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An Interactive Approach for Filtering out Junk
Images from Keyword Based Google Search Results

Yuli Gao, Jinye Peng, Hangzai Luo, Daniel A. Keim, Jianping Fan,

Abstract—Keyword-based Google Images search engine is now
becoming very popular for online image search. Unfortunately,
only the text terms that are explicitly or implicitly linked with the
images are used for image indexing and the associated text terms
may not have exact correspondence with the underlying image
semantics, thus the keyword-based Google Images search engine
may return large amounts of junk images which are irrelevant
to the given keyword-based queries. Based on this observation,
we have developed an interactive approach to filter out the
junk images from keyword-based Google Images search results
and our approach consists of the following major components:
(a) A kernel-based image clustering technique is developed to
partition the returned images into multiple clusters and outliers.
(b) Hyperbolic visualization is incorporated to display large
amounts of returned images according to their nonlinear visual
similarity contexts, so that users can assess the relevance between
the returned images and their real query intentions interactively
and select one or multiple images to express their query intentions
and personal preferences precisely. (c) An incremental kernel
learning algorithm is developed to translate the users’ query
intentions and personal preferences for updating the mixture-
of-kernels and generating better hypotheses to achieve more
accurate clustering of the returned images and filter out the junk
images more effectively. Experiments on diverse keyword-based
queries from Google Images search engine have obtained very
positive results. Our junk image filtering system is released for
public evaluation at: http://www.cs.uncc.edu/∼jfan/google

−
demo/.

Index Terms—Junk image filtering, mixture-of-kernels, incre-
mental kernel learning, hyperbolic image visualization, user-
system interaction.

I. I NTRODUCTION

A S online image sharing and personal journalism become
more and more popular, there is an urgent need to

develop more effective image search engines, so that users
can successfully access large-scale image collections that
are available on the Internet. Keyword-based Google Images
search engine has achieved great success on exploiting the
associated text terms for automatic indexing of large-scale
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online image collections. Unfortunately, Google Images search
engine is still unsatisfactory because of the relatively low
precision rate and the appearance of large amounts of junk
images [1-5]. One major reason for this phenomena is due to
the fact that Google Images search engine simplifies the image
search problem as a purely text-based search problem, and the
underlying assumption is that the image semantics are directly
related to the associated text terms (which can be extracted
automatically from the associated text documents, the file
names or the URLs). However, such oversimplified online
image indexing approach has ignored that the associated text
terms may not have exact correspondence with the underlying
image semantics. This is the major reason why Google Images
search engine may return large amounts of junk images which
are irrelevant to the given keyword-based queries. In addition,
a lot of real world settings, such as photo-sharing web sites,
may only be able to provide biased and noisy text terms for
image annotation which may further mislead the keyword-
based Google Images search engine. Therefore, there is an
urgent need to develop new algorithms for filtering out the junk
images from keyword-based Google Images search results [1-
5].

The visual properties of the returned images and the visual
similarity contexts between the returned images are very im-
portant for users to assess the relevance between the returned
images and their real query intentions. Unfortunately, Google
Images search engine has completely ignored such important
characteristics of the images and the keywords for image
indexing may not be expressive enough for describing the rich
details of the visual content of the images, thus it is very hard
for Google Images search engine to assist users on looking
for some particular images according to their visual properties.
The huge number of returned images and the appearance of the
junk images may bring huge burden on the users to look for
some particular images via page-by-page browsing. Even the
low-level visual features may not be able to carry the image
semantics directly, they can definitely be exploited to filter out
the junk images and enhance the users’ abilities on finding
some particular images according to their visual properties.

With the increasing computational power of modern com-
puters, it is possible to incorporate image analysis tech-
niques into Google Images search engine without degrading
its response speed significantly. Recent advance in computer
vision and multimedia computing can also allow us to take
advantages of the rich visual content (embedded in the images)
for image semantics interpretation.

Another shortcoming for Google Images search engine is
that the underlying techniques for query result display (i.e.,
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Fig. 1. The flowchart for our interactive junk image filtering system.

page-by-page ranked list of the returned images) cannot allow
users to assess the relevance between the returned images and
their real query intentions effectively. Many pages are needed
for displaying large amounts of returned images, thus it is
very tedious for users to look for some particular images of
interest through page-by-page browsing. Things may become
worse when the ambiguous keywords with many potential
word senses are used for query formulation. Because the
visual properties of the returned images are completely ignored
for image ranking, the returned images with similar visual
properties may be separated into different pages. Ideally,users
would like to have a good global overview of the returned
images in a way that can reflect the principal visual properties
of the returned images effectively and allow them to navigate
large amounts of returned images interactively according to
their nonlinear visual similarity contexts, so that they can
assess the relevance between the returned images and their
real query intentions interactively.

By integrating multi-modal information (visual similarity,
associated text terms, and users’ feedbacks), we have devel-
oped an interactive approach to filter out the junk images from
keyword-based Google Images search results. Our interactive
junk image filtering scheme takes the following major steps
as shown in Fig. 1: (a) Keyword-based Google Images search
engine is first performed to obtain large amounts of returned
images for a given keyword-based query. (b) Fast feature
extraction is then performed on the returned images to extract
both the global visual features and the local visual features for
image content representation. (c) The diverse visual similari-
ties between the returned images are characterized more accu-
rately by combining multiple kernels (i.e., mixture-of-kernels)
and a kernel-based clustering technique is used to partition
the returned images into multiple clusters and outliers. (d)
A hyperbolic visualization algorithm is integrated to display
large amounts of returned images according to their nonlinear
visual similarity contexts for supporting more understandable
relevance assessment. (e) If necessary, users can select one or
multiple relevant images to express their query intentionsand
personal preferences precisely and generate better hypotheses
for junk image filtering. An incremental kernel learning al-
gorithm is developed to translate the users’ query intentions
and personal preferences for updating the mixture-of-kernels
to achieve more accurate characterization of the diverse visual
similarities between the images and learn more accurate SVM
classifier for filtering out the junk images more effectively.
(f) The updated mixture-of-kernels is further used to achieve
more accurate clustering of the returned images and create
more precise visualization of the returned images for next

hypothesis making loop.
The paper is organized as follows. Section 2 briefly reviews

some related works on junk image filtering; Section 3 intro-
duces our work on fast feature extraction for image content
representation; Section 4 introduces our mixture-of-kernels
algorithm; Section 5 describes our incremental kernel learning
algorithm to achieve more accurate image clustering and
generate better hypotheses for junk image filtering; Section
6 summarizes our work on algorithm and system evaluation;
We conclude in Section 7.

II. RELATED WORKS

Some pioneer works have been done to improve the per-
formance of keyword-based Google Images search engine [1-
5]. To filter out the junk images from keyword-based Google
Images search results, Fergus et al. have applied constellation
model to re-rank the returned images according to the appear-
ances of the image objects and some promising results have
been achieved [1-2], where both the appearance models for
the distinct object parts and the geometry model for all the
possible locations of the object parts are incorporated to learn
the object models explicitly from a set of training images.
Unfortunately, large amounts of high-quality training images
are needed to learn such complex object models reliably.
However, image search results (returned by Google Images
search engine) are very noisy and cannot directly be used
as the reliable image set for training such complex object
models. Because large amounts of training images are needed
to achieve reliable learning of the object models, such process
for object model learning could be computation-sensitive and
thus it is very hard to achieve junk image filtering in real time
or nearly in real time. In addition, the image semantics could
be interpreted in multiple levels: the underlying object classes
and the semantics of entire images at different concept levels
[27].

The research team from Microsoft Research Asia have de-
veloped several approaches to achieve more effective cluster-
ing of online image search results by using visual, textual and
linkage information [3-5]. Instead of treating the associated
text terms as the single information source for online image
indexing and retrieval, they have incorporated multi-modal
information sources to exploit the mutual reinforcement be-
tween the images and their associated text terms. In addition, a
triparties graph is generated to model the linkage relationships
among the low-level visual features, images and their associ-
ated text terms. Thus automatic image clustering is achieved
by supporting triparties graph partition. Incorporating multi-
modal information sources for image indexing may improve
the performance of online image search engines significantly,
but it may be very hard to extend such approach for achieving
online junk image filtering because the triparties linkage graph
could be very complex and triparties graph partition could be
a computation-sensitive process.

On the other hand, both the interpretation of image se-
mantics and the assessment of image relevance are user-
dependent (i.e., the user’s background knowledge plays an
important role in image semantic interpretation and relevance
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assessment), it is very important to incorporate human exper-
tises and their powerful capabilities on pattern recognition for
enhancing online image search. Thus one potential solution
for junk image filtering is to involve users in the loop of
image retrieval via relevance feedback, and many relevance
feedback techniques have been proposed in the past [6-13].
Unfortunately, all these existing relevance feedback techniques
require users to label a reasonable number of returned images
into the relevant class and the irrelevant class for learning
a reliable model to predict the user’s query intentions, thus
they may bring huge burden on the users [34]. When large-
scale image collections come into view, a limited number of
labeled images may not be representative for large amounts of
unseen images and thus a limited number of labeled images
may not be sufficient for learning an accurate model to predict
the user’s query intentions precisely. 2D data page is used
for image display and the nonlinear visual similarity contexts
between the images are completely ignored for image ranking,
thus the returned images with similar visual properties may
be separated into different pages. Such page-by-page image
display approach cannot allow users to see a good global
overview of large amounts of returned images (i.e., image
clusters and their similarity structures) at the first glance, thus
users cannot assess the relevance between the returned images
and their real query intentions effectively and provide their
feedbacks precisely for junk image filtering. In addition, all
these existing relevance feedback techniques have not provided
a good solution for hypotheses visualization and assessment
(i.e., visualizing the margin between the relevant images and
the junk images to enable better hypothesis assessment).

New visualization tools are strongly expected to support
user-dependent and goal-dependent choices about what to
display and how to provide feedback. Image seekers often
express a desire for a user interface that can organize the
search results into meaningful groups, in order to help them
make sense of the search results, and to help them decide what
to do next. Some pioneer works have been done on supporting
similarity-based image visualization [36-43], but most existing
techniques for image projection and visualization may perform
well when the images belong to one single cluster, and fail to
project the images nicely when they are spread among multiple
clusters with diverse visual properties.

To capture the users’ query intentions precisely for generat-
ing better hypotheses for junk image filtering, three key issues
should be addressed jointly: (a) incremental kernel learning
should be supported for reducing the computational cost [44-
48], so that users can interactively change the underlying
hypotheses for filtering out the junk images in real time or
nearly in real time; (b) the convergence of the underlying
techniques for incremental kernel learning should be guaran-
teed; (c) an interactive interface should be developed to enable
similarity-based visualization of large amounts of returned
images [36-43], generate more understandable assessment of
the hypotheses for junk image filtering (i.e., make the margin
between the relevant images and the junk images to be more
visible and more assessable), and allow users to express
their query intentions more precisely for generating better
hypotheses and learning more accurate SVM classifier for junk

Fig. 2. Wavelet transformation for texture feature extraction and 10 simple
image partition patterns for local color histograms extraction.

image filtering.

III. FAST FEATURE EXTRACTION

It is very important to integrate the visual properties of the
images for improving keyword-based image search, and there
are three widely accepted approaches for image content rep-
resentation and feature extraction: (1)image-based approach
that extracts the visual features from entire image without
performing image segmentation [17-19]. (2)region-based ap-
proach that extracts the visual features from homogeneous
image regions by performing image segmentation [14-16]. (3)
object-based approach that extracts the visual features from
salient image objects [20-22].

The major advantage for the image-based approach is that
no segmentation is performed, thus it can support fast feature
extraction. However, the visual features that are extracted from
entire images may not be able to characterize the intermediate
image semantics effectively at the object level. The major
problem with the region-based approach is that the homo-
geneous image regions or image grids may not correspond
to the underlying salient image components, thus it cannot
characterize the intermediate image semantics accuratelyat
the object level. On the other hand, the object-based approach
can characterize the intermediate image semantics effectively
at the object level and the image contexts (i.e., pictorial
structures or spatial relationships between the image objects)
can further be extracted to achieve more accurate image
semantics interpretation at the concept level. Unfortunately,
automatic image object detection is still an open problem for
computer vision community [32].

For online junk image filtering, the underlying approach
for image content representation and feature extraction should
be able to: (a) characterize both the global visual properties
and the local visual properties of the images effectively and
efficiently; (b) reduce the computational cost significantly for
feature extraction and image similarity determination because
such junk image filtering process should be achieved in real
time or nearly in real time.

Based on these understandings, we have developed an
alternative approach for fast feature extraction to achieve a
good trade-off between the effectiveness for image content
representation and the reduction of the computational cost
for feature extraction and image similarity determination. To
achieve more accurate representation of the diverse visual
properties of the images, both the global visual features
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and the local visual features are extracted for image content
representation and similarity characterization. To reduce the
computational cost for feature extraction, we use the thumb-
nails from Google Images instead of the original-size images
for feature extraction.

The global visual features such as global color histogram
and wavelet texture features (shown in Fig. 2(a)) can provide
the global perceptual properties of entire images, but they
may not be able to capture the object information within the
images accurately [23-24]. Even SIFT (scale invariant feature
transform) features can allow object recognition against the
cluttered background [25-26], they may be too computation-
sensitive for supporting online junk image filtering. On the
other hand, our local color histograms can provide the princi-
pal visual properties of the image objects at certain accuracy
level and reduce the computational cost significantly. In our
current implementations, the global visual features consist
of 32-bin global color histogram and 62-dimensional texture
features from Gabor filter banks. The local visual features
consist of 10 32-bin local color histograms and they are
extracted from 10 simple image partition patterns as shown in
Fig. 2(b) and Fig. 2(c), so that the principal visual properties of
the image objects will not be weakened by the visual properties
of the background which may cover the most space of the
picture. When people take the photos, they may normally put
the attended objects in the centers of the images. Thus we
assume that the image objects of attention normally locate at
the centers of the images in two ways as shown in Fig. 2(b)
and Fig. 2(c), and such assumption is correct in general for
our experiments.

One major advantage of our fast feature extraction approach
is that it can achieve a good trade-off between the effectiveness
for image content representation (i.e., characterizing both the
global visual properties of the entire images and the local
visual properties of the image objects) and the significant
reduction of the computational cost for feature extraction,
thus it can be performed in real time. It is also important
to note that our local color histograms focus on extracting the
local visual properties of the image objects for achieving more
accurate image clustering by reducing the misleading effects
of the background on image similarity characterization at the
object level, such local color histograms are not required to
be discriminative enough to achieve automatic object detection
and recognition because users will be involved in the loop of
image retrieval.

IV. I MAGE SIMILARITY CHARACTERIZATION

To filter out the junk images from Google Images search
results, the first question is to define more suitable similarity
functions to characterize the diverse visual similarity contexts
between the returned images accurately. Recently, the use of
kernel functions for data similarity characterization plays an
important role in the statistical learning framework [29-33],
where the kernel functions may satisfy some mathematical
requirements and possibly capture some domain knowledge.

To achieve more accurate approximation of the diverse
visual similarity contexts between the images, different ker-
nels should be designed for different feature subsets because

their statistical properties of the images are very different.
Unfortunately, most existing machine learning tools use one
single kernel for diverse image similarity characterization and
completely ignore the heterogeneity of the statistical properties
of the images in the high-dimensional multi-modal feature
space [31]. Thus three basic image kernels (global color
histogram kernel, wavelet filter bank kernel, local color his-
togram kernel) are first constructed to characterize the diverse
visual similarity contexts between the images, and a linear
combination of these three basic image kernels (i.e., mixture-
of-kernels) can further form a family of mixture-of-kernels for
characterizing the diverse visual similarity contexts between
the images more accurately [32]. Because multiple kernels
are seamlessly integrated to characterize the heterogeneous
statistical properties of the images in the high-dimensional
multi-modal feature space, our mixture-of-kernels algorithm
can achieve more accurate image clustering and can also
provide a natural way to add new feature subsets and their
basic kernels incrementally.

In this paper, we have incorporated three basic descriptors
to characterize various visual properties of the images: (a)
global color histogram; (b) texture histograms for waveletfilter
banks; (c) local color histograms. The first two descriptorsare
computed from every pixel of the whole image; while the third
descriptor is computed from 10 simple image partition patterns
as shown in Fig. 2(b) and Fig. 2(c).

The global color histogram kernelK1(x, y), which is used
to characterize the visual similarity between the global color
histogramsu andv for two imagesx andy, is defined as:

K1(x, y) = e−χ2(u,v)/δ =
32
∏

i=1

e−χ2

i (u(i),v(i))/δi (1)

whereδ = [δ1, · · · , δ32] is set to be the mean value of theχ2

distances between all the images in our experiments,u(i) and
v(i) are theith component for two color histogramsu andv.
We quantify the HSV color space into 32 bins (i.e., 16 bins
for H, 8 bins for S and 8 bins for V).

The wavelet texture kernelK2(x, y) can be decomposed
as a product of component kernels for different wavelet filter
bankse−χ2

i (hi(x),hi(y))/σi :

K2(x, y) =

n
∏

i=1

e−χ2

i (hi(x),hi(y))/σi (2)

where the component kernele−χ2

i (hi(x),hi(y))/σi is used to
characterize the similarity between two imagesx and y

according to theith wavelet filter bank,hi(x) andhi(y) are
the histograms of theith wavelet filter bank for two imagesx
andy.

The local color histogram kernelK3(x, y), which is used
to characterize the similarity between two sets of local color
histogramsΥ andΨ for two imagesx andy, is defined as:

K3(x, y) = e−χ2(Υ,Ψ)/Θ =

10
∏

j=1

32
∏

i=1

e−χ2

i (Υj(i),Ψj(i))/θi (3)

where Θ = [θ1, · · · , θ32] is set as the mean value of the
χ2 distances of all the images in our experiments. In our
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experiments, we have extracted 10 local color histograms for
each image according to 10 simple image partition patterns as
shown in Fig. 2(b) and Fig. 2(c). The local color histograms are
used to characterize the appearances of the image objects and
their local visual properties with certain accuracy level,thus
the local color histogram kernel should be able to determine
the image similarity at the object level with certain accuracy
level.

The diverse visual similarity contexts between the returned
images are characterized more accurately by using a linear
combination of these three basic image kernels (i.e., mixture-
of-kernels) [31-32]:

κ(x, y) =

3
∑

i=1

βiKi(x, y),

3
∑

i=1

βi = 1 (4)

whereβi ≥ 0 is the importance factor for theith basic image
kernelKi(x, y) for image similarity characterization.

The rules for kernel combination (i.e., mixture-of-kernels
construction by selecting the optimal values for these three
importance factorsβ) depend on two key issues: (a) The
relative importance of various feature subsets for diverseimage
similarity characterization; (b) The users’ query intentions
and personal preferences (which may not be known without
user’s input). Based on this observation, we have developedan
incremental approach to achieve optimal kernel combination,
which treats the junk image filtering process as an incremental
process for SVM classifier training by taking the users’ query
intentions and personal preferences into consideration.

Because the keywords for query formulation may not be
able to capture the user’s query intentions effectively and
efficiently, the keyword-based Google Images search engine
may not know which image cluster is relevant to the user’s
intentions or which image cluster is irrelevant at the beginning.
Thus it is very hard to define suitable criteria to achieve
automatic junk image filtering. One promising solution for
these difficulties is to allow the user to interactively pro-
vide additional information (i.e., his/her query intentions and
personal preferences) for generating better hypotheses for
junk image filtering. Unfortunately, most existing relevance
feedback techniques require users to label a reasonable number
of returned images into the relevant class and the irrelevant
class, which may bring huge labeling burden on the users
and may further stop them to use such tools for junk image
filtering.

In order to allow users to express their query intentions
more precisely and assess effectiveness of the underlying
hypotheses for junk image filtering, it is very important to
support similarity-based visualization of large amounts of
returned images [36-43], so that users can see the margins
between the relevant images and the junk images at the
first glance. To generate more precise visualization of large
amounts of returned images, it is very important to create a
good partition of large amounts of returned images according
to their nonlinear visual similarity contexts.

V. JUNK IMAGE FILTERING

In this paper, we have developed an incremental kernel
learning algorithm to determine the optimal values of the

importance factors for kernel combination (i.e., mixture-of-
kernels construction) by taking the users’ query intentions and
personal preferences into consideration: (1) The mixture-of-
kernels for diverse image similarity characterization is initial-
ized by maximizing the margins between the majority group of
the returned images (i.e., the returned images which dominate
the visual properties) and the outliers (i.e., obvious junk
images which their visual properties are significantly different
from the dominant visual properties). An interactive interface
is designed to visualize the returned images according to
their nonlinear visual similarity contexts, which can allow
users to assess the relevance between the returned images
and their query intentions more effectively and express their
query intentions more precisely. (2) An incremental kernel
learning algorithm is developed to translate and incorporate
the users’ query intentions and personal preferences for up-
dating the mixture-of-kernels and learning the SVM classifier
incrementally to filter out the junk images more effectively.
(3) The updated mixture-of-kernels is used to create more
accurate clustering of the returned images and achieve more
precise visualization of the returned images for next hypothesis
making loop.

A. Image Clustering

Our online junk image filtering system is implicitly con-
nected with the keyword-based Google Images search engine,
thus users are allowed to type in keywords to start their goal
of image search and the returned images for a given keyword-
based query are automatically obtained by the Google Images
search engine. For the given keyword-based query, our online
junk image filtering system can download 200 returned images
automatically from Google Images. Obviously, our system can
also allow users to define the number of returned images they
want to look for according to their personal preferences. To
reduce the computational cost for feature extraction, we use
the thumbnails from Google Images instead of the original-
size images for feature extraction.

The user-independent hypothesis (i.e., hidden hypothesis)
for junk image filtering is that the returned images for a given
keyword-based query can be partitioned into two groups: (a)
majority group of the returned images which dominate the
visual properties of the returned images and locate inside a
cluster sphere; (b)outliers which their visual properties are
significantly different from the dominant visual properties of
the returned images and locate outside the cluster sphere.

One-class SVM algorithm [30] is used to model such hidden
hypothesis by determining a smallest enclosing sphere of
radiusR to cover the majority group of the returned images
for the given keyword-based query:

∀N
j=1 : ‖φ(xj) − µφ‖2 ≤ R2 (5)

whereN is the total number of images returned by the given
keyword-based image query,µφ is defined as the center of the
majority group of the returned images,

µφ =

N
∑

j=1

φ(xj) (6)
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To enhance its robustness to the outliers, soft constraintsare
incorporated by adding slack variables:

∀N
j=1 : ‖φ(xj) − µφ‖2 ≤ R2 + ξj , ξj ≥ 0 (7)

Thus the problem for incorporating one-class SVM algorithm
for image clustering can be defined as:

min







R2 +
C

N

N
∑

j=1

ξj







(8)

subject to:

∀N
j=1 : ‖φ(xj) − µφ‖2 ≤ R2 + ξj , ξj ≥ 0

whereC is a constant andCN
∑N

j=1 ξj is a penalty term.
We can solve this optimization problem with Lagrangian

multipliers:

L = R2−
∑

j

(R2+ξj−‖φ(xj)−µ
φ‖2)αj−

∑

ξjλj+
C

N

∑

ξj

(9)
whereαj ≥ 0 andλj ≥ 0 are the Lagrangian multipliers.

The Lagrangian multipliers problem can be solved by:

∂L

∂R
=
∂L

∂ξj
=

∂L

∂µφ
= 0 (10)

which can lead to:
N
∑

j

αj = 1, αj =
C

N
− λj (11)

ξjλj = 0, (R2 + ξj − ‖φ(xj) − µφ‖2)αj = 0 (12)

The dual form for the Lagrangian optimization problem can
be re-written as:

max







N
∑

j

αjκ(xj , xj) −

N
∑

i,j

αiαjκ(xi, xj)







(13)

subject to:

∀N
j=1 : 0 ≤ αj ≤

C

N
,

N
∑

j=1

αj = 1

Thus the decision function (i.e., one-class SVM classifier)for
image clustering can be determined as:

f(x) = R2 −

N
∑

i,j

αiαjκ(xi, xj) + 2

N
∑

j

αjκ(xj , x) − κ(x, x)

(14)
We can further define the distance between an image with

the visual featuresx and the centerµφ of the cluster sphere:

R2(x) = κ(x, x) − 2

N
∑

j

αjκ(xj , x) +

N
∑

i,j

αiαjκ(xi, xj)

(15)

κ(xi, xj) =
3
∑

i=1

βiKi(xi, xj),
3
∑

i=1

βi = 1 (16)

The image with the visual featuresx, which locates on the
surface of the cluster sphere (i.e.,R2(x) = R2), is treated as

Fig. 3. The obvious junk images for the keyword-based query “mountain”
are separated effectively from the majority group of the returned images and
are projected on the left-upon corner.

a support vector. On the other hand, the image with the visual
featuresz is treated as the outlier (i.e.,O(z) = 1):

O(z) =







1, R2(z) > R2

0, otherwise

(17)

whereR is the radius of the smallest enclosing cluster sphere
to cover the majority group of the returned images for the
given keyword-based query.

A good combination of these three basic image kernels (i.e.,
the mixture-of-kernels with the optimal values of these three
importance factorsβ) should be able to achieve more accu-
rate approximation of the diverse visual similarity contexts
between the images and result in better separation between the
majority group of the returned images and the outliers. Thus
the optimal values of the importance factorsβ for an initial
combination of these three basic image kernels (i.e., without
considering the users’ query intentions and personal prefer-
ences) can be obtained by maximizing the margin between
the outliers and the majority group of the returned images:

max

β

{

T
∑

l=1

min
[

κ(zl, xi), R
2(zl) > R2, R2(xi) = R2

]

}

(18)
whereT is the total number of outlying images,Ω is the set
of the support vectors (i.e., the returned images locate on the
boundary of the cluster sphere).

After the optimal values for initial combination of these
three basic image kernels are obtained, the corresponding
mixture-of-kernels is used to create a good partition of the
returned images and generate an initial visualization of the
returned images, so that users can assess the correctness and
the effectiveness of the underlying hypothesis for junk image
filtering.

The returned images in the majority group, which have been
separated from the outliers (i.e., obvious junk images), are
further partitioned into multiple clusters according to their
nonlinear visual similarity contexts. In this paper, we have
seamlessly integrated one-class SVM algorithm [30] with the
kernel K-means algorithm [29] to achieve better partitions
of the returned images in the majority group. Our algorithm
takes the following major steps: (a) We assume there areτ
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Fig. 4. The obvious junk images for the keyword-based query “ocean” are
separated effectively from the majority group of the returned images and are
projected on the left-down corner.

clusters for the returned images in the majority group, the
centers and the radiuses for theseτ clusters are denoted as
µ

φ
l , Rl, l = 1, · · · , τ . Ideally, the optimal number of image

clusters should be determined by an iterative process, but
such iterative process could be computation-sensitive andit
is unpractical for enabling online junk image filtering. Thus
we set the maximum number of image clusters asτ = 10
heuristically for all the queries, and good performance canbe
obtained for most ambiguous search terms (ambiguous search
terms may have more clusters for different word senses) in our
experiments. (b) The optimal partition of the returned images
in the majority group is obtained by minimizing the trace of the
within-cluster scatter matrix,Sφ

w. The scatter matrix is given
by:

Sφ
w =

1

N

τ
∑

l=1

N
∑

i=1

πliR
2
l (xi) (19)

whereπli is the membership parameter,πli = 1 if xi ∈ Cl and
0 otherwise,Cl is the lth image cluster.R2

l (xi) is the radius
of the smallest enclosing cluster sphere for thelth cluster and
it is defined as:

R
2

l (xi) = κ(xi, xi)−
2

Nl

N
∑

j=1

πljκ(xi, xj)+
1

N2

l

N
∑

j=1

N
∑

m=1

πljπlmκ(xj , xm)

(20)

whereNl =
∑N

j=1 πlj . Searching the optimal values of the
membership parametersπ that minimizes the expression of the
trace in Eq. (19) can be achieved effectively by performing
kernel K-means algorithm [29].

Partitioning the returned images into multiple clusters ac-
cording to their nonlinear visual similarity contexts can gain
several benefits: (1) It can provide a good global overview of
large amounts of returned images (i.e., image clusters and their
similarity contexts), which may reveal the interesting or even
unexpected distribution trends of the returned images. Thus
users can assess the relevance between the returned images
and their real query intentions more effectively. (2) It can
provide a good insight of large amounts of returned images
and achieve more precise visualization of the images with
better preservation of both their global similarity structures
(i.e., image clusters and their similarity contexts) and their
local similarity structures (i.e., nonlinear visual similarity

contexts between the returned images in the same cluster).
(3) It can support automatic label propagation and reduce the
users’ efforts significantly for labeling the images to enable
incremental kernel learning.

B. Image Projection and Visualization

To incorporate image visualization for assisting users on
relevance assessment and hypothesis making, it is very im-
portant to develop new visualization algorithms that are able
to exploit and preserve the nonlinear visual similarity contexts
between the returned images. In this paper, locality preserving
projection is used to preserve the nonlinear visual similarity
contexts for image projection and visualization [35].

The local similarity matrixΞ for theseN returned images
can be obtained by calculating the kernel-based similarity
distance between the images and its componentΞij is used
to characterize the local visual similarity context between two
returned images with the visual featuresxi andxj :

Ξij = φ(xi)
Tφ(xj) = κ(xi, xj) =

3
∑

l=1

βlKl(xi, xj) (21)

By integrating multiple kernels for image similarity char-
acterization, our mixture-of-kernels algorithm can discover
the nonlinear visual similarity structures between the images
effectively.

Given a set of returned images and their visual features
X = {x1, x2, · · · , xN}, let A be the transformation matrix
andY = {y1, y2, · · · , yN} be the projection locations of these
N returned images on 2-D display screen, we can have the
following transformation:

yi = ATφ(xi) (22)

Given the local similarity matrixΞ for all theseN returned
images, the optimal projection can be obtained by solving the
following minimization problem:

Aoptimal =
argmin

A







N
∑

i,j

(yi − yj)
2Ξij







=
argmin

A







N
∑

i,j

(ATφ(xi) −ATφ(xj))
2Ξij







=
argmin

A
ATφ(X)∆φT (X)A (23)

where∆ is the graph Laplacian,

∆ = D − Ξ, Dii =

N
∑

j

Ξij (24)

whereD is a diagonal matrix. The optimal solution for Eq.
(23) is to ensure that if two images with the visual features
xi and xj are close in the high-dimensional feature space
and their projection locationsyi and yj are also close each
other on 2-D display screen. Thus the algorithms for kernel-
based image clustering and locality preserving projectionare
integrated seamlessly for preserving both the global similarity
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structures and the local similarity structures between the
images, and a nearest neighbor search in the 2D image display
space will obtain the same results in the high-dimensional
feature space. By integrating the mixture-of-kernels and the
locality preserving projection for image clustering and projec-
tion, our algorithm can exploit and preserve both the nonlinear
image similarity structures (i.e., local visual similarity struc-
tures between the returned images in the same cluster) and
the image distribution manifolds (i.e., image clusters andtheir
similarity contexts) effectively.

The transformation vector−→a (i.e., components for the trans-
formation matrixA) for context-preserving image projection,
which minimizes the objective function in Eq.(23), is givenby
the minimum eigenvalue solution to the generalized eigenvalue
problem:

φ(X)∆φT (X)−→a = λφ(X)DφT (X)−→a (25)

which can further be refined as:

∆Ξ−→a = λDΞ−→a (26)

The returned images, which are projected by preserving
their nonlinear visual similarity contexts, are further laid out on
the hyperbolic plane to enable interactive image navigation and
exploration. After such context-preserving projection ofthe
returned images is obtained, Poincaré disk model [28] is used
to map the returned images on the hyperbolic plane onto a 2D
display coordinate to support change of focus and interactive
image exploration. Formally, if letϕ be the hyperbolic distance
of one given image to the center of the hyperbolic plane and
ψ be the Euclidean distance of the same image to the center of
the display unit circle, the relationship between their derivative
is described by:

dϕ =
2s

1 − ψ2
· dψ (27)

where s is the scaling factor. Intuitively, the Poincaré map-
ping makes a unit Euclidean distance correspond to a longer
hyperbolic distance as it approaches the rim of the display
unit circle. In other words, if the images are of fixed size,
they would appear larger when they are closer to the origin
of the display unit circle and smaller when they are further
away. This property makes it very suitable for visualizing
large amounts of returned images because the non-uniformity
distance mapping creates an emphasis for the returned im-
ages which are in current focus, while de-emphasizing those
returned images that can further form the focus point.

Our hyperbolic visualization of the returned images for the
keyword-based queries “mountain”, “sunrise”, “grass”, and
“ocean” are given in Fig. 3, Fig. 4, Fig. 5 amd Fig. 6, where
the returned images for multiple clusters are layouted by using
context-preserving projection and Poincaré mapping. From
these experimental results, one can conclude that: (a) The
obvious junk images (i.e., outliers) can be separated effec-
tively from the majority group of the returned images, thus
our mixture-of-kernels algorithm can characterize the diverse
visual similarity contexts between the returned images more
precisely with higher discrimination power and our hidden
hypothesis is correct for filtering out the obvious junk images

Fig. 5. The obvious junk images for the keyword-based query “sunrise” are
separated effectively from the majority group of the returned images and are
projected on the left-upon corner.

Fig. 6. The obvious junk images for the keyword-based query “grass” are
separated effectively from the majority group of the returned images and are
projected on the left-down corner.

effectively. (b) Our hyperbolic image visualization algorithm
can allow users to see the global distribution structures (i.e.,
image clusters and the similarity contexts) of large amounts of
returned images and their nonlinear visual similarity contexts
at the first glance. Such global image distribution structures
can help users assess the relevance between the returned
images and their personal query intentions effectively. (c) The
change of focus is implemented for allowing users to navigate
and explore the returned images interactively according totheir
nonlinear visual similarity contexts. Users can change their
focuses of the returned images by clicking on any visible
image to bring it into focus at the screen center, or by dragging
any visible image interactively to any other screen location
without losing their nonlinear visual similarity contexts, where
the rest of the images can be transformed appropriately. With
the power of high interaction and rapid response for exploring
and navigating large amounts of returned images according to
their nonlinear visual similarity contexts, our hyperbolic image
visualization scheme can support more effective solution for
users to assess the relevance between the returned images and
their real query intentions interactively.

C. Incremental Kernel Learning

The initial combination of these three basic image kernels
may not be discriminative enough to characterize the diverse
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visual similarity contexts between the returned images accu-
rately and filter out all the junk images effectively. In addition,
such initial mixture-of-kernels has not taken the user’s query
intentions into consideration, thus it may not be able to filter
out all the junk images which may depend on the user’s query
intentions and personal preferences.

Through interactive navigation and exploration of large
amounts of returned images according to their nonlinear visual
similarity contexts, users can build up their mental models
about which types of returned images they want to look for
(i.e., which image clusters are more relevant to their query
intentions) and what are the most significant visual similarity
contexts between the returned images. After the users find
some images of interest via interactive image exploration,
our system can allow users to zoom into the images of
interest. When the users find some particular images via
zooming into the images of interest, they can select one or
multiple images to express their query intentions precisely
as shown in Fig. 7(a), Fig. 8(a), Fig. 9(a), and Fig. 10(a).
After our system capture such users’ query intentions, it can
automatically update the underlying mixture-of-kernels and
change the hypotheses for junk image filtering according to the
users’ personal preferences. It is worth noting that our system
just requires users to click one or few images to express their
query intentions and automatic label propagation is used to
obtain large amounts of high-quality images for supporting
incremental kernel learning. Because the returned images are
clustered according to their nonlinear visual similarity con-
texts, clicking one single image on the screen can obtain large
amounts of visually-similar images in the same cluster, which
can reduce the users’ labeling efforts significantly for enabling
incremental kernel learning. If these clicked images belong to
the same cluster, the visually-similar returned images forthe
corresponding cluster will be treated as the relevant images for
enabling incremental kernel learning. If these clicked images
belong to multiple clusters, the returned images from all these
corresponding clusters will be treated as the relevant images
for supporting incremental kernel learning.

In this paper, we have developed an incremental kernel
learning algorithm to take advantage of users’ query inten-
tions and personal preferences for determining more accurate
combination of these three basic image kernels (i.e., generating
better hypotheses for junk image filtering). The user’s query
intentions are represented precisely by a set of visually-similar
images, which are in the same clusters with the clicked im-
ages. These visually-similar images are treated as the relevant
images to update the underlying mixture-of-kernels and learn
more accurate SVM classifier incrementally for filtering out
the junk images according to the users’ query intentions and
personal preferences.

The junk image filterfp(x) (i.e., SVM classifier to partition
the returned images into the relevant class and the irrelevant
class) for the previous hypothesis making loop is defined as:

fp(x) = WT
0 φ(x) + b (28)

where the regularization termW0 is learned from the boundary
images (i.e., which are treated as the support vectors for image
clustering in the previous hypothesis making loop),(xi, yi),

i = 1, · · · , L.

W0 =

L
∑

i=1

α∗

i yiφ(xi) (29)

For a given keyword-based query, the SVM classifier for the
current hypothesis making loop can be learned incrementally
[32]:

min

{

1

2
‖W −W0‖

2 + ε

m
∑

l=1

[1 − yl(W
T · φ(xl) + b)]

}

(30)
whereW0 is the regularization term for the previous hypoth-
esis making loop,(xl, yl), l = 1, · · · ,m are the new training
images for the current hypothesis making loop which are
obtained via automatic label propagation,ε is the penalty term.

The dual problem for Eq. (30) is solved by:

min

{

1

2

m
∑

l=1

m
∑

h=1

αlαhylyhκ(xl, xh)−

m
∑

l=1

αl

(

1 − yl

L
∑

i=1

α∗

i yiκ(xi, xl)

)}

(31)

subject to:

∀m
l=1 : 0 ≤ αl ≤ ε,

m
∑

l=1

αlyl = 0

The optimal solution of Eq. (30) satisfies:

W = W0 +

m
∑

l=1

α∗

l ylφ(xl) =

L
∑

i=1

α∗

i yiφ(xi) +

m
∑

l=1

α∗

l ylφ(xl)

(32)
where α∗ is the optimal value of the weighting factors of
the images to optimize the Eq.(31). Thus the SVM classifier
fc(x) for the current hypothesis making loop can be updated
incrementally as:

fc(x) = WTφ(x)+b =
L
∑

i=1

α∗

i yiκ(x, xi)+
m
∑

l=1

α∗

l ylκ(x, xl)+b

(33)
The SVM classifier, which is learned incrementally by taking
the user’s query intentions into consideration, is then used
to re-partition the returned images into two classes: relevant
imagesversus irrelevant images, where the irrelevant images
(i.e., junk images according to the user’s current query inten-
tions) either can be highlighted automatically or may not be
presented to the users. Because the hypothesis for junk image
filtering is changed adaptively according to the user’s current
query intentions, some returned images which are detected as
the irrelevant images in the previous hypothesis making loop
may become as the relevant images in the current hypothesis
making loop. On the other hand, some returned images which
are detected as the irrelevant images in the previous hypothesis
making loop may become as the relevant images in the current
hypothesis making loop because of the change of the user’s
query intentions and the updating of the decision boundary of
the SVM classifier.

In such incremental SVM classifier learning process, the
underlying mixture-of-kernels for diverse image similarity
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Fig. 7. Junk image filtering: (a) the images returned by the keyword-based
search “red rose” and the images in blue boundaries are selected by the
user to express his/her query intentions; (b) the filtered images after the first
hypothesis making loop.

characterization is also changed adaptively according to the
user’s query intentions and personal preferences. To obtain
the updating rule of the importance factorsβ for these three
basic image kernels, the objective functionJ(β) is defined as:

J(β) =
1

2

m
∑

l=1

m
∑

h=1

α∗

l α
∗

hylyh

3
∑

i=1

βiKi(xl, xh)−

m
∑

l=1

α∗

l

(

1 − yl

L
∑

i=1

α∗

i yi

3
∑

i=1

βiKi(xi, xl)

)

(34)

For computing the derivatives ofJ(β) with respect toβ, we
assume that the optimal value ofα∗ does not depend onβ.
Thus the derivatives of the objective functionJ(β) can be
computed as:

∀3
i=1 :

∂J(β)

∂βi
=

1

2

m
∑

l=1

m
∑

h=1

α∗

l α
∗

hylyhKi(xl, xh)+

m
∑

l=1

L
∑

i=1

α∗

l α
∗

i ylyiKi(xi, xl) (35)

The objective functionJ(β) is convex and thus our gradient
method for computing the derivatives ofJ(β) can guarantee
to converge. In addition, the importance factorsβ for these
three basic image kernels are updated while ensuring that the
constraints onβ are satisfied [44].

Fig. 8. Junk image filtering: (a) the images returned by the keyword-
based search “forest” and the images in blue boundaries are selected by the
user to express his/her query intentions; (b) the filtered images after the first
hypothesis making loop.

Fig. 9. Junk image filtering: (a) the images returned by the keyword-based
search “red flower” and the images in blue boundaries are selected by the
user to express his/her query intentions; (b) the filtered images after the first
hypothesis making loop.
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Fig. 10. Junk image filtering: (a) the images returned by the keyword-
based search “sailing” and the images in blue boundaries are selected by the
user to express his/her query intentions; (b) the filtered images after the first
hypothesis making loop.

The importance factorsβ for these three basic image kernels
are updated as:

∀3
i=1 : βt+1

i = βt
i + γt

[

1

2

m
∑

l=1

m
∑

h=1

α∗

l α
∗

hylyhKi(xl, xh)+

m
∑

l=1

L
∑

j=1

α∗

l α
∗

i ylyjKi(xj , xl)



 (36)

whereγt is the step size for theith hypothesis making loop,
βt+1 and βt are the importance factors for the current and
previous hypothesis making loops. The step sizeγt is selected
automatically with proper stopping criterion to ensure global
convergence [33]. Our incremental kernel learning algorithm is
performed until a stopping criterion is met. This stopping cri-
terion can be either based on a maximal number of hypothesis
making loops or the variation ofβ between two consecutive
steps.

The updated mixture-of-kernels (i.e., new combination of
these three basic image kernels) can characterize the nonlinear
visual similarity contexts between the returned images more
precisely according to the user’s query intentions and personal
preferences, filter out the junk images more effectively and
generate more precise visualization of the returned images
for next hypothesis making loop. Because the user’s query
intentions are interpreted precisely by using the clicked images
and their visually-similar images in the same clusters, the
relevant images can be highlighted explicitly. The irrelevant

Fig. 11. Hypotheses visualization and assessment for filtering the junk
images for the keyword-based query “Allen Watch”: (a) Images returned by
Google Images; (b) visualization of the returned images and the hypothesis
for junk image filtering (i.e., margin between the relevant images and the
irrelevant images) at the first hypothesis making loop; (c) visualization of the
returned images and the hypothesis at the second hypothesis making loop; (d)
visualization of the returned images and the hypothesis at the third hypothesis
making loop.

images, which have bigger margins with the clusters for the
clicked images, are treated as the junk images and are filtered
out automatically. As shown in Fig. 11 and Fig. 12, the
effectiveness of our incremental kernel learning algorithm can
be improved sequentially (i.e., the relevant images and the
irrelevant images are more separable) by incorporating the
user’s query intentions and personal preferences to learn more
accurate SVM classifier for junk image filtering. From these
examples, one can observe that most junk images can be
filtered out effectively after few hypothesis making loops.

Our hyperbolic image visualization algorithm, which lay-
outs the returned images according to their nonlinear visual
similarity contexts, can allow users to see the margins between
the relevant images and the irrelevant images and provide
more understandable approach to allow the users to assess
the effectiveness of the underlying hypotheses for junk image
filtering interactively. Users can easily express their query in-
tentions and personal preferences by selecting one or multiple
images interactively to generate better hypotheses and learn
more accurate SVM classifier for junk image filtering.

In Fig. 7(b), Fig. 8(b), Fig. 9(b) and Fig. 10(b), the junk
image filtering results for several keyword-based queries are
given. From these experimental results, one can observe that
our system can filter out the junk images effectively. In
order to enable social evaluation of our online junk image
filtering system, we have released our online system at:
http://www.cs.uncc.edu/∼jfan/google−demo/.

It is worth noting that our interactive approach for junk
image filtering is significantly different from traditionalrel-
evance feedback approaches for image retrieval [6-13]. The
traditional relevance feedback approaches require users to
label a reasonable number of images into the relevant class or
the irrelevant class for learning the modified queries reliably,
thus they may bring huge burden on users. In contrast, our
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interactive junk image filtering approach can obtain large
amounts of labeled images easily via automatic label propa-
gation because the returned images are clustered into multiple
groups according to their nonlinear visual similarity contexts.
Thus clicking one single image on the screen can obtain
large amounts of visually-similar images in the same cluster
to enable incremental kernel learning and lessen the labeling
burden on the users significantly. Most existing relevance feed-
back approaches use page-based ranked list for displaying the
returned images, and the nonlinear visual similarity contexts
between the returned images are completely ignored. Thus itis
very hard for users to assess the relevance between the returned
images and their real query intentions effectively. In contrast,
our interactive junk image filtering approach can allow users
to see large amounts of returned images and their nonlinear
visual similarity contexts at the first glance, thus users can
obtain more significant insights, assess the relevance between
the returned images and their real query intentions more
effectively, and express their query intentions and personal
preferences more precisely to generate better hypotheses and
learn more accurate SVM classifier for junk image filtering.

VI. A LGORITHM AND SYSTEM EVALUATION

In order to evaluate our interactive approach for junk
image filtering, we generate the potential query concepts (list
of potential keywords) by randomly sampling the keywords
from WordNet. However, in WordNet, a lot of keywords are
rarely used in our daily life, thus we manually remove those
uncommon keywords after random sampling and obtain 2000
commonly-used keywords for our experiments. These 2000
keywords are used as the query concepts to search the images
from Google Images search engine. The keywords, which are
used to interpret the image concepts at the higher levels of
WordNet and have multiple children nodes with different word
senses, are treated as the ambiguous text terms to evaluate the
performance of our algorithms for image clustering, context-
preserving projection and visualization. For a given keyword-
based query, our system can automatically download the
returned images from Google Images search engine and users
are allowed to define the number of returned images they
want to look for. In our experiments,500 returned images
are downloaded from keyword-based Google Images search
engine for each query.

Our works on algorithm and system evaluation focus on: (a)
evaluating the convergence of our incremental kernel learning
algorithm; (b) evaluating the accuracy improvement of our
incremental SVM classifier when the number of hypothesis
making loops increases; (c) evaluating the prediction power
of our SVM classifiers for2000 query concepts (i.e., image
concepts) by using large amounts of unseen images; (d) eval-
uating the computational costs of our algorithms for kernel-
based image clustering, context-preserving image projection,
and incremental kernel learning for junk image filtering; (e)
comparing the performance of junk image filtering algorithm
with the keyword-based Google Images search engine.

To evaluate the effectiveness of our algorithms of mixture-
of-kernels and incremental kernel learning, the accuracy of

Fig. 12. Hypotheses visualization and assessment for filtering the junk
images for the keyword-based query “anthrax”: (a) Images returned by
Google Images; (b) visualization of the returned images and the hypothesis
for junk image filtering (i.e., margin between the relevant images and the
irrelevant images) at the first hypothesis making loop; (c) visualization of the
returned images and the hypothesis at the second hypothesis making loop; (d)
visualization of the returned images and the hypothesis at the third hypothesis
making loop.

the SVM classifiers for different hypothesis making loops is
calculated. Given theconfusion matrix δ for image clustering,
the accuracy is definedas:

Accurarcy =

∑c
i=1 δ(i, i)

∑c
i=1

∑c
j=1 δ(i, j)

(37)

where c = 2 is the number of clusters (i.e. relevantversus
irrelevant clusters). As shown in Fig. 13, the performance of
our junk image filtering algorithm (i.e., the performance ofthe
underlying SVM classifiers for different hypothesis making
loops) can generally improve with the number of hypothesis
making loops, but it becomes stable after 4 hypothesis making
loops. Thus our proposed algorithm for incremental kernel
learning has very good convergence property.

On average, our interactive approach for junk image filtering
can achieve over 75% accuracy for image retrieval by filtering
out the junk images from Google Images search results.
Compared to the original 58% average accuracy of Google
Images search engine, our interactive approach for junk image
filtering can achieve a significant improvement on the search
results.

To evaluate the generalization performance of the mixture-
of-kernels which is learned incrementally, the optimal mixture-
of-kernels (which are obtained after5 hypothesis making
loops) is used to train the SVM image classifiers for the
relevant image concepts (i.e., the keywords for query formula-
tion). Thebenchmark metric for classifier evaluation includes
precision ρ and recall %. They are defined as:

ρ =
θ

θ +$
, % =

θ

θ + η
(38)

whereθ is the set of true positive images that are related to the
corresponding image concept and are classified correctly,$

is the set of true negative images that are irrelevant to the
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TABLE I

The accuracy comparison for Google Images search engine
with and without performing our online junk image filtering. ρ

and % are precision and recall with SVM classifiers for junk
image filtering, ρ̄ and %̄ are precision and recall for Google

Images search engine.

query ρ % ρ̄ %̄

blood 16.7% 100% 15.5% 98%
mahogany 39.5% 100% 36.2% 96.8%

lamp 32.5% 79.2% 31.9% 78.3%
screw 44.3% 88.5% 42.8% 80.2%
amati 21.2% 64.0% 20.2% 61.1%
africa 40.7% 76.5% 38.5% 73.2%
african 33.3% 65.0% 32.8% 64.5%

apc 56.3% 87.5% 55.8% 86.5%
laurel 70.6% 100% 69.5% 98.3%
badger 71.0% 100% 69.5% 98.3%
besseya 95.2% 100% 75.0% 80.0%
afghan 88.2% 92.0% 62.1% 73.2%
terrier 96.2% 100% 70.2% 78.1%

oil plan 96.6% 100% 73.8% 76.3%
22 karat gold 68.1% 70.0% 50.0% 48.0%
african grey 94.3% 96.2% 72.5% 73.2%

daisy 91.3% 92.6% 68.8% 68.6%
elephant 95.9% 96.6% 70.0% 68.5%
violet 88.3% 83.3% 60.2% 60.8%
aertex 62.8% 56.0% 30.9% 32.8%

Fig. 13. Clustering accuracy as a function of the number of hypothesis
making loops. The solid line represents the average clustering accuracy while
the error bar shows the standard deviation over all 2000 keyword-based
queries.

corresponding image concept and are classified incorrectly,
and η is the set of false positive images that are related to
the corresponding image concept but are misclassified. The
performances of our SVM image classifiers are given in Table
1 for the 10 queries with most significant improvement of
the performance and 10 queries with the least improvement
of the performance among these2000 query concepts. From
this table, one can observe that the classification accuracies on
large amounts of unseen images for different image concepts
(queries) are significantly improved by performing incremental
kernel learning. Our incremental kernel learning algorithm can
also reduce the computational cost significantly as shown in
Fig. 14.

To achieve kernel-based image clustering, the kernel matrix
for the returned images should be calculated and the computa-
tional cost largely depends on the number of returned images.
In our current system, we allow users to define the number of
returned images they want to see. The computational cost for
achieving kernel-based image clustering is approximated as
O(τN3), whereN is the total number of the returned images
and τ is the number of image clusters. We have obtained

Fig. 14. The empirical relationship between the computational cost (seconds)
and the number of training images for SVM classifier training.

Fig. 15. The empirical relationship between the computational cost Ω1

(seconds) and the number of returned images.

the empirical relationship between the computational costΩ1

(CPU time) and the number of returned images as shown
in Fig. 15. One can observe that the computational costΩ1

increases exponentially with the number of returned images.
When the number of returned images is less than500, our
system can almost achieve image clustering nearly in real time.
It was reported that most people may just scan the first few
pages of Google search results, thus it is reasonable to assume
that people may just want to look for less than500 returned
images.

After the returned images are partitioned into multiple
clusters via kernel-based clustering, our system can perform
locality preserving projection (LPP) to obtain the similarity-
preserving projection of the returned images on the hyperbolic
plane. The computational cost for performing LPP is approx-
imated asO(N2

τ ), whereN is the number of returned images
for the given keyword-based query andτ is the number of
image clusters. As shown in Fig. 16, we have obtained the
empirical relationship between the computational costΩ2 and
the number of returned images. One can observe that the com-
putational costΩ2 exponentially increases with the number
of returned images. When the number of returned images is
less than500, the computational costΩ2 is acceptable for
supporting interactive image exploration and achieving junk
image filtering nearly in real time.

VII. C ONCLUSIONS

In this paper, we have proposed an incremental kernel learn-
ing algorithm to filter out large amounts of junk images from
keyword-based Google Images search results. To achieve more
accurate partition and visualization of the returned images,
multiple kernels are seamlessly integrated for diverse image
similarity characterization. A hyperbolic image visualization
approach is incorporated to allow users to assess the relevance
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Fig. 16. The empirical relationship between the computational cost Ω2

(seconds) and the number of returned images.

between the returned images and their real query intentions
interactively and express their query intentions more precisely.
To reduce the computational cost for junk image filtering, an
incremental kernel learning algorithm is developed for SVM
image classifier training by translating the users’ query inten-
tions to determine more accurate combination of these three
basic image kernels, achieve more accurate characterization of
diverse visual similarity contexts between the returned images,
generate more accurate partition of the returned images, create
more precise visualization of the returned images, and make
better hypotheses for junk image filtering. Experiments on
diverse keyword-based queries from Google Images search
engine have obtained very promising results and our online
junk image filtering system is also released on our web site
for public evaluation.
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