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Abstract—Keyword-based Google Images search engine is nowonline image collections. Unfortunately, Google Imagesce
becoming very popular for online image search. Unfortunately, engine is still unsatisfactory because of the relativelw lo

only the text terms that are explicitly or implicitly linked with the — e¢ision rate and the appearance of large amounts of junk
images are used for image indexing and the associated text terms:

may not have exact correspondence with the underlying image images [1-5]. One major reason for thl§ phe_nomgna IS O!UG to
semantics, thus the keyword-based Google Images search engindhe fact that Google Images search engine simplifies theemag
may return large amounts of junk images which are irrelevant search problem as a purely text-based search problem, and th
to the given keyword-based queries. Based on this observation, ynderlying assumption is that the image semantics arettjirec
we have developed an interactive approach to filter out the to|5104 to the associated text terms (which can be extracted
junk images from keyword-based Google Images search results . . .
and our approach consists of the following major components: automatically from the associated text docgmer_ﬁs, the _f|Ie
(@) A kernel-based image clustering technique is developed to hames or the URLs). However, such oversimplified online
partition the returned images into multiple clusters and outliers. image indexing approach has ignored that the associatéd tex
(b) Hyperbolic visualization is incorporated to display large terms may not have exact correspondence with the underlying
amounts of returned images according to their nonlinear visual image semantics. This is the major reason why Google Images

similarity contexts, so that users can assess the relevance beene h . t | ts of iunk i hich
the returned images and their real query intentions interactively S€arch €nginé may return large amounts ot junk images whic

and select one or multiple images to express their query intentions are irrelevant to the given keyword-based queries. In it
and personal preferences precisely. (c) An incremental kernel a lot of real world settings, such as photo-sharing web sites

learning algorithm is developed to translate the users’ query may only be able to provide biased and noisy text terms for
intentions and personal preferences for updating the mixture- image annotation which may further mislead the keyword-

of-kernels and generating better hypotheses to achieve moreb d G le | h . Theref h .
accurate clustering of the returned images and filter out the junk ase oogie Images search engine. ereiore, there Is an

images more effectively. Experiments on diverse keyword-bage urgent need to develop new algorithms for filtering out thikju
queries from Google Images search engine have obtained veryimages from keyword-based Google Images search results [1-
positive results. Our junk image filtering system is released for 5],
public evaluation at: http://mwww.cs.uncc.edu/~jfan/google_ demo/. The visual properties of the returned images and the visual
_ o _ _ similarity contexts between the returned images are very im
Index Terms—Junk image filtering, mixture-of-kemels, incre-  portant for users to assess the relevance between theadturn
mental _kernel _Iearnlng, hyperbolic image visualization, user- images and their real query intentions. Unfortunately, @eo
system interaction. . . B
Images search engine has completely ignored such important
characteristics of the images and the keywords for image
. INTRODUCTION indexing may not be expressive enough for describing the ric
S online image sharing and personal journalism becordetails of the visual content of the images, thus it is vemdha
more and more popular, there is an urgent need for Google Images search engine to assist users on looking
develop more effective image search engines, so that uskissome particular images according to their visual propsr
can successfully access large-scale image collectiors tfiae huge number of returned images and the appearance of the
are available on the Internet. Keyword-based Google Imagesk images may bring huge burden on the users to look for
search engine has achieved great success on exploiting dbme particular images via page-by-page browsing. Even the
associated text terms for automatic indexing of largeescdbw-level visual features may not be able to carry the image
. . N , semantics directly, they can definitely be exploited toffittet
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I(Ge(::;il):l;;']l?t:;::l | g:::i::lot:r; Mixture—;zf-Kemels Hyperbolic Image hypothesis making |00p.
Search | Basic Kernels Timsige Clusteriig [ Visualization The paper is organized as follows. Section 2 briefly reviews
some related works on junk image filtering; Section 3 intro-
<Recept> duces our work on fast feature extraction for image content
No representation; Section 4 introduces our mixture-of-&ksrn
Query Intention algorithm; Section 5 describes our incremental kernehiegr

Expression &

Increment Kernel Learning | Hypothesis Making algorithm to achieve more accurate image clustering and
Fig. 1. The flowchart for our interactive junk image filteringstem. generate better hypotheses for junk image filtering; Sectio
6 summarizes our work on algorithm and system evaluation;

. We conclude in Section 7.
page-by-page ranked list of the returned images) canrm all

users to assess the relevance between the returned imabes an
their real query intentions effectively. Many pages aredeele
for displaying large amounts of returned images, thus it is Some pioneer works have been done to improve the per-
very tedious for users to look for some particular images @rmance of keyword-based Google Images search engine [1-
interest through page-by-page browsing. Things may beco#ie To filter out the junk images from keyword-based Google
worse when the ambiguous keywords with many potentirhages search results, Fergus et al. have applied conistella
word senses are used for query formulation. Because #edel to re-rank the returned images according to the appear
visual properties of the returned images are completelgrignh  ances of the image objects and some promising results have
for image ranking, the returned images with similar visuaddeen achieved [1-2], where both the appearance models for
properties may be separated into different pages. Ideslgss the distinct object parts and the geometry model for all the
would like to have a good global overview of the returnegossible locations of the object parts are incorporateeaon
images in a way that can reflect the principal visual propsrtithe object models explicitly from a set of training images.
of the returned images effectively and allow them to nadgaUnfortunately, large amounts of high-quality training iges
large amounts of returned images interactively according #&re needed to learn such complex object models reliably.
their nonlinear visual similarity contexts, so that theyncaHowever, image search results (returned by Google Images
assess the relevance between the returned images and #ifch engine) are very noisy and cannot directly be used
real query intentions interactively. as the reliable image set for training such complex object
By integrating multi-modal information (visual similayjt models. Because large amounts of training images are needed
associated text terms, and users’ feedbacks), we have-det@lachieve reliable learning of the object models, suchgssc
oped an interactive approach to filter out the junk imagesfrofor object model learning could be computation-sensitind a
keyword-based Google Images search results. Our integactihus it is very hard to achieve junk image filtering in realéim
junk image filtering scheme takes the following major stepy nearly in real time. In addition, the image semantics @oul
as shown in Fig. 1: (a) Keyword-based Google Images seafghinterpreted in multiple levels: the underlying objectssles
engine is first performed to obtain large amounts of returneé¢td the semantics of entire images at different conceptsleve
images for a given keyword-based query. (b) Fast featU¥].
extraction is then performed on the returned images to éxtra The research team from Microsoft Research Asia have de-
both the global visual features and the local visual featfme veloped several approaches to achieve more effectiveeciust
image content representation. (c) The diverse visual aiimil ing of online image search results by using visual, textnal a
ties between the returned images are characterized mane atiokage information [3-5]. Instead of treating the asstemia
rately by combining multiple kernels (i.e., mixture-ofrkels) text terms as the single information source for online image
and a kernel-based clustering technique is used to partitimdexing and retrieval, they have incorporated multi-moda
the returned images into multiple clusters and outliers. (thformation sources to exploit the mutual reinforcement be
A hyperbolic visualization algorithm is integrated to degp tween the images and their associated text terms. In addéio
large amounts of returned images according to their noatingriparties graph is generated to model the linkage relatigps
visual similarity contexts for supporting more understainid among the low-level visual features, images and their &ssoc
relevance assessment. (e) If necessary, users can sedect oated text terms. Thus automatic image clustering is actieve
multiple relevant images to express their query intentiamd by supporting triparties graph partition. Incorporatinglti
personal preferences precisely and generate better lggasth modal information sources for image indexing may improve
for junk image filtering. An incremental kernel learning althe performance of online image search engines signifigantl
gorithm is developed to translate the users’ query intestiobut it may be very hard to extend such approach for achieving
and personal preferences for updating the mixture-ofédsrnonline junk image filtering because the triparties linkageph
to achieve more accurate characterization of the divemgal/i could be very complex and triparties graph partition cowd b
similarities between the images and learn more accurate S\A\tomputation-sensitive process.
classifier for filtering out the junk images more effectively On the other hand, both the interpretation of image se-
() The updated mixture-of-kernels is further used to ashie mantics and the assessment of image relevance are user-
more accurate clustering of the returned images and credependent (i.e., the user's background knowledge plays an
more precise visualization of the returned images for nexhportant role in image semantic interpretation and raleea

II. RELATED WORKS
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assessment), it is very important to incorporate humanrexp
tises and their powerful capabilities on pattern recognifor |
enhancing online image search. Thus one potential soluti;
for junk image filtering is to involve users in the loop off
image retrieval via relevance feedback, and many relevar,
feedback techniques have been proposed in the past [6-
Unfortunately, all these existing relevance feedbackriphes
require users to label a reasonable number of returned Bna
into the relevant class and the irrelevant class for legrni
a reliable model to predict the user’s query intentionsstht. o _ ( _
they may bring huge burden on the users [34]. When larg. 2 eveet ansiormain for fexure eatre oxawand 10 smple
scale image collections come into view, a limited number orF
labeled images may not be representative for large amotints o o
unseen images and thus a limited number of labeled imad@&ge filtering.
may not be sufficient for learning an accurate model to ptedic
the users query intentions precisely. 2D data page is used IIl. FAST FEATURE EXTRACTION
for image display and the nonlinear visual similarity cose It is very important to integrate the visual properties o th
between the images are completely ignored for image rankimgages for improving keyword-based image search, and there
thus the returned images with similar visual properties maye three widely accepted approaches for image content rep-
be separated into different pages. Such page-by-page imaggentation and feature extraction: (iage-based approach
display approach cannot allow users to see a good glollaht extracts the visual features from entire image without
overview of large amounts of returned images (i.e., imageerforming image segmentation [17-19]. (&yion-based ap-
clusters and their similarity structures) at the first glartbus proach that extracts the visual features from homogeneous
users cannot assess the relevance between the returnezsimiagage regions by performing image segmentation [14-16]. (3
and their real query intentions effectively and provideirtheobject-based approach that extracts the visual features from
feedbacks precisely for junk image filtering. In additiofi, asalient image objects [20-22].
these existing relevance feedback techniques have natdpabv  The major advantage for the image-based approach is that
a good solution for hypotheses visualization and assessmeo segmentation is performed, thus it can support fast featu
(i.e., visualizing the margin between the relevant imageb aextraction. However, the visual features that are extchirtam
the junk images to enable better hypothesis assessment). entire images may not be able to characterize the interteedia
New visualization tools are strongly expected to suppadrhage semantics effectively at the object level. The major
user-dependent and goal-dependent choices about whaprmblem with the region-based approach is that the homo-
display and how to provide feedback. Image seekers oftganeous image regions or image grids may not correspond
express a desire for a user interface that can organize tbethe underlying salient image components, thus it cannot
search results into meaningful groups, in order to help thecharacterize the intermediate image semantics accurately
make sense of the search results, and to help them decide whatobject level. On the other hand, the object-based apbroa
to do next. Some pioneer works have been done on supportoan characterize the intermediate image semantics effcti
similarity-based image visualization [36-43], but mosisérg at the object level and the image contexts (i.e., pictorial
techniques for image projection and visualization mayqrenf structures or spatial relationships between the imagect#)je
well when the images belong to one single cluster, and fail tan further be extracted to achieve more accurate image
project the images nicely when they are spread among nailtigemantics interpretation at the concept level. Unfortlyat
clusters with diverse visual properties. automatic image object detection is still an open problem fo
To capture the users’ query intentions precisely for ggnergomputer vision community [32].
ing better hypotheses for junk image filtering, three keyéss  For online junk image filtering, the underlying approach
should be addressed jointly: (a) incremental kernel |e@rnifor image content representation and feature extractionldh
should be supported for reducing the computational cost [4de able to: (a) characterize both the global visual progerti
48], so that users can interactively change the underlyiagd the local visual properties of the images effectiveld an
hypotheses for filtering out the junk images in real time afficiently; (b) reduce the computational cost significaritir
nearly in real time; (b) the convergence of the underlyinfgature extraction and image similarity determinationauese
techniques for incremental kernel learning should be guarasuch junk image filtering process should be achieved in real
teed; (c) an interactive interface should be developed &blen time or nearly in real time.
similarity-based visualization of large amounts of readn Based on these understandings, we have developed an
images [36-43], generate more understandable assessinemtlternative approach for fast feature extraction to achiav
the hypotheses for junk image filtering (i.e., make the nmarggood trade-off between the effectiveness for image content
between the relevant images and the junk images to be mogpresentation and the reduction of the computational cost
visible and more assessable), and allow users to expré&msfeature extraction and image similarity determinatido
their query intentions more precisely for generating bettachieve more accurate representation of the diverse visual
hypotheses and learning more accurate SVM classifier fér juproperties of the images, both the global visual features
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and the local visual features are extracted for image conteheir statistical properties of the images are very diffiere
representation and similarity characterization. To redtlee Unfortunately, most existing machine learning tools use on
computational cost for feature extraction, we use the thumingle kernel for diverse image similarity characteriaatand
nails from Google Images instead of the original-size insageompletely ignore the heterogeneity of the statisticapprtes
for feature extraction. of the images in the high-dimensional multi-modal feature
The global visual features such as global color histograspace [31]. Thus three basic image kernels (global color
and wavelet texture features (shown in Fig. 2(a)) can peovithistogram kernel, wavelet filter bank kernel, local colos-hi
the global perceptual properties of entire images, but theygram kernel) are first constructed to characterize thersés
may not be able to capture the object information within thésual similarity contexts between the images, and a linear
images accurately [23-24]. Even SIFT (scale invariantuieat combination of these three basic image kernels (i.e., mextu
transform) features can allow object recognition agaihst tof-kernels) can further form a family of mixture-of-keradbr
cluttered background [25-26], they may be too computatiooharacterizing the diverse visual similarity contextswastn
sensitive for supporting online junk image filtering. On théhe images more accurately [32]. Because multiple kernels
other hand, our local color histograms can provide the prinare seamlessly integrated to characterize the heterogeneo
pal visual properties of the image objects at certain acyurastatistical properties of the images in the high-dimeraion
level and reduce the computational cost significantly. In omulti-modal feature space, our mixture-of-kernels alijoni
current implementations, the global visual features ainstan achieve more accurate image clustering and can also
of 32-bin global color histogram and 62-dimensional tegtuiprovide a natural way to add new feature subsets and their
features from Gabor filter banks. The local visual featurdsmsic kernels incrementally.
consist of 10 32-bin local color histograms and they are In this paper, we have incorporated three basic descriptors
extracted from 10 simple image partition patterns as shawnto characterize various visual properties of the imagep: (a
Fig. 2(b) and Fig. 2(c), so that the principal visual projgsrof global color histogram; (b) texture histograms for wavéler
the image objects will not be weakened by the visual propertibanks; (c) local color histograms. The first two descripames
of the background which may cover the most space of tieemputed from every pixel of the whole image; while the third
picture. When people take the photos, they may normally pascriptor is computed from 10 simple image partition page
the attended objects in the centers of the images. Thus asshown in Fig. 2(b) and Fig. 2(c).
assume that the image objects of attention normally locate aThe global color histogram kerné!; (x,y), which is used
the centers of the images in two ways as shown in Fig. 2(to) characterize the visual similarity between the globdbico
and Fig. 2(c), and such assumption is correct in general feistogramsu. andv for two imagesr andy, is defined as:
our experiments. 39
One major advantage of our fast feature extraction approach Ki(z,y) = =X () /5 _ H o= X3 (u(@),0()) /5 (1)
is that it can achieve a good trade-off between the effentiss ’
for image content representation (i.e., characterizint lioe )
global visual properties of the entire images and the loc4hered = [d1, -+, ds:] is set to be the mean value of thé
visual properties of the image objects) and the significafiiStances between all the images in our expenmer(t’s),and
reduction of the computational cost for feature extractiofi(é) are theith component for two color histogramsandw.
thus it can be performed in real time. It is also importa/é quantify the HSV color space into 32 bins (i.e., 16 bins
to note that our local color histograms focus on extractirgg t for H, 8 bins for S and 8 bins for V).
local visual properties of the image objects for achievingren ~ The wavelet texture kernek,(z,y) can be decomposed
accurate image clustering by reducing the misleading &ffe@S @ prodyct of component kernels for different waveletrfilte
of the background on image similarity characterizationhat t Pankse™X: (1:(x):hi )/

i=1

object level, such local color histograms are not requiked t o 2 (he (), hs ()

be discriminative enough to achieve automatic object dietec Ky(z,y) = [ exi @i e (2)
and recognition because users will be involved in the loop of i=1

image retrieval. where the component kernelX: (h:(2).h:i(w)/7: i used to

IV. IMAGE SIMILARITY CHARACTERIZATION characterize the similarity between two imagesand y
' according to theith wavelet filter bankp;(x) and h;(y) are

To filter out the junk images from Google Images seargfie histograms of théth wavelet filter bank for two images
results, the first question is to define more suitable siftylar g ),

functions to characterize the diverse visual similarityteats  The |ocal color histogram kerneks(z,y), which is used

between the returned images accurately. Recently, the fus§Pcharacterize the similarity between two sets of locabrol

kernel functions for data similarity characterizationyslaan pistogramsY and ¥ for two imagese andy, is defined as:

important role in the statistical learning framework [23}3 o

wher'e the kernel funct'lons may satisfy some.mathemaucaIK?)(m,y) _ (/e _ HHe*Xf(Tﬂ'(i)’%“))/@i 3)

requirements and possibly capture some domain knowledge.
To achieve more accurate approximation of the diverse

visual similarity contexts between the images, differeat-k where © = [6,,--- ,032] is set as the mean value of the

nels should be designed for different feature subsets Becay? distances of all the images in our experiments. In our

j=1i=1
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experiments, we have extracted 10 local color histograms fmportance factors for kernel combination (i.e., mixtafe-
each image according to 10 simple image partition pattesnslkaernels construction) by taking the users’ query intergiand
shown in Fig. 2(b) and Fig. 2(c). The local color histogrames apersonal preferences into consideration: (1) The mixtdire-
used to characterize the appearances of the image objetts karnels for diverse image similarity characterizationnigial-
their local visual properties with certain accuracy levbljs ized by maximizing the margins between the majority group of
the local color histogram kernel should be able to determitige returned images (i.e., the returned images which ddmina
the image similarity at the object level with certain acayra the visual properties) and the outliers (i.e., obvious junk
level. images which their visual properties are significantly efiint
The diverse visual similarity contexts between the retdrnérom the dominant visual properties). An interactive ifaee
images are characterized more accurately by using a linéardesigned to visualize the returned images according to
combination of these three basic image kernels (i.e., mextutheir nonlinear visual similarity contexts, which can allo

of-kernels) [31-32]: users to assess the relevance between the returned images
3 3 and their query intentions more effectively and expres# the
k(x,y) = Z[)’qu;(x,y), Zﬂi =1 (4) query intentions more precisely. (2) An incremental kernel
i=1 i=1 learning algorithm is developed to translate and incorgora

where3; > 0 is the importance factor for thih basic image the users’ query intentions and personal preferences for up

kernel K;(x, y) for image similarity characterization. dating the mixture-of-kernels and learning the SVM classifi
The rules for kernel combination (i.e., mixture-of-kesielincrementally to filter out the junk images more effectively

construction by selecting the optimal values for theseethré3) The updated mixture-of-kernels is used to create more

importance factors?) depend on two key issues: (a) Theaccurate clustering of the returned images and achieve more

relative importance of various feature subsets for divenege precise visualization of the returned images for next hyesis

similarity characterization; (b) The users’ query intens Mmaking loop.

and personal preferences (which may not be known without

user's input). Based on this observation, we have develapedp |mage Clustering

incremental approach to achieve optimal kernel combinatio Our online junk image filtering system is implicitly con-

which treats the junk image filtering process as an increahent

process for SVM classifier training by taking the users’ guern ected with the keyword-based Google Images search engine,

intentions and personal preferences into consideration. ﬂ}'“i';;szrgeaarrihag?]vﬁg(:oretzﬁie'g i‘:ﬁ nggdff)rt?i Stis;tntrllzlr g:rfél_
Because the keywords for query formulation may not 9 9 9 yw

able to capture the user's query intentions effectively al Oased query are automatically obtained by the Google Images

efficiently, the keyword-based Google Images search engﬁ%amh engine. For the given keyword-based query, our@nlin

may not know which image cluster is relevant to the user*gnk image filtering system can downloaq 200 returned images
intentions or which image cluster is irrelevant at the beugig. automatically from Goqgle Images. Obviously, our _system ca
Thus it is very hard to define suitable criteria to achiev%lso allow users to define the number of returned images they

automatic junk image filtering. One promising solution fo}(vant to look for according to their personal preferences. To

these difficulties is to allow the user to interactively pro[educe the computational cost for feature extraction, we us

vide additional information (i.e., his/her query intemtsoand the thumbnails from Google Images instead of the original-

: jze images for feature extraction.
personal preferences) for generating better hypotheses hied . . . .
junk image filtering. Unfortunately, most existing releean The user-independent hypothesis (i.e., hidden hypothesis

feedback techniques require users to label a reasonablkneﬁunﬁor junk image filtering s that the r_e_turned_images for a give
of returned images into the relevant class and the irretevé??ngtrd'based ?liﬁry Ztan ZZ partmoneg_ |rrl]todtwo_ grtou?hs. @)
class, which may bring huge labeling burden on the us ority group ot the returned images which dominate the

and may further stop them to use such tools for junk ima%%sual properties of the returned images and locate inside a
filtering uster sphere; (bputliers which their visual properties are
In order to allow users to express their query intentiorEgmﬂcantly different from the dominant visual propestief

more precisely and assess effectiveness of the underly returlned gﬁeT an.dhlocztg put5|d§ the clclijslter Sﬁ ?Forlg
hypotheses for junk image filtering, it is very important t ne-class algorithm [30] is used to model such hidden

support similarity-based visualization of large amounfs ypothesis by determining a smallest enclosing sphere of

returned images [36-43], so that users can see the mar%f?ﬁgiUSR_to cover the majority group of the returned images
between the relevant images and the junk images at thé the given keyword-based query:
first glance. To generate more precise visualization ofelarg Vszl o |lé(x;) — p?||? < R? (5)
amounts of returned images, it is very important to create a
good partition of large amounts of returned images accgrdiwhereN is the total number of images returned by the given
to their nonlinear visual similarity contexts. keyword-based image query? is defined as the center of the
majority group of the returned images,
V. JUNK IMAGE FILTERING N

In this paper, we have developed an incremental kernel ud = Z¢(xj) (6)

learning algorithm to determine the optimal values of the =1
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To enhance its robustness to the outliers, soft constraiets o
incorporated by adding slack variables:

VL s o) — P < RP+ ¢, >0 ()

Thus the problem for incorporating one-class SVM algorith
for image clustering can be defined as:

C N
; 2
min ¢ R+ N ij 8 |5
Jj=1 &
X
subject to:
N . 2 2 ; |
VL s lé(ay) — u®)? < R?+ ¢, & >0 [ —
Fig. 3. The obvious junk images for the keyword-based queryumen”
where(C' is a constant an% Z;\le 13 is a penalty term. are separatltedd eﬁ?r?ti\ieg from the majority group of the metd images and
We can solve this optimization problem with Lagrangiaftc Pro/°¢ted on the feft-upon comer.
multipliers:

C a support vector. On the other hand, the image with the visual
L= R2—Z(R2+£j—\\¢(wj)—u¢||2)aj—z SNt Z&}- features: is treated as the outlier (i.eQ(z) = 1):

J

(9) 1, R?%(z)>R?
wherea; > 0 and \; > 0 are the Lagrangian multipliers. O(z) = (17)
The Lagrangian multipliers problem can be solved by: 0, otherwise
OL 0L OL whereR is the radius of the smallest enclosing cluster sphere
OR ~ 375] = Tw =0 (10) o cover the majority group of the returned images for the

given keyword-based query.

which can lead to: A good combination of these three basic image kernels (i.e.,

C the mixture-of-kernels with the optimal values of theseséhr
Zo‘j =1, YNEN Aj (11) importance factorg?) should be able to achieve more accu-
J rate approximation of the diverse visual similarity comgex
&A; =0, (R + & — ||o(z;) — u®|P)a; =0 (12) between the images and result in better separation betlween t

] o majority group of the returned images and the outliers. Thus
The dual form for the Lagrangian optimization problem cage optimal values of the importance factgtsfor an initial

be re-written as: combination of these three basic image kernels (i.e., witho
N N considering the users’ query intentions and personal prefe
maz Q> k(g a;) — > aiogk(zi, ;) (13) ences) can be obtained by maximizing the margin between
j i, the outliers and the majority group of the returned images:
subject to: T
v s {me [n(e1, 2. () > R, () = FF]
C —
N . o =1
ijl : OSO&j S N, ZOtj—l (18)
j=1

whereT is the total number of outlying image®, is the set
Thus the decision function (i.e., one-class SVM classifier) of the support vectors (i.e., the returned images locatenen t
image clustering can be determined as: boundary of the cluster sphere).
N N After the optimal values for initial combination of these
flz) = R® — Zai%‘“(miv%) + QZO‘i“(xj’x) — k(z,z) three basic image kernels are obtained, the corresponding
» ; mixture-of-kernels is used to create a good partition of the
(14) returned images and generate an initial visualization ef th
We can further define the distance between an image wittturned images, so that users can assess the correctriess an
the visual features: and the center? of the cluster sphere: the effectiveness of the underlying hypothesis for junkgma
N N filtering.
R () = w(z,z) — 2 Z ajk(a;, @) + Z i@, ;) The returned images in the r_na]orlty group, whlc_h have been
7 separated from the outliers (i.e., obvious junk images®, ar
(15) further partitioned into multiple clusters according tceith
3 3 nonlinear visual similarity contexts. In this paper, we &av
K ay) = BiKi(ni,x;), Y Bi=1 (16)  seamlessly integrated one-class SVM algorithm [30] with th
i=1 i=1 kernel K-means algorithm [29] to achieve better partitions
The image with the visual featuras which locates on the of the returned images in the majority group. Our algorithm
surface of the cluster sphere (i.&2(z) = R?), is treated as takes the following major steps: (a) We assume thererare

i,J
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contexts between the returned images in the same cluster).
(3) It can support automatic label propagation and reduee th
users’ efforts significantly for labeling the images to deab
incremental kernel learning.

B. Image Projection and Visualization

To incorporate image visualization for assisting users on
: relevance assessment and hypothesis making, it is very im-

5 portant to develop new visualization algorithms that arke ab
e to exploit and preserve the nonlinear visual similarity tecuts
between the returned images. In this paper, locality prasgr

= < projection is used to preserve the nonlinear visual siitylar
Fig. 4. The obvious junk images for the keyword-based quecgdn” are

separated effectively from the majority group of the retdrireages and are contexts for |ma_ge_pr01ect|_on and visualization [35],'
projected on the left-down corner. The local similarity matrix= for theseN returned images

can be obtained by calculating the kernel-based similarity

distance between the images and its compofgntis used

clusters for the returned images in the majority group, g characterize the local visual similarity context betwéso
centers and the radiuses for theselusters are denoted aSreturned images with the visual featuresand z ;:
Ix

uf, Ry, 1 =1, ---, 7. Ideally, the optimal number of image
clusters should be determined by an iterative process, but_ . 3

such iterative process could be computation-sensitiveiand =i/ = P(@i)" o) = w(wi, 25) = ZﬂlKl(fEi:%‘) (21)

is unpractical for enabling online junk image filtering. Bhu =1

we set the maximum number of image clustersras- 10 By integrating multiple kernels for image similarity char-
heuristically for all the queries, and good performance lpan acterization, our mixture-of-kernels algorithm can dismo
obtained for most ambiguous search terms (ambiguous sedfih nonlinear visual similarity structures between thegesa
terms may have more clusters for different word senses)iin @ffectively.

experiments. (b) The optimal partition of the returned iemg Given a set of returned images and their visual features
in the majority group is obtained by minimizing the tracelwt X = {z1,22,--- ,zn}, let A be the transformation matrix
within-cluster scatter matrix$%. The scatter matrix is given andY = {y1,y2,--- ,yn } be the projection locations of these
by: N returned images on 2-D display screen, we can have the

1IN following transformation:
S6 = — TR} () (19)
N zz:; ; l yi = AT (x,) (22)

wherer;; is the membership parametey; = 1 if z; € C; and Given the local similarity matrix@ for all theseN returned

0 otherwise,C; is thelth image clusterR?(z;) is the radius images, the optimal projection can be obtained by solvirg th
of the smallest enclosing cluster sphere for Mhecluster and following minimization problem:
it is defined as:

N N N argmin 92—
2 1 Aoptimal = =) 2

312(371) = k(wi, a%)*ﬁl Zlm]-n(xi,mj)JrN—lQ Zl Zlmjmm/-c(xj, Tam) optimal A ;(yi Y;i) " Eij

j= j=1m=
where N; = Zj:lmj. Searching the optimal values of the _ argmin Z(AT(b(m) — AT¢(x;))E,;
membership parametersthat minimizes the expression of the A — ! 1
trace in Eg. (19) can be achieved effectively by performing ’
kernel K-means algorithm [29]. _argmin 1 T

Partitioning the returned images into multiple clusters ac - A AT(X)Ag" (X)A (23)

cording to thgir nonlinear visua] similarity contexts caem:rg whereA is the graph Laplacian,
several benefits: (1) It can provide a good global overview of
large amounts of returned images (i.e., image clusterstaid t
similarity contexts), which may reveal the interesting vere
unexpected distribution trends of the returned images.sThu
users can assess the relevance between the returned imadese D is a diagonal matrix. The optimal solution for Eg.
and their real query intentions more effectively. (2) It caf3) is to ensure that if two images with the visual features
provide a good insight of large amounts of returned images and x; are close in the high-dimensional feature space
and achieve more precise visualization of the images widimd their projection locationg; and y; are also close each
better preservation of both their global similarity sturets other on 2-D display screen. Thus the algorithms for kernel-
(i.e., image clusters and their similarity contexts) andirth based image clustering and locality preserving projecéiomn
local similarity structures (i.e., nonlinear visual siarity integrated seamlessly for preserving both the global aiityl

A=D—

[1]

N
; Dii =) Zy (24)
i
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structures and the local similarity structures between tlo-
images, and a nearest neighbor search in the 2D image dis{--
space will obtain the same results in the high-dimension
feature space. By integrating the mixture-of-kernels amal t
locality preserving projection for image clustering andjpc-
tion, our algorithm can exploit and preserve both the naaim
image similarity structures (i.e., local visual similgristruc-
tures between the returned images in the same cluster)
the image distribution manifolds (i.e., image clusters tradr
similarity contexts) effectively.

The transformation vectos (i.e., components for the trans- z
formation matrixA) for context-preserving image projection el <ol

WhiCh_ minimize_s the ObjeCtive_ function in EQ-(Z‘_?’)i is gth’}’I Fig. 5. The obvious junk images for the keyword-based quemprise” are
the minimum eigenvalue solution to the generalized eigelva separated effectively from the majority group of the retdrireages and are
problem: projected on the left-upon corner.

S(X)A¢T(X)@ = \p(X) D" (X)d (25)

which can further be refined as:
AZEd = \D=d (26)

The returned images, which are projected by preservi
their nonlinear visual similarity contexts, are furthadlaut on
the hyperbolic plane to enable interactive image navigadiad
exploration. After such context-preserving projection tbé
returned images is obtained, Poirealisk model [28] is used
to map the returned images on the hyperbolic plane onto a
display coordinate to support change of focus and intemact I
image exploration. Formally, if Ieb be the hyperbolic distance F|g 6. The obvious junk images for the keyword-based quer;ié@’ are
of one given image to the center of the hyperbolic plane anebarated effectively from the majority group of the retdriraages and are
1 be the Euclidean distance of the same image to the centeP'@fected on the left-down corner.
the display unit circle, the relationship between theiidsgive

is described by: ) effectively. (b) Our hyperbolic image visualization algbm
dyp = 752 - da (27) can allow users to see the global distribution structures, (i
L= image clusters and the similarity contexts) of large amewifit

where s is the scaling factor. Intuitively, the Poinéamap- returned images and their nonlinear visual similarity ests
ping makes a unit Euclidean distance correspond to a longérthe first glance. Such global image distribution struegur
hyperbolic distance as it approaches the rim of the displggn help users assess the relevance between the returned
unit circle. In other words, if the images are of fixed sizdnages and their personal query intentions effectivelyT(we
they would appear larger when they are closer to the orighange of focus is implemented for allowing users to naeigat
of the display unit circle and smaller when they are furthénd explore the returned images interactively accordinbe
away. This property makes it very suitable for visualizinggonlinear visual similarity contexts. Users can changer the
large amounts of returned images because the non-unifornfiicuses of the returned images by clicking on any visible
distance mapping creates an emphasis for the returned image to bring it into focus at the screen center, or by dreggi
ages which are in current focus, while de-emphasizing thoday Vvisible image interactively to any other screen locatio
returned images that can further form the focus point. without losing their nonlinear visual similarity contextghere

Our hyperbolic visualization of the returned images for thée rest of the images can be transformed appropriatelj Wit
keyword-based queries “mountain”, “sunrise”, “grass”danthe power of high interaction and rapid response for expipri
“ocean” are given in Fig. 3, Fig. 4, Fig. 5 amd Fig. 6, wher@nd navigating large amounts of returned images according t
the returned images for multiple clusters are layouted liygus their nonlinear visual similarity contexts, our hyperisdfnage
context-preserving projection and Poingamapping. From Visualization scheme can support more effective solutmn f
these experimental results, one can conclude that: (a) TURers to assess the relevance between the returned imabes an
obvious junk images (i.e., outliers) can be separated -effdbeir real query intentions interactively.
tively from the majority group of the returned images, thus
our mixture-of-kernels algorithm can characterize theeie
visual similarity contexts between the returned imagesemo?‘
precisely with higher discrimination power and our hidden The initial combination of these three basic image kernels
hypothesis is correct for filtering out the obvious junk irmag may not be discriminative enough to characterize the divers

Incremental Kernel Learning
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visual similarity contexts between the returned imagesiacc =1, ---, L.

rately and filter out all the junk images effectively. In difoh, .

such initial mixture-of-kernels has not taken the usersrgu Wo = Zo‘i yio(zi)
intentions into consideration, thus it may not be able teffilt

out all the junk images which may depend on the user’s queryFor a given keyword-based query, the SVM classifier for the

(29)

intentions and personal preferences. current hypothesis making loop can be learned incremgntall
Through interactive navigation and exploration of largE32l:

amounts of returned images according to their nonlinearavis m

similarity contexts, users can build up their mental models mm{IIW Wo|? +EZ[1 — (W - ¢(x1) + b)]

about which types of returned images they want to look for =1

(i.e., which image clusters are more relevant to their query (30)

intentions) and what are the most significant visual siritylar whereW, is the regularization term for the previous hypoth-

contexts between the returned images. After the users fiagl> Making loop(z, 1), { = 1,--- ,m are the new training

some images of interest via interactive image exploratlopintgesdfor thet cur;enlt l2‘3/||00thesls t?1akltnhg Ioonp I;/\/Tcrr;]are
our system can allow users to zoom into the images Pame Via automatic fabel propagatiens the penalty te

interest. When the users find some particular images via The dual problem for Eq. (30) is solved by:
zooming into the images of interest, they can select one or )
multiple images to express their query intentions pregisel nan 522%%@/1%“(%1%%
as shown in Fig. 7(a), Fig. 8(a), Fig. 9(a), and Fig. 10(a). =1 h=1
After our system capture such users’ query intentions, 1it ca m L
automatically update the underlying mixture-of-kernetsl a Z a <1 -y Z o;yik(zi, Iz)) } (31)
change the hypotheses for junk image filtering accordingeo t =1 =1
users’ personal preferences. It is worth noting that outesys subject to:
just requires users to click one or few images to express thei
query intentions and automatic label propagation is used to 2 :0<q <g, Zo‘lyl =0
obtain large amounts of high-quality images for supporting
incremental kernel learning. Because the returned images #he optimal solution of Eq. (30) satisfies:
clustered according to their nonlinear visual similaritgne " ”
texts, clicking one single image on the screen can obtagelar
amounts of visually-similar images in the same clustercivhi W=Wo+ Z aiy(@) Z aiyid(xs) + Z aiyi (1)
can reduce the users’ labeling efforts significantly forteimg (32)
incremental kernel learning. If these clicked images bgltin where o* is the optimal value of the weighting factors of
the same cluster, the visually-similar returned imagesttier the images to optimize the Eq.(31). Thus the SVM classifier
corresponding cluster will be treated as the relevant imége f.(x) for the current hypothesis making loop can be updated
enabling incremental kernel learning. If these clickedde® incrementally as:
belong to multiple clusters, the returned images from abéh I m
corresponding clusters will be treated as the relevant emagf () = WTh(z)+b = Zafym(%ﬂfi)‘FZ afyik(z, zy)+b
for supporting incremental kernel learning. P =
In this paper, we have developed an incremental kernel (33)
learning algorithm to take advantage of users’ query intefthe SVM classifier, which is learned incrementally by taking
tions and personal preferences for determining more atxurthe user's query intentions into consideration, is thenduse
combination of these three basic image kernels (i.e., g&ingr to re-partition the returned images into two classes: eglev
better hypotheses for junk image filtering). The user's yueimagesversus irrelevant images, where the irrelevant images
intentions are represented precisely by a set of visuaityter  (i.e., junk images according to the user’s current quergrint
images, which are in the same clusters with the clicked irtiens) either can be highlighted automatically or may not be
ages. These visually-similar images are treated as theargle presented to the users. Because the hypothesis for junkeimag
images to update the underlying mixture-of-kernels andhlediltering is changed adaptively according to the user’s entrr
more accurate SVM classifier incrementally for filtering oufjuery intentions, some returned images which are detested a
the junk images according to the users’ query intentions atite irrelevant images in the previous hypothesis making loo
personal preferences. may become as the relevant images in the current hypothesis
The junk image filterf, (x) (i.e., SVM classifier to partition making loop. On the other hand, some returned images which
the returned images into the relevant class and the irnefevare detected as the irrelevant images in the previous hgpisth
class) for the previous hypothesis making loop is defined astaking loop may become as the relevant images in the current
T hypothesis making loop because of the change of the user’s
fp(x) =Wy ¢(z) +b (28) qﬁzry intentions a?"nd thz updating of the decision boundéry o
where the regularization teri’ is learned from the boundarythe SVM classifier.
images (i.e., which are treated as the support vectors fagém In such incremental SVM classifier learning process, the
clustering in the previous hypothesis making loof);,y;), underlying mixture-of-kernels for diverse image simibari
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Fig. 7. Junk image filtering: (a) the images returned by the lkegibased Fig. 8. Junk image filtering: (a) the images returned by the lkegiw
search “red rose” and the images in blue boundaries are séldnt the based search “forest” and the images in blue boundaries hretes by the
user to express his/her query intentions; (b) the filteredymaafter the first user to express his/her query intentions; (b) the filteredymaafter the first
hypothesis making loop. hypothesis making loop.

characterization is also changed adaptively accordinghéo t-
user's query intentions and personal preferences. To robt
the updating rule of the importance factgesfor these three
basic image kernels, the objective functié(y?) is defined as:

m

m 3
Z Z a;a;:ylyh Z Gi K (xy, xp)—

=1 h=1 i=1

m L 3
dai (1—wd afy Y BiKi(wi,z) (34)
=1 i=1 i=1

For computing the derivatives of(3) with respect tos, we
assume that the optimal value of does not depend ofi.
Thus the derivatives of the objective functioi(3) can be
computed as:

aJ I &,
V3 9J(5) =3 ZZal g yiyn K (g, xp)+

J(B) =

N —

0B 1=1 h=1 J
m L :Fi!
Z Z af iy K (x4, 17) (35)
=1 i=1

The objective function/(3) is convex and thus our gradient
method for computing the derivatives df3) can guarantee = o -
to converge. In addition, the importance factgtsor these Fig. 9. Junk image filtering: (a) the images returned by the kesivbased
three basic image kernels are updated while ensuring teat fﬁarch “red flower” and the images in blue boundaries are teelday the

. . user to express his/her query intentions; (b) the filteredyesaafter the first
constraints org3 are satisfied [44]. hypothesis making loop.
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Fig. 11. Hypotheses visualization and assessment for figethe junk
images for the keyword-based query “Allen Watch™: (a) Imagetsmed by
Google Images; (b) visualization of the returned images andhtipothesis
for junk image filtering (i.e., margin between the relevant iegm@nd the
irrelevant images) at the first hypothesis making loop; (chafigation of the
returned images and the hypothesis at the second hypothdsisgni@op; (d)
visualization of the returned images and the hypothesiseathiind hypothesis
making loop.

images, which have bigger margins with the clusters for the
o clicked images, are treated as the junk images and are diltere
Eig- éO- Jﬁr]‘k i_rlnaq? filéerri]ng_: (a) the igﬁlage; feté"n_e%y thdegm@:; out automatically. As shown in Fig. 11 and Fig. 12, the
oot to express his/her duery intentons. () the fiteredmasatior e first Effectiveness of our incremental kernel learning alganitten
hypothesis making loop. be improved sequentially (i.e., the relevant images and the
irrelevant images are more separable) by incorporating the
éjser’s query intentions and personal preferences to leare m
accurate SVM classifier for junk image filtering. From these
examples, one can observe that most junk images can be

The importance factors for these three basic image kernel
are updated as:

3 i1 ‘ Lemm . . filtered out effectively after few hypothesis making loops.
Vs BT =Bt 2 > D aiahyynKilan zn)+ Our hyperbolic image visualization algorithm, which lay-
== outs the returned images according to their nonlinear Visua
m similarity contexts, can allow users to see the margins eetw
SO ajaiyy Kz, ) (36) the relevant images and the irrelevant images and provide
=1 j=1 more understandable approach to allow the users to assess

wheren, is the step size for théth hypothesis making loop, the effectiveness of the underlying hypotheses for junkgena
Bt+1 and B¢ are the importance factors for the current anﬁltenng interactively. Users can easily express theirrgue- .
previous hypothesis making loops. The step sizis selected ftentlons .and personal preferences by selecting one orpiaulti
automatically with proper stopping criterion to ensurebglb images interactively to generate better hypotheses amd lea
convergence [33]. Our incremental kernel learning alparits MOre accurate SVM classifier for junk image filtering.
performed until a stopping criterion is met. This stoppimg ¢ In Fig. 7(b), Fig. 8(b), Fig. 9(b) and Fig. 10(b), the junk
terion can be either based on a maximal number of hypotheisige filtering results for several keyword-based queries a
making loops or the variation of between two consecutive given. From these experimental results, one can observte tha
steps. our system can filter out the junk images effectively. In
The updated mixture-of-kernels (i.e., new combination éfder to enable social evaluation of our online junk image
these three basic image kernels) can characterize theneanli filtering system, we have released our online system at:
visual similarity contexts between the returned imagesemdattp://www.cs.uncc.edu/~jfan/google_demo/.
precisely according to the user’s query intentions andgueds It is worth noting that our interactive approach for junk
preferences, filter out the junk images more effectively anchage filtering is significantly different from traditionaél-
generate more precise visualization of the returned imagmsnce feedback approaches for image retrieval [6-13]. The
for next hypothesis making loop. Because the user's queraditional relevance feedback approaches require ugers t
intentions are interpreted precisely by using the clickeddes label a reasonable number of images into the relevant ctass o
and their visually-similar images in the same clusters, thie irrelevant class for learning the modified queries bjia
relevant images can be highlighted explicitly. The irralev thus they may bring huge burden on users. In contrast, our



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY,OL. 19, NO. 12, DECEMBER 2009 12

amounts of labeled images easily via automatic label prog
gation because the returned images are clustered intopheulti =
groups according to their nonlinear visual similarity cods. %‘“
Thus clicking one single image on the screen can obtegd &
large amounts of visually-similar images in the same clus
to enable incremental kernel learning and lessen the tapel#s
burden on the users significantly. Most existing relevaeesl f
back approaches use page-based ranked list for displaying
returned images, and the nonlinear visual similarity cxtste
between the returned images are completely ignored. Tlgis @,
very hard for users to assess the relevance between theeetu &
images and their real query intentions effectively. In castt, v
our interactive junk image filtering approach can allow gse
to see large amounts of returned images and their nonlin
visual similarity contexts at the first glance, thus usem ci
obtain more significant insights, assess the relevanceele®twrig. 12. Hypotheses visualization and assessment for fiethe junk
the returned images and their real query intentions mareages for the keyword-based query “anthrax: (a) Imagesrmetli by
effectively, and express their query intentions and peakorf>0%d Images; (b) visualization of the retumed images adhifpotfiesis
: junk image filtering (i.e., margin between the relevant iem@nd the
preferences more precisely to generate better hypoth@sks jaejevant images) at the first hypothesis making loop; (ciafization of the

learn more accurate SVM classifier for junk image filtering.returned images and the hypothesis at the second hypothdsisgniaop; (d)
visualization of the returned images and the hypothesiseathiind hypothesis

making loop.
VI. ALGORITHM AND SYSTEM EVALUATION
In order to evaluate our interactive approach for junthe SVM classifiers for different hypothesis making loops is

image filtering, we generate the potential query conceps (Icalculated. Given theonfusion matrix § for image clustering,
of potential keywords) by randomly sampling the keyword#e accuracy is definedas:

from WordNet. However, in WordNet, a lot of keywords are c .

. L >i—10(i,%)
rarely used in our daily life, thus we manually remove those Accurarcy = —=s—= 57 (37)
uncommon keywords after random sampling and obtain 2000 2 Zj:l (i)

commonly-used keywords for our experiments. These 20Qfherec = 2 is the number of clusters (i.e. relevaversus
keywords are used as the query concepts to search the imagesevant clusters). As shown in Fig. 13, the performante o
from Google Images search engine. The keywords, which ajgr junk image filtering algorithm (i.e., the performancettud
used to interpret the image concepts at the higher levels @fderlying SVM classifiers for different hypothesis making
WordNet and have multiple children nodes with different Worloops) can generally improve with the number of hypothesis
senses, are treated as the ambiguous text terms to evdleateraking loops, but it becomes stable after 4 hypothesis myakin
performance of our algorithms for image clustering, cotiteXoops. Thus our proposed algorithm for incremental kernel
preserving projection and visualization. For a given keISdNO |earning has very good convergence property.
based query, our system can automatically download theOn average, our interactive approach for junk image filterin
returned images from Google Images search engine and usgli$ achieve over 75% accuracy for image retrieval by fileerin
are allowed to define the number of returned images thgt the junk images from Google Images search results.
want to look for. In our experiments;00 returned images Compared to the original 58% average accuracy of Google
are downloaded from keyword-based Google Images sealfihges search engine, our interactive approach for jungéma
engine for each query. filtering can achieve a significant improvement on the search
Our works on algorithm and system evaluation focus on: (gsults.
evaluating the convergence of our incremental kernel Ilegrn  To evaluate the generalization performance of the mixture-
algorithm; (b) evaluating the accuracy improvement of owf-kernels which is learned incrementally, the optimal mie-
incremental SVM classifier when the number of hypothesig-kernels (which are obtained after hypothesis making
making loops increases; (c) evaluating the prediction powops) is used to train the SVM image classifiers for the
of our SVM classifiers for2000 query concepts (i.e., imagerelevant image concepts (i.e., the keywords for query féemu
concepts) by using large amounts of unseen images; (d) ex@n). Thebenchmark metric for classifier evaluation includes
uating the computational costs of our algorithms for kerneprecision p andrecall p. They are defined as:
based image clustering, context-preserving image piiojgct p p
and incremental kernel learning for junk image filtering) (e p=——o, 0= ——o
comparing the performance of junk image filtering algorithm 0+w 0+
with the keyword-based Google Images search engine.  whered is the set of true positive images that are related to the
To evaluate the effectiveness of our algorithms of mixtureorresponding image concept and are classified corregtly,
of-kernels and incremental kernel learning, the accurdcy is the set of true negative images that are irrelevant to the

(38)
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TABLE |
The accuracy comparison for Google Images search engine
with and without performing our online junk image filtering. p | =& incremental m-vithout incremental |

—
(=}

and p are precision and recall with SVM classifiers for junk
image filtering, p and g are precision and recall for Google
Images search engine.

Z ——
4 /'/

Computational Cost (seconds)

query 14 0 p 0
blood 16.7% 100% 155%  98% // L
mahogany 39.5% 100% 36.2% 96.8% 2 %

lamp 325% 79.2% 31.9% 78.3% 5 / ‘/,—r"'

screw 443% 885% 42.8% 80.2% h

amati 212% 64.0% 202% 61.1% d 200 . — 80a 1900
;‘:::C;n gg;(:;z’ gggz//z gggz//z (753&2_;//2 Fig. 14. The empirica_l r_elat!onship between the cqr_nputa@io_ost (seconds)

apc 56.3% 87.5% 55.8% 86.5% and the number of training images for SVM classifier training.

laurel 70.6% 100% 69.5% 98.3% 50

badger 71.0% 100% 69.5% 98.3%
besseya 95.2% 100% 75.0% 80.0% 4.0

afghan 88.2% 92.0% 62.1% 73.2% e
terrier 96.2% 100% 70.2% 78.1%

oil plan 96.6% 100% 73.8% 76.3%
22 karat gold  68.1% 70.0% 50.0% 48.0%
african grey 943% 96.2% 725% 73.2%

,_‘
o

Computational Cost (seconds)
oo w
o (=3

0.6 F When the number of returned images is less thae, our

. system can almost achieve image clustering nearly in mal. ti

It was reported that most people may just scan the first few
pages of Google search results, thus it is reasonable tonassu

that people may just want to look for less tha®0 returned
Fig. 13.  Clustering accuracy as a function of the number ofotlygsis jmages.

making loops. The solid line represents the average clagt@gcuracy while . " . .
the error bar shows the standard deviation over all 2000 &eyabased After the returned Images are partltloned Into multlple

queries. clusters via kernel-based clustering, our system can perfo
locality preserving projection (LPP) to obtain the simithar

L e ﬁreserving projection of the returned images on the hypierbo
corresponding image concept and are classified incorrec . : .
ane. The computational cost for performing LPP is approx-

and n is the set of false positive images that are related [0 N2 . .

the corresponding image concept but are misclassified. T eated a‘TO(T)’ whereN is the number .Of returned images
. o . : or the given keyword-based query andis the number of

performances of our SVM image classifiers are given in Tahle

1 for the 10 queries with most significant improvement ofage clusters. As shown in Fig. 16, we have obtained the

erppirical relationship between the computational ¢estand

the performance and 10 queries with the least improvem :
e number of returned images. One can observe that the com-
of the performance among the8600 query concepts. From ; 7 . .
putational cost2; exponentially increases with the number

this table, one can observe that the classification acasaci . . .
. . . o{ returned images. When the number of returned images is
large amounts of unseen images for different image conceP

) : .
(queries) are significantly improved by performing increma eSs than500, the computational cosf), is acceptable for

kernel learning. Our incremental kernel learning alganitban supporting interactive image exploration and achievingkju

also reduce the computational cost significantly as shown'M29€ filtering nearly in real time.

Fig. 14.

To achieve kernel-based image clustering, the kernel matri VIl. CONCLUSIONS
for the returned images should be calculated and the computaln this paper, we have proposed an incremental kernel learn-
tional cost largely depends on the number of returned imagéewy algorithm to filter out large amounts of junk images from
In our current system, we allow users to define the number kdyword-based Google Images search results. To achiewe mor
returned images they want to see. The computational cost émcurate partition and visualization of the returned insage
achieving kernel-based image clustering is approximated raultiple kernels are seamlessly integrated for diversegena
O(TN?), whereN is the total number of the returned imagesimilarity characterization. A hyperbolic image visualion
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