the process
can be significantly accelerated by applying clustering techniques before the
database is queried. However, this approach can only be considered as useful if
the quality of the results remains acceptable.

! The S-value denotes the score density which is calculated by dividing the BLAST
score by the length of the alignment. The L value specifies the percentage of the
length of the sequence that must be covered. If not specified, L is set to 1.0 (=100%)
in our experiments.
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In order to evaluate this, a measure for effectiveness has to be found. Key for the
effectiveness of our approach is to get clusters with a high purity. A cluster is
considered as “pure” if it contains either only sequences that generate a BLAST
hit or only sequences that do not generate a BLAST hit. If this is the case,
then our assumption holds that the result that we get for one sequence can be
transferred to all the other sequences in the same cluster. We measure this purity
by calculating a precision score for each cluster. The precision is thereby defined
as:

Precision(C) = max{Precisions(C), Precision, ;(C)} (1)
where O
Precision;(C) = =1
Oa
Precision, s (C) = Onf.
Oq
with

Oy = number of functional ORF's
Ors = number of non-functional ORF's
O, = number of all analyzed ORF's

In the experiment that is described in section 2.2, we queried the database
due to time constraints using a subset of 76,928 sequences. This dataset serves
now as basis for evaluation. Since we could not include all sequences in the
experiment in section 2.2 due to time constraints, the calculated numbers can
only be considered as an approximation of the precision.

While equation 1 gives us a precision value for a single cluster, we would
need a value that measures the quality of the complete clustering. To take the
significant differences in cluster sizes into account, we use a weighted average to
calculate the cluster precision (equation 2; & = number of clusters, ¢; = number
of sequences in cluster C;).

Zle(Precision(Ci) “ti)
Zf:l ti

Both clustering algorithms, BLASTCLUST and k-means, were evaluated by
calculating the precision values for the clustering structure which we retrieved
from section 2.3. Figure 4 shows the results. Less cluster lower the precision,
which is expected since a smaller number of clusters corresponds to a lesser sim-
ilarity. Despite the fact that the k-means clustering places the sequences in a
20-dimensional Euclidean space without any consideration of biological signifi-
cance, the average performance of both clustering algorithms is approximately,
and quite surprisingly, the same. It somehow appears that the proteins com-
position is quite sufficient to circumscribe a cluster. The precision values are
convincingly high which confirms our assumption that the speed-up that we
gain from using clustering algorithms does not significantly decrease the quality
of the results. Using our method, with a loss of at most 0.1% of the precision

(2)

Precision =
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(for k-means 0.5 percent) we were able to get a speed-up of approximately 33%.
If we are willing to accept a loss in the precision of about 1% (2.5% for BLAST-
CLUST), the acceleration was even higher with savings of about 45%.

Despite the fact that many “cluster” contain only one sequence, the precision
drops faster for BLASTCLUST when relaxing stringency (Fig. 4). This is due to
the fact that BLASTCLUST tends to cluster different (in the sense of gaining
different BLAST hits) sequences in larger clusters, resulting in a dramatic drop
in precision for cluster >12 sequences of around 90%.
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Fig. 4. Comparison of the precision of the clustering BLASTCLUST and k-means for
different numbers of clusters.

2.5 Detection of presumed overlapping genes

After recording all ORFs with BLAST hits we determined those which over-
lap. The analysis of occurring overlaps was conducted on 800 arbitrarily chosen
viruses. Their genomes were sequentially examined to find ORFs which overlap
in different reading frames. To distinguish between trivial (short) and non-trivial
cases, lengths of overlap were recorded and are shown in Figure 5.

3 New Overlapping Genes in Viruses

In total, about 800 viruses were analyzed for overlapping gene sequences which
generated a BLAST hit. From those, 62% of the genomes contained at least
trivial overlaps, whereas in 44% of the viral genomes overlaps of 100% could
be observed. Since non-trivially overlapping genes are considered to be unlikely,
one reading frame is usually dismissed in favor of the other one. For instance,
Yooseph et al. [10] dismiss overlapping encoded genes if their orthologous cluster
is smaller than the cluster of the corresponding gene. However, current genome
databases implicitly reflect our state-of-the-art knowledge about which ORF
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Fig. 5. Histogram of the recorded lengths of the overlaps.

might be (or is) a gene and which one is not. Therefore, a BLAST hit can be
used as first approximation for a possible biological function.

Especially, longer overlaps are of biological interest. Figure 5 shows a his-
togram of the length of the detected overlapping open reading frames which
generated a BLAST hit. As expected, there are many short ORF's with less than
500 base pairs. However, there is a considerable number of longer overlapping
open reading frames (>350 cases for 500 and more bp) and even five presumed
genes with ORF's of more than 2000 base pairs. Since only 800 viruses have been
examined, this number must be higher. Indeed, several recent publications about
viral genome analysis revealed new overlapping genes. However, those searches
included evidence of positive selection (see [32] and references therein).

In the past, viral overlapping genes have been considered to be a “spe-
cialty” of these organisms. Most often, viruses have only a limited genome size
due to capsid size constraints, with some notable exceptions like Acanthamoeba
polyphaga mimivirus (genome length ~1.2Mbp). Indeed, in viruses the number
of overlapping genes is inversely correlated with genome length [33]. However,
in bacteria, the number of overlapping genes corresponds with genome size and
as a rough approximation it can be said that 10-30% of genes overlap [34,7].
But most of those overlaps are trivial, which means the overlapping encoded
amino acid chain is not functional at the protein’s level. Biologically more in-
teresting are nested genes in which both protein chains assume a function. A
recent textbook like example might be the gene pair dmdR1 and adm from
Streptomyces. Both genes are antiparallel to each other. DmdR1 regulates iron
metabolism and Adm is a regulator for antibiotic production. Quite interestingly,
both ORFs were recorded in databases with at that time unknown functions [35].

The longest overlapping ORF's we could find in our analysis is from Mycobac-
terium phage PBI1 and is a very interesting case (Figure 6). The largest ORF,
per definition +1, has been annotated as protein g27 (accession no. YP_655223),
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225aa, -2 134aa, +3

gp27, 1590aa, GTG start codon, +1
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<

Fig. 6. The genetic locus of the Mycobacterium phage PBI1 in which the protein gp27
is encoded (longest arrow; locus tag PBI1p27). This ORF contains three further em-
bedded genes, shown above or below (smaller arrows). For each ORF the length in
amino acids (aa), as well as the phase of the reading frame is given. Marked with boxes
in different colors are areas generating BLAST hits. int, integron integrase; pm1-2,
putative membrane protein of phage origin; T5S, type V secretory pathway protein;
tapel-3, tape measure protein; vtAfusion, viral A-type inclusion protein. For further
details see text.

but no function has been assigned to it [36]. This reading frame encodes 1590
amino acids and starts according to the GenBank entry with an unusual GTG
start codon. However, this start might be questionable, since another CTG start
codon can be found upstream and an ATG start codon downstream of the an-
notated GTG. This reading frame contains two annotated conserved domain
fragments, flhB from the flagellar biosynthesis protein FIhB and tra, which en-
codes a transglycosylase-like domain. If BLASTed, this ORF will generate three
hits with identical ORFs from very similar phages. The e-value of those hits is
0. The next four hits are from different but still related Mycobacterium phages,
the e-values are in a range of 6 - 107! to 1- 1075 [36]. The next BLAST hit
reveals a putative membrane protein of phage origin in Mycobacterium marinum
strain M; the e-value being 910751 (indicated in Figure 6 with pm1 and pm2).
The next hit further down the list, with an e-value of 9 - 10739, has similarity
to a tape measure protein. Interestingly, several more hits of such tape measure
proteins can be found within the first 50 BLAST hits. Areas in which the phage
g27 gene generates hits with such tape measure proteins are indicated with tape
1 to 3 in Figure 6. The multiple occurrences of similar genes in a BLAST search
indicates that this protein may be indeed a tape measure protein. Interestingly,
the sequence of such proteins is under minimal constraints only. It determines
the length of a phage tail very much like a ruler. A shorter tape measure protein
means a shorter tail and vice versa. Therefore, other protein chains in over-
lapping reading frames may be easily encoded. Indeed, several additional ORF's
can be found embedded in the tape measure protein gene. The largest embedded
ORF in frame -1 comprises a protein of 947 amino acids. Amino acid positions
623 to 844 generate a BLAST hit to a viral A-type inclusion protein with an
e-value of 0.081 (vtAfusion in Figure 6). Such proteins form inclusion bodies in
the host cell during infection [37]. Surprisingly, two more ORFs with BLAST hits
are encoded on the same locus of DNA, resulting in triple overlaps. One ORF
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with 225 amino acids in frame -2 generates a BLAST hit with a type V secretory
pathway protein (ZP_04858685, e-value 0.035, T5S in Figure 6). Those proteins
are autotransporters, which transport a protein domain across the membrane
of a bacterium [38]. Finally, the last ORF generating a hit encodes 134 amino
acids in frame +3. The protein seems to be an integron integrase (e-value 0.031;
int in Figure 6). Integrases belong to the large group of mobile genetic elements
[38]. It is conceivable that at one point in time such a mobile element jumped
into the tape measure protein gene and became incorporated in this DNA locus.
Triple overlaps have only rarely been reported [14, 39].

4 Conclusions and Future Prospects

We could demonstrate that in viral genomes several overlapping open reading
frames can be found which generate a BLAST hit, which is usually considered as
first evidence for a presumed biological function. To speed up BLAST searches
for large datasets we implemented clustering strategies. By applying clustering
methods previous to querying the database with one representative of each clus-
ter a significant acceleration is possible (in our experiments up to 45%) while
retaining a high quality of the results. Our initial results are promising and sug-
gest that further research in this area might be fruitful. For reasons mentioned
in the introduction it is comprehensible that embedded ORFs have been almost
completely out of focus of experimental and bioinformatic research. Neverthe-
less, the lack of attention is about to change. Several databases with the aim to
aid in the area of overlapping genes have been set up recently [19, 40, 27]. Molec-
ular studies reveal overlapping genes in a diversity of organisms (e. g., see [27]).
Therefore, given the availability of many completely sequenced genomes at the
beginning of 2010, a number of which will increase steeply in the future [41,42],
we expect the discovery of many yet unknown, but functional overlapping read-
ing frames in natural DNA. Such genes must be tested in wet lab experiments
whether they indeed have a biological function.
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