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Abstract: In this paper, we present algorithms which allow an object-oriented
querying of existing relational databases. Our goal is to provide an improved que-
ry interface for relational systems with better query facilities than SQL. This
seems to be very important since, in real world applications, relational systems
are most commonly used and their dominance will remain in the near future. To
overcome the drawbacks of relational systems, especially the poor query facilities
of SQL, we propose a schema transformation and a query translation algorithm.
The schema transformation algorithm uses additional semantic information to en-
hance the relational schema and transform it into a corresponding object-oriented
schema. If the additional semantic information can be deducted from an underly-
ing entity-relationship design schema, the schema transformation may be done
fully automatically. To query the created object-oriented schema, we use the
Structured Object Query Language (SOQL) which provides declarative query fa-
cilities on objects. SOQL queries using the created object-oriented schema are
much shorter, easier to write and understand and more intuitive than correspond-
ing SQL queries leading to an enhanced usability and an improved querying of
the database. The query translation algorithm automatically translates SOQL que-
ries into equivalent SQL queries for the original relational schema.

1 Introduction
Relational database systems are widely used in research and industry. For traditional

application areas like accounting, reservation systems, etc., the relational data model
seems to be adequate providing suitable modeling and performance characteristics. The
main reasons for using the relational data model are: It is well known, easy to use andhas
a firm theoretical basis. The SQL query language, however, with its linear syntax was de-
veloped two decades ago and has not changed substantially since then. SQL has rather
poor query facilities compared to the query facilities of today’s object-oriented database
systems. In spite of major advances in research, little has been done to improve the func-
tionality and expressiveness of SQL. By defining the SQL2 standard [11] some of the de-
ficiencies and inconsistencies of SQL have been removed but no major improvement of
the query language has been achieved. A major problem is still the lack of an intuitive way
to specify complex queries. Practical experiments with novice and experienced users
show that essential and powerful concepts of SQL, such as nested queries or set operators
are rarely used in a correct way [10] degrading SQL to a query language which is only use-
ful for simple ad hoc queries. Additionally, the sometimes quite unnatural normalization
of the relational data model and the missing semantic modeling capabilities make query-
ing of relational databases even more difficult. The standardization of SQL3 [17] which
shall be completed in 1996, the earliest, is aimed to improve the modelling capabilities
and the query language by introducing object-oriented features. However, it is not clear
how the additional features of SQL3 can be used in conjunction with existing databases.

From a practical point of view, it is very important to design query languages that al-
low novice and unexperienced users to query databases with little background other than



some basic understanding of the schema and data. The design of graphical database in-
terfaces is one approach to provide this kind of easy-to-use query interfaces [15]. While
graphical user interfaces can greatly enhance the specification process, they can not over-
come the limited capabilities of the relational model to express semantic aspects, i.e. re-
lationships, structured entities and procedural aspects. A lot of research has been going
on over the last decade to improve data models and query languages. As a result, major
advances in database technology have been made, e.g. the object-oriented and extended
relational database systems with their extended semantic modeling capabilities (e.g. [23],
[13], [21], [16], [3]), advanced query languages (e.g. [8], [3]) and graphical user interfaces
(e.g. [20], [1]). A problem, however, is the poor propagation of these systems in real world
applications. Although commercial object-oriented database systems are available for
some time they are rarely used in production environments. The main reason is the pro-
liferation of relational systems. The effort and costs for migrating into a new system are
very high since the application programs which have been implemented over the years
and the training of users present high investments.

Our approach is a more pragmatic one and directed towards practical applications.
Our starting point is the fact that, in the near future, we will be using relational systems
for practical reasons; however, we need to improve the query specification process. It is
possible to narrow the gap between the user’s way of expressing queries and database ma-
nipulation languages like SQL without changing the system itself. Considering many ex-
amples, we found that using an object-oriented schema and query specification greatly
enhances the readability and understandability of queries making it similar to the user’s
‘natural’ view of the problem. Our idea is to automatically create an object-oriented sche-
ma from the relational one and to provide an object-oriented database query language
which can be translated automatically into SQL. To query the created schema, we provide
the Structured Object Query Language (SOQL), a declarative language for querying ob-
ject-oriented databases. In SOQL, the user hasfull SQL-like access to the underlying re-
lational database. Many object-oriented database query languages have been proposed in
the literature [14], [7], [2], [22], [9], [3]. By introducing SOQL, we do not want to propose
just another object-oriented query language. The main point in introducing SOQL is to
define an object-oriented query language which is easy-to-use and allows to specify short
and intuitively understandable queries but can be automatically translated into SQL.

At this point, we want to stress that the object-oriented schema we create is only a
virtual one without having instances. The data itself completely remains in the relational
system. Neither the schema transformation nor the query translation algorithm require
any change to the data or the relational system. This is important since it will greatly en-
hance the practical applicability making our system useful for most areas where relational
systems are used today.

The rest of the paper is organized as follows: Section 2 introduces the overall archi-
tecture of the system. Section 3 elaborates on the automatic transformation of relational
schemas into object-oriented ones using meta information deducted from the underlying
entity-relationship schema. In section 4, we introduce our Structured Object Query Lan-
guage (SOQL) which provides declarative query facilities for the created object-oriented
schema. In section 5, we will briefly describe the automatic query translation of SOQL
into equivalent SQL queries. Section 6 summarizes our approach and points out some
problems.

2 System Architecture
In this section, we want to introduce the overall architecture of our system. We de-

signed our architecture to be used in real world environments and therefore, we had to



build it on top of existing relational systems like Oracle, Ingres, Sybase or others. It is im-
portant to note that, in general, such systems are used on-line with many application pro-
grams running permanently on a daily basis. In real world environments, it is important
that changes of the architecture or the system do not have any impact on existing applica-
tion programs because it is not feasible to rewrite them in the short- or mid-term range.
Therefore, in our system we propose an additional layer which is built on top of the exist-
ing relational systems with their query language SQL (see figure 1). Our goal is to pro-
vide an advanced query interface for relational databases allowing an object-oriented
querying of the database without migrating and transforming data or changing existing
application programs. As shown in figure 1, in our system, pre-existing access structures
remain unchanged while, at the same time, additional on-line and application program
access to the database is provided by the object-oriented query system.

The main components of our system are the schema transformation module, the que-
ry translation module and the knowledge base. The schema transformation module is
necessary to create an object-oriented schema from the relational schema. In general, it
is not feasible to automatically create more structured and semantically richer object-ori-
ented schemas from flat relational ones. Therefore, additional semantic information is
needed, e.g. on tables implementing n-ary relationships (m:n, 1:n or 1:1), on connecting
attributes implementing relationships between tables, on subtypes and so on. This addi-
tional semantic information is not modeled explicitly in the relational model but may be
deducted from an underlying entity-relationship design schema. Consequently, in our
schema transformation algorithm we use both, the relational schema and the entity-rela-
tionship (ER) design schema, to create the object-oriented schema. Meta information on
the relational schema is usually stored in some kind of data dictionary, information about
the ER schema is mostly available in the database design tool (see figure 1). Since format
and access to both types of information may vary from one system to another, specific ac-
cess procedures have to be implemented for the specific relational system and its design
tool.

The knowledge base component is used to store all the additional semantic informa-
tion deducted from the ER schema together with mapping information relating ER and
relational model on one side with the object-oriented schema on the other side. The
knowledge base is built during the semantic schema enrichment, the first step of the sche-
ma transformation algorithm, and provides the basis for an adequate schema transforma-

Fig. 1. Architecture of the Object-Oriented Query System
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tion as well as for an automatic querying of the database based on the transformed sche-
ma. Furthermore, the knowledge base can be extended by the user to also allow schema
extensions or changes and to define additional methods. User defined methods may be
used in the same way as system defined methods allowing SOQL to be uniform and con-
sistent even if extended by new classes and methods.

The query translation module uses the information stored in the knowledge base to
translate SOQL queries based on the created object-oriented schema into equivalent SQL
queries based on the original relational schema. As already indicated, SOQL allows to
express any ‘semantically meaningful’ SQL query and the translation algorithm guaran-
tees a fully automatic translation of such queries into SQL. Only if user-defined methods
or additional classes are used, an SOQL query can not be translated directly into an SQL
query. As will be described in section 5, the data needed to execute user-defined methods
has to be selected iteratively from the relational database before such methods can be ex-
ecuted by our object-oriented query system.

3 Schema Enrichment and Transformation
In this section, we investigate how a relational database schema can be transformed

into object-oriented class definitions. Usually a good object-oriented schema contains
more semantics than a relational schema for the same application domain. If an automatic
transformation process is aimed to produce adequate, well-structured object-oriented
class definitions, more input than the pure relational schema is needed.

For illustrating the schema enrichment and transformation process and as a basis for
the query examples in section 4, we will use the following example. Consider a relational
databaseFlightDB containing information on passengers, departures, airlines, planes,
planetypes and their relationships.

Passenger (pid: Integer; name: String; address: String)
Departure (did: Integer; start: Date; flight: Integer; airline-id: String; plane-id: Integer)
Pass_Dept (did: Integer;pid: Integer; booking: Date)
Airline (airline-id: String; name: String)
Plane (serial-nr: Integer; yr-built: Date; manufacturer: String; model: Integer)
Planetype (model: Integer; manufacturer: String; capacity: Integer; range: Integer)

To transform this database schema, we need additional semantic information, e.g.
thatPass_Dept establishes anm:n-relationship betweenPassenger andDeparture. Gen-
erally, we need additional semantic knowledge such as tables representing relationships
(connecting tables), the type of the relationship (1:1, 1:n, n:m), attributes or groups of at-
tributes representing foreign keys (connecting attributes), etc.

This additional semantic information is crucial for the schema transformation pro-
cess to be able to replace connecting attributes and connecting tables by direct object ref-
erences. Very often the domain of interest is formalized using an entity-relationship (ER)
model [4]. The ER model contains the semantic information needed for our schema en-
richment. If there is a formalized and standardized semantic design model together with
an also standardized mapping which entity and which relationship lead to which table, a
fully automatic schema enrichment is possible. If no standard ER model and no standard-
ized mapping is available, support by the designer or administrator of the database will
be necessary. In any case, part of the additional semantic information can be automatical-
ly deducted [6],[19], [18] and the user may be guided in the process of relating the ER
design schema to the relational schema.

In the following, we assume that we are able to extract an ER model from the given
relational schema with the following properties: Each entity E in the ER model corre-



sponds to a table E in the relational schema, for each functional relationship R: E→ F ta-
ble E contains the (foreign) key of F, all other relationships R correspond to a table R con-
necting the respective ‘entity’ tables. This corresponds to the normal transformation
when creating a relational schema from an ER design schema. In the following, we for-
mally describe the transformation of the ER schema into an object-oriented schema:

1. for each entity E with attributes Ai of domain Di, i=1,...,n and key K(E)
⇒ Class E with attributes A1:D1; ...; An:Dn; key is (A1, ..., Am); end; is created.

2. for each functional relationship R: E→ F
⇒ class E is extended by a method R:→ F, which applied to an objecte of class E
yields the corresponding objectf of class F:e.R = f.
⇒ class F is extended by a method R:→ Set(E), which applied to an objectf of class
F yields the corresponding set of objects {e1, ...,en} of class E: f.R = {e1, ...,en}.

3. for all other relationships R between entities E1, ..., Ep, with possible relationship at-
tributes Ak of domain Dk, k=1,...,q
⇒ class Ei is extended by the following q+1 methods:
• R: → Set(E1x ... x Ei-1 x Ei+1 x ... x En), which applied to an objectei of class Ei yields

the corresponding object tuples,ei is in R-relationship with:ei.R = {(ei) | R-relation-
ship holds for (e1, ...,en)}, whereei denotes the tuple (e1, ...,ei-1, ei+1, ...,en).

• Ak: E1 x ... x Ei-1 x Ei+1 x ... x En → Dk, which applied to an objectei of class Ei and
object tuple ei as parameter yields the k-th attribute ak∈Dk of this
relationship:ei.Ak(ei) = ak.

Example: Let p be an object of class Passenger andd1, ...,dn be its departures, wherep
booked departured2 at January 1st, 1993. Thenp.departures = {d1, ...,dn} and,p.book-
ing(d2) = ‘01/01/93’ (see also class definitions below).

Together with the creation of the object oriented schema, mapping information is
stored in the knowledge base, relating classes and tables which originate at the same en-
tity. Furthermore, each method reflecting a relationship of the ER schema is related to the
corresponding connecting attributes and, if existing, connecting tables of the relational
schema. We establish the mapping at class creation time by automatically linking each
new class definition to its corresponding relational table. Having the mapping informa-
tion, we can determine which table corresponds to which class and whether a given class
attribute has to be translated to a join on the relational side. This mapping is needed for
the automatic translation of queries on the object-oriented schema.

Let us now consider the schema transformation of our example database. There we
have functional relationships between Plane and Planetype and between Plane and De-
parture and a connecting table Pass_Dept connecting Passenger and Departure, which
has an attribute specifying the date of booking. The schema transformation algorithm de-
scribed above will produce the class definitions given in figure 2 which represent the se-
mantically enriched object-oriented schema.

At this point, it should be mentioned that our schema transformation may not pro-
vide a perfect object-oriented schema. There are additional possibilities e.g. identifying
subtype relationships within the relational schema [18], using the aggregation paradigm
of the object-oriented system more extensively[5] and so on [12]. But as it will be shown
in section 4 and section 5, the schema created by our schema transformation allows to
state SOQL queries which are often significantly shorter and more intuitive than corre-
sponding SQL queries using the original tables. At this point, let us emphasize that we
only generate class definitions in the object-oriented database system, whereas the in-
stances remain in the relational database. Thus, access operations to instances of object-
oriented classes have to be translated into accesses to the corresponding relational tuples
which will be described in section 5.



4 Structured Object Query Language
In this section, we will give a short overview of our query language SOQL. SOQL is

a declarative query language for querying the created object-oriented schema. It is simi-
lar to other declarative query languages for object-oriented database systems such as
O2SQL [3], OSQL [7] and ObjectSQL [9]. In addition to features available in these ob-
ject-oriented database query languages, SOQL provides concepts which greatly enhance
the query specification process making it more intuitive. The main point, however, in in-
troducing SOQL is to present an object-oriented database query language which can be
translated automatically into SQL (c.f. section 5).

4.1 The Query Language
As already indicated by the name, SOQL is similar to SQL. SOQL provides declar-

ative query facilities for objects as SQL does for relations. The basic query format can be
indicated by the following description

select {<range_var>{.<method>}*  {.struct_expr}0/1 }+

for each {<classname>{.<method>}*  <range_var>}+

{  where <condition> }0/1 .

In the‘select’ clause, the user has to specify the desired output of the query. Accord-
ing to the expression in the ‘select’ clause, automatically a new (temporary) object class
is created. As a result of the query, all tuples fulfilling the condition are available as vir-
tual instances of this class. The result is also available as a (nested) set and, therefore, can
be directly used in subqueries. To allow an easier specification of queries with structured
results, we introduce the notion of ‘structured expressions’. Structured expressions ex-
tend the select-clause by providing the possibility to define the structure of the desired re-
sult which is indicated by square brackets. As we will show later in the examples, struc-
tured expressions do not only help to structure the result but may also help to avoid joins.
Since structured expressions are a unique feature of SOQL, we give the exact syntax def-
inition in the following

struct_expr ::= [{<struct_expr>}+] | [{<method>}{.<method>}*  {.struct_expr}0/1] |
[<range_var>{.<method>}*  {.struct_expr}0/1]

The‘for each’ clause is similar to the ‘from’ clause in SQL. It is necessary to define
and type the class variables used in a query. The ‘for each’ indicates that the condition is

Class Passengerwith
attributes pid: Integer;

name: String;
address: String;key is (pid);

methods departures:→ Set (Departure);
booking: Departure → Date; end;

Class Departure with
attributes did: Integer;

start: Date;
flight: Integer; key is (did);

methods airline: → Airline;
plane:→ Plane;
passengers:→ Set (Passenger);
booking: Passenger→ Date; end;

Class Planetypewith
attributes model: Integer;

manufacturer: String;
capacity: Integer;
range: Integer; key is (model);

methods planes:→ Set (Plane);end;

Class Planewith
attributes serial-nr: Integer;

yr-built: Date; key is (serial-nr);
methods departures:→ Set (Departure);

planetype:→ Planetype;end;

Class Airline with
attributes airline-id: String;

name: String;key is (airline-id);
methods departures:→ Set (Departure); end;

Fig. 2. Object-Oriented Schema



checked for each instance of the corresponding class and in the case, an instance fulfills
the condition, the desired output is created. In the ‘where’ clause, a condition may be
specified. The condition is an expression with result type‘Boolean’. All methods, includ-
ing the created access methods to attributes, may be used in the condition as long as the
result of the whole expression is of type Boolean. As already mentioned, the result of a
subquery may also be considered as a set. Therefore, set operations can be used to specify
nested SOQL queries.

As most object-oriented systems, our system provides a set of basic object classes
(Boolean, String, Numbers, Integer, Real and the generic classesSet andList) together
with a set of basic methods. Special methods are defined for Set(Numbers) including the
aggregate operationssum, avg, min, max (Set(Numbers)➞ Numbers). As already men-
tioned, the user may extend the system provided set of methods by additional ones. Such
user-defined methods may be used in the same way as system defined methods allowing
SOQL to be uniform and consistent even if it is extended by new classes and methods. In
the case of user-defined methods, however, there is no automatic translation to a single
SQL query based on the underlying relational database (c.f. section5).

As indicated in the query format definition, methods are applied to class or range
variables using dot-notation. For convenience, the standard infix notation is allowed for
the predefined methods of the basic classes. Chains of methods may be connected in dot-
notation, which allows to directly access one object class from another one without ex-
plicitly joining them. It is some kind of schema navigation in the created object-oriented
schema. An advantage of the dot-notation compared to database query languages like
OSQL or O2SQL is that our queries are structured in the way the user is thinking and,
therefore, they are easier to write and understand. A problem of our approach, however,
is that complex methods may have many arguments which may result in queries that are
hard to read. In the case of creating the object-oriented from the relational schema, most
access functions do not have any argument except their class and, therefore, the problem
only occurs in the rare cases of methods deducted from relationship attributes or user-de-
fined methods.

To further illustrate the possibilities of our query language, in the following we will
give some examples for SOQL queries. We will show the advantages of SOQL over SQL
by comparing SOQL queries based on the created object-oriented schema with equiva-
lent SQL queries using the original schema. For the example queries, we use the trans-
formed example database as presented in section3. A simple query selecting all flight
numbers with a list of the corresponding passenger names for the airline “Lufthansa” on
the 02/18/93 would be expressed as

Example 1: select D.flight D.passengers.namefor each Departure D
where D.start = “02/18/93”and D.airline.name = “Lufthansa”

Note, that the result of the query is of the complex type Set([Integer, Set(String)]).
To store the result, a temporary class with two attributes of type Integer and Set(String)
is created. The nested structure of the result is a consequence of using the generalization
of the dot-notation to sets. Since ‘D.passengers’ provides a ‘Set(Passenger)’ for each de-
parture, the method ‘name’ is not applicable since it is only defined for objects of class
‘Passenger’. The generalization of the dot-notation to sets, however, allows methods
which are defined for a class O to be also used with Set(O). As a consequence, the method
name in our example can also be used with ‘Set(Passenger)’ providing a set of passenger
names for each departure. ‘D.passengers.name’ is equivalent to {x.name | x∈ D.passen-
gers}. The generalization of the dot-notation to sets will be described formally in the next
subsection. In the relational system, even for the simple query example 1, four tables need



to be joined in order to execute the query. An equivalent SQL query is given as the result
of the query translation algorithm in section5.

Another simple query would be to find all passengers who have at least one flight to-
gether with a passenger named “Andy Meier”. In SOQL, we can write

Example 2: select P for each Passenger P
where “Andy Meier” in P.departures.passengers.name

In this query, again we use the generalization of the dot-notation to sets. The result
of P.departures. passengers.name is a set of sets of strings. The method ‘in’ with param-
eter “Andy Meier”, however, requires a set of strings since it is only defined for O x
Set(O)➞ Boolean and not for O x Set(Set(O))➞ Boolean. According to the generaliza-
tion of the dot-notation, we shift the method ‘in’ into the inner brackets until it is applica-
ble for the first time. In the example, instead of ‘“Andy Meier” in P.departures.passen-
gers.name ’, we execute {“Andy Meier” in {x.name | x∈ d.passengers}| d ∈
P.departures} resulting in a set of booleans. Like in IRIS [7], sets of booleans in condi-
tions are implicitly ‘or’-connected providing true if at least one element is true.

While the SOQL query is still intuitive and easy to understand, corresponding SQL
queries are quite difficult to read and to write. A corresponding SQL queries requires a
join of at least four tables with the need to know the connecting tables and attributes

select distinct P.name, P.addressfrom Passenger P,Pass_Dept PD
where P.pid = PD.pidand PD.did in

select PD1.did from Passenger P1Pass_Dept PD1
where P1.pid = PD1.pid and P1.name= “Andy Meier”

The next query is an example of a nested query. If we want to select name and ad-
dress of all passengers which have flown with all types of planes, we may use the query

Example 3: select P.name P.addressfor each Passenger P
where P.departures.plane.planetypecontains(select PT for each Planetype PT)

This query may be expressed in SQL as follows
select distinct P.name, P.address
from Passenger P
where not exists

(select  * from Planetype PT
where not exists

(select * from Pass_Dept PD, Departure D,Plane PL
where P.pid = PD.pid and  PD.did = D.didand
D.plane-id = PL.serial-nrand PL.model = PT.model))

Another interesting query is to determine the seat utilization of all “Lufthansa”
flights. The following SOQL query provides the desired result

Example 4: select (D.plane.planetype.capacity -D.passengers.count)for each Departure D
where D.airline.name = “Lufthansa”

A corresponding SQL query is far more complicated. One possibility is
select D.dno, (PT.capacity -count(PD.pid))
from Departure D,Pass_Dept PD, Plane PL, Planetype PT, Airline A
where A.name = “Lufthansa”and A.aid = D.airline-id and D.did = PD.did

and  D.plane-id = PL.serial-nrand PL.model = PT.model
group by D.dno, PT.capacity

Note, that in the SQL query we have to select more information than actually re-
quired. We need the additional information to do the grouping which is only implicit in
the SOQL query. In general, if the result for a query is a nested set with more than one
nesting level, there is no one-to-one translation to an SQL query. Nested results may oc-



cur as answer for queries with structured expressions or queries where the generalization
of the dot-notation is used more than once in a row.

Our last example is such an SOQL query with a nested structured expression. To se-
lect the names of all passengers who have Andy as part of their name together with all
their flights as well as name and address of all co-passengers we can write in SOQL

Example 5: select P.[name, departures.[flight, date, passengers.[name, address] ] ]
for each Passenger P
where P.name.substring(“Andy”)

Since, in this case, the result has more than one nesting level, there is no possibility
to express the query in SQL. As we will show in section 5, in such cases we translate the
SOQL query into an SQL query which provides a superset of the data necessary to an-
swer the query.

To summarize the advantages of SOQL over SQL: SOQL queries are much shorter,
easier to write and understand and more intuitive than corresponding SQL queries. Since
the created class definitions are more structured, in most cases, joins do not have to be
specified explicitly and complex queries are avoided. Additionally, the results of SOQL
queries can be arbitrarily structured and user-defined methods may be used like system-
provided ones. In general, we believe that the created object-oriented schema together
with the SOQL query language are closer to the users view of the application domain
which leads to an enhanced usability and an improved querying of the database.

4.2 Semantic Issues
Before presenting the automatic query translation algorithm (c.f. section 5), in this

subsection we first need to formally describe the semantics of special features of SOQL,
particularly of the generalization of the dot-notation and of structured expressions.

The semantics of the ‘select’ clause is straightforward as long as only the system cre-
ated access methods for attributes are used. For all other methods, we have to apply the
method to all instances fulfilling the condition. More exactly, a query

select a1.op1, ..., an.opn for each ... with opi ∈ Object-Class(ai) for i=1..n
results in a set of objects (a1.op1, ..., an.opn). Even in the case of having chains of methods
connected in dot-notation, there is no problem as long as the methods are defined for the
class to which they are applied. We found, however, that this condition is quite restrictive
for practical purposes and leads to queries which are more complex than necessary. Of-
ten, it seems to be intuitive to apply methods of a class O to sets of that class (Set(O)) or
even to Seti(O). Therefore, we relax the condition by generalizing the dot-notation to
sets. If, for example, a method is applied to objects of class Setn(O), but is not defined
within this class, we try to apply the method to each member of the outmost set. If the
method is not defined for Setn-1(O), we try to apply the method to each member of this
set and so on until the method is defined for one level. Formally the generalization of the
dot-notation is defined recursively

m(Seti(O)) := {m(obj) | obj ∈ Seti-1(O)}.
This step is repeated as long as the methodm is not applicable to Seti(O). Using this re-
cursive definition the nesting structure of the whole expression is preserved.

The semantics of structured expressions is that all attributes on the same nesting lev-
el are related to each other if possible. As we have shown in the previous subsection,
structured expressions do not only help to intuitively specify structured results, but also
to avoid complicated join conditions. More formally, the semantics of a structured ex-
pression can be described as follows: LetO.[m1, ..., mn] be a structured expression. If
there is nomi which is applicable toO andO is an object of set type, we generate the set
{ obj.[m1, ..., mn] |obj ∈ O}. This step is repeated as long asobj itself is a set and nomi is



applicable. If anmi is applicable at the level described in the above structured expression,
the final result is  {(obj.m1, ..., obj.mn) |obj ∈ O}. According to this definition, the result
type for the query in example 5 can be described as { (String, { (Integer, Date, { (String,
String)} ) } )}. The above definition for resolving structured expressions and method ap-
plications may be used for arbitrary structured expressions.

5 Translation of SOQL Queries
This section describes the translation of SOQL queries into SQL queries and the

restructuring of the result according to the complex answer type given by the SOQL se-
lect clause. It is obvious that all queries expressed in SQL over the relational schema
can also be expressed by an SOQL query over the created object oriented schema, since
information is added during the schema enrichment and transformation process and
SOQL has more expressive power than SQL. By providing a translationt, we show con-
structively how an SOQL query Q is translated into an SQL query S =t (Q). The result
of S may be formatted by a functionf into the desired answer format specified by Q,
wheref basically consists of sorting and projection operations.

The main task oft is to resolve chains of method applications by adequate joins and
subqueries on the relational side and to correctly replace the SOQL condition part by
equivalent SQL constructs. In the following, we describe the translationt of a given
SOQL-statement Q into an SQL-statement S and illustrate this process using Example1
from section 4.1. We assume that all class variables occurring in the‘for each’ clause of
the query and its subqueries have pairwise distinct names; otherwise, they will be con-
sistently renamed. New variables introduced during the transformation are denoted by
V i.
1. First, the SOQL-statement Q is transformed into a nested set expression by evaluat-

ing the chains of method applications and structured expressions as described in
section 4.2. The result is an equivalent (same result) specification of the query Q,
with resolved dot generalizations and resolved structured expressions.

{(D.flight, D.passengers.name) | D∈ Departure∧ D.start = “02/18/93”∧ D.airline.name
 = “Lufthansa”} ≡ {(D.flight, {V 1.name | V1 ∈ D.passengers}) | D∈ Departure∧

D.start = “02/18/93”∧ ∃ V2: V2 = D.airline∧ V2.name = “Lufthansa”}

2. The remaining object references are resolved in the following way:Vi op X.m ≡>
Vi ∈ Type(X.m)∧ join(X, Vi), whereop stands for ‘∈’ or ‘=’ depending on whether
X.m is set or single valued. In this step, join predicatesjoin(X, Vi) are introduced with
the intended meaning:join(X, Vi) = True, if there is an object reference from the cur-
rent instance of X toVi.

{(D.flight, {V 1.name | V1 ∈ Passenger∧ join(D, V1)}) | ∃ V2: D ∈ Departure∧
D.start = “02/18/93”∧ V2 ∈ Airline ∧ join(D, V2) ∧ V2.name = “Lufthansa”}

3. Then, the nesting of result tuples is resolved by shifting set conditions onto the outer
level and adding object identity / key information until the result tuple is flat. The
structure of the result will be flattened by this transformation but can be easily recon-
structed using the additional key attributes.

{(D.flight, D.key, V1.name) |∃ V2: V1 ∈ Passenger∧ join(D, V1) ∧ D ∈ Departure∧
D.start = “02/18/93”∧ V2 ∈ Airline ∧ join(D, V2) ∧ V2.name = “Lufthansa”}

4. In the next step, we transform the above tuple-calculus-like expression into an SQL
statement. The attributes to be specified in the ‘select’ clause can be directly taken
from the result part of the expression. All parts‘X ∈ Class’ of the condition are trans-
formed into the ‘from’ clause. If one of these variables is existentially quantified, the
‘select’ clause is extended by ‘X.key’ for all variables occurring in the ‘select’ clause



and the key word ‘distinct’ is added to remove duplicates which are not intended. The
remaining condition part has to be transformed into a permissible SQL condition. The
methods on set types such as‘el in set’, ‘isempty(set)’, ‘set1 contains set2’ are re-
placed by computing these sets in a subquery and applying the SQL constructs‘el =
some (select ...)’, ‘exists(select ...)’, ‘not exists(select ... where not exists (select ...))’.
select distinct  D.flight, D.key, V1.name,V1.key
from Departure D, PassengerV1, Airline V2
where join(D, V2) and join(D, V1) and D.start = “02/18/93”and V2.name = “Lufthansa”

5. The join predicates join(R, S) and key expressions S.key are replaced according to
the mapping information.
select distinct  D.flight, D.did, V1.name,V1.pid
from Departure D, PassengerV1, Airline V2, Pass_Dept V3
where D.airline-id =V2.airline-idand D.did =V3.did and V3.pid =V1.pid and

D.start = “02/18/93”and V2.name = “Lufthansa”

This is the final SQL statement to be executed on the relational database. The format-
ting functionf has to sort the result by D.did and then eliminate D.did andV1.pid.

Since SOQL has more expressive power than SQL, there are some cases where
SOQL queries do not have corresponding SQL queries. Problems in the process of que-
ry translation may occur e.g. if set operations are used in conjunction with structured
tuples or nested sets in the ‘where’ clause, if variables in the ‘for each’ clause range over
nested sets and, as already mentioned, if user extensions (e.g. additional attributes or
user-defined methods) are used in a query. In general, for such SOQL queries there is
no translation to a single SQL query. Note, that the problems are only caused in cases
where, in general, there is no corresponding SQL query. The details of the query trans-
lation algorithm are beyond the scope of this paper and will be presented in a future
paper.

6 Summary and Conclusions
Relational database systems are widely used in research and industry. A major prob-

lem of relational systems are the poor query facilities of SQL. In this paper, we described
a system which enhances the functionality and usability of existing relational databases
and allows to query them like object-oriented databases. Using additional information
deduced from the underlying ER schema, we automatically create a semantically en-
riched object-oriented schema together with the necessary mapping information relating
object-oriented and relational schema. Our query language SOQL provides a uniform
and convenient query interface to the database which, in addition, is easily extensible.
The presented query translation algorithm is performing the automatic translation of
SOQL queries into equivalent SQL queries for the original relational schema. We believe
that our approach is simple, elegant and of high practical importance. We do not require
any change to the relational system, the data or existing applications and therefore, sys-
tems like ours may be used in practice within a short period of time.

In our current implementation, we use the object-oriented database system O2 as the
basis for the additional layer. In O2, we store the necessary semantic information as well
as additional classes, methods and data. The created object-oriented schema is also avail-
able as O2-schema. The implementation of the schema transformation and operation
translation algorithms with complete support of user-defined methods and additional
classes is currently on the way, but not yetfinished. One open problem is the optimiza-
tion of queries which involve user extensions to the schema or arbitrarily structured re-
sults. In such SOQL queries which have no one-to-one correspondence to an SQL query,



the query optimization cannot be done on the relational side. Therefore, we have to opti-
mize the query execution plan to reduce the amount of data which needs to be transferred
between our and the relational system. Performance issues will be of high importance for
such a system to be used in real world applications.

In our future work, we plan to extend the schema enrichment and query translation al-
gorithms to cover the automatic detection and creation of subtype hierarchies or complex
methods. We will further work on the optimization issue trying to provide an acceptable
performance even in complicated cases. Finally, we intend to use our system as a basis for
an advanced integration of relational systems into a heterogeneous multidatabase system
and we plan to integrate the system itself into a network of interoperating databases.
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